LTS Termination Proof

by T2Cert

Input

Integer Transition System
• Initial Location: 7
• Transitions: (pre-variables and post-variables)  2 1 1: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 1 2 3: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − x7 ≤ 0 ∧ − arg3P ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg1 + arg2P ≤ 0 ∧ − arg1 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ 1 − arg4P + x7 ≤ 0 ∧ −1 + arg4P − x7 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 3 3 4: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ −1 + arg3 ≤ 0 ∧ − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ 2 + arg2P − arg2 ≤ 0 ∧ − arg3P + arg4 ≤ 0 ∧ arg3P − arg4 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 3 4 3: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ 2 − arg3 ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ −1 − arg3P + arg3 ≤ 0 ∧ 1 + arg3P − arg3 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 4 5 5: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg3P ≤ 0 ∧ 1 − arg3 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ 1 − arg1 + arg2P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ 1 + arg3 − arg4P ≤ 0 ∧ −1 − arg3 + arg4P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 5 6 4: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ −1 + arg3 ≤ 0 ∧ − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ 2 + arg2P − arg2 ≤ 0 ∧ − arg3P + arg4 ≤ 0 ∧ arg3P − arg4 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 5 7 5: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ 2 − arg3 ≤ 0 ∧ 1 + arg2P − arg2 ≤ 0 ∧ − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ −1 − arg3P + arg3 ≤ 0 ∧ 1 + arg3P − arg3 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 5 8 4: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ −1 + arg3 ≤ 0 ∧ − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ arg2P ≤ 0 ∧ − arg3P + arg4 ≤ 0 ∧ arg3P − arg4 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 5 9 4: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ 2 − arg3 ≤ 0 ∧ − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ arg2P ≤ 0 ∧ − arg3P + arg4 ≤ 0 ∧ arg3P − arg4 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 2 10 6: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg2 ≤ 0 ∧ − arg1P ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2P ≤ 0 ∧ −1 + arg2P ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 6 11 6: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 1 − arg1 ≤ 0 ∧ 1 − arg2 ≤ 0 ∧ −1 − arg1P + arg1 ≤ 0 ∧ 1 + arg1P − arg1 ≤ 0 ∧ 1 − arg2P + arg2 ≤ 0 ∧ −1 + arg2P − arg2 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 7 12 2: 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ 0 ≤ 0 ∧ − arg1P + arg1 ≤ 0 ∧ arg1P − arg1 ≤ 0 ∧ − arg2P + arg2 ≤ 0 ∧ arg2P − arg2 ≤ 0 ∧ − arg3P + arg3 ≤ 0 ∧ arg3P − arg3 ≤ 0 ∧ − arg4P + arg4 ≤ 0 ∧ arg4P − arg4 ≤ 0 ∧ − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0

Proof

The following invariants are asserted.

 1: − arg1P ≤ 0 ∧ − arg1 ≤ 0 2: TRUE 3: − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ 1 − x7 ≤ 0 4: − arg1P ≤ 0 ∧ − arg1 ≤ 0 ∧ 1 − x7 ≤ 0 5: − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ 1 − x7 ≤ 0 6: TRUE 7: TRUE

The invariants are proved as follows.

IMPACT Invariant Proof

• nodes (location) invariant:  1 (1) − arg1P ≤ 0 ∧ − arg1 ≤ 0 2 (2) TRUE 3 (3) − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ 1 − x7 ≤ 0 4 (4) − arg1P ≤ 0 ∧ − arg1 ≤ 0 ∧ 1 − x7 ≤ 0 5 (5) − arg1P ≤ 0 ∧ − arg2P ≤ 0 ∧ − arg1 ≤ 0 ∧ − arg2 ≤ 0 ∧ 1 − x7 ≤ 0 6 (6) TRUE 7 (7) TRUE
• initial node: 7
• cover edges:
• transition edges:  1 2 3 2 1 1 2 10 6 3 3 4 3 4 3 4 5 5 5 6 4 5 7 5 5 8 4 5 9 4 6 11 6 7 12 2

2 Switch to Cooperation Termination Proof

We consider the following cutpoint-transitions:
 3 13 3: − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 4 20 4: − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 5 27 5: − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0 6 34 6: − x7 + x7 ≤ 0 ∧ x7 − x7 ≤ 0 ∧ − arg4P + arg4P ≤ 0 ∧ arg4P − arg4P ≤ 0 ∧ − arg4 + arg4 ≤ 0 ∧ arg4 − arg4 ≤ 0 ∧ − arg3P + arg3P ≤ 0 ∧ arg3P − arg3P ≤ 0 ∧ − arg3 + arg3 ≤ 0 ∧ arg3 − arg3 ≤ 0 ∧ − arg2P + arg2P ≤ 0 ∧ arg2P − arg2P ≤ 0 ∧ − arg2 + arg2 ≤ 0 ∧ arg2 − arg2 ≤ 0 ∧ − arg1P + arg1P ≤ 0 ∧ arg1P − arg1P ≤ 0 ∧ − arg1 + arg1 ≤ 0 ∧ arg1 − arg1 ≤ 0
and for every transition t, a duplicate t is considered.

3 Transition Removal

We remove transitions 1, 2, 3, 10, 12 using the following ranking functions, which are bounded by −23.

 7: 0 2: 0 1: 0 3: 0 4: 0 5: 0 6: 0 7: −7 2: −8 1: −9 3: −10 3_var_snapshot: −10 3*: −10 4: −13 5: −13 4_var_snapshot: −13 4*: −13 5_var_snapshot: −13 5*: −13 6: −18 6_var_snapshot: −18 6*: −18

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3* 16 3: x7 + x7 ≤ 0x7x7 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

3 14 3_var_snapshot: x7 + x7 ≤ 0x7x7 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4* 23 4: x7 + x7 ≤ 0x7x7 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

4 21 4_var_snapshot: x7 + x7 ≤ 0x7x7 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5* 30 5: x7 + x7 ≤ 0x7x7 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

5 28 5_var_snapshot: x7 + x7 ≤ 0x7x7 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6* 37 6: x7 + x7 ≤ 0x7x7 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

The following skip-transition is inserted and corresponding redirections w.r.t. the old location are performed.

6 35 6_var_snapshot: x7 + x7 ≤ 0x7x7 ≤ 0arg4P + arg4P ≤ 0arg4Parg4P ≤ 0arg4 + arg4 ≤ 0arg4arg4 ≤ 0arg3P + arg3P ≤ 0arg3Parg3P ≤ 0arg3 + arg3 ≤ 0arg3arg3 ≤ 0arg2P + arg2P ≤ 0arg2Parg2P ≤ 0arg2 + arg2 ≤ 0arg2arg2 ≤ 0arg1P + arg1P ≤ 0arg1Parg1P ≤ 0arg1 + arg1 ≤ 0arg1arg1 ≤ 0

12 SCC Decomposition

We consider subproblems for each of the 3 SCC(s) of the program graph.

12.1 SCC Subproblem 1/3

Here we consider the SCC { 4, 5, 4_var_snapshot, 4*, 5_var_snapshot, 5* }.

12.1.1 Transition Removal

We remove transitions 21, 23, 5, 6, 8, 9 using the following ranking functions, which are bounded by −4.

 4: −2 + 4⋅arg1 5: 4⋅arg1 4_var_snapshot: −3 + 4⋅arg1 4*: −1 + 4⋅arg1 5_var_snapshot: 4⋅arg1 5*: 4⋅arg1

12.1.2 Transition Removal

We remove transitions 28, 30, 7 using the following ranking functions, which are bounded by −1.

 4: 0 5: 1 + 3⋅arg2 4_var_snapshot: 0 4*: 0 5_var_snapshot: 3⋅arg2 5*: 2 + 3⋅arg2

12.1.3 Splitting Cut-Point Transitions

We consider 2 subproblems corresponding to sets of cut-point transitions as follows.

12.1.3.1 Cut-Point Subproblem 1/2

Here we consider cut-point transition 20.

12.1.3.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

12.1.3.2 Cut-Point Subproblem 2/2

Here we consider cut-point transition 27.

12.1.3.2.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

12.2 SCC Subproblem 2/3

Here we consider the SCC { 3, 3_var_snapshot, 3* }.

12.2.1 Transition Removal

We remove transitions 14, 16, 4 using the following ranking functions, which are bounded by −1.

 3: 1 + 3⋅arg2 3_var_snapshot: 3⋅arg2 3*: 2 + 3⋅arg2

12.2.2 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

12.2.2.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 13.

12.2.2.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

12.3 SCC Subproblem 3/3

Here we consider the SCC { 6, 6_var_snapshot, 6* }.

12.3.1 Transition Removal

We remove transition 11 using the following ranking functions, which are bounded by 1.

 6: 2⋅arg1 6_var_snapshot: 2⋅arg1 6*: 1 + 2⋅arg1

12.3.2 Transition Removal

We remove transition 37 using the following ranking functions, which are bounded by −2.

 6: −1 6_var_snapshot: −2 6*: 0

12.3.3 Transition Removal

We remove transition 35 using the following ranking functions, which are bounded by −1.

 6: 0 6_var_snapshot: −1 6*: 0

12.3.4 Splitting Cut-Point Transitions

We consider 1 subproblems corresponding to sets of cut-point transitions as follows.

12.3.4.1 Cut-Point Subproblem 1/1

Here we consider cut-point transition 34.

12.3.4.1.1 Splitting Cut-Point Transitions

There remain no cut-point transition to consider. Hence the cooperation termination is trivial.

T2Cert

• version: 1.0