from
`X`
cons
`X`
n__from
n__s
`X`
2ndspos
0
`Z`
rnil
2ndspos
s
`N`
cons
`X`
`Z`
2ndspos
s
`N`
cons2
`X`
activate
`Z`
2ndspos
s
`N`
cons2
`X`
cons
`Y`
`Z`
rcons
posrecip
`Y`
2ndsneg
`N`
activate
`Z`
2ndsneg
0
`Z`
rnil
2ndsneg
s
`N`
cons
`X`
`Z`
2ndsneg
s
`N`
cons2
`X`
activate
`Z`
2ndsneg
s
`N`
cons2
`X`
cons
`Y`
`Z`
rcons
negrecip
`Y`
2ndspos
`N`
activate
`Z`
pi
`X`
2ndspos
`X`
from
0
plus
0
`Y`
`Y`
plus
s
`X`
`Y`
s
plus
`X`
`Y`
times
0
`Y`
0
times
s
`X`
`Y`
plus
`Y`
times
`X`
`Y`
square
`X`
times
`X`
`X`
from
`X`
n__from
`X`
s
`X`
n__s
`X`
activate
n__from
`X`
from
activate
`X`
activate
n__s
`X`
s
activate
`X`
activate
`X`
`X`
from
1
cons
2
n__from
1
n__s
1
2ndspos
2
0
0
rnil
0
s
1
cons2
2
activate
1
rcons
2
posrecip
1
2ndsneg
2
negrecip
1
pi
1
plus
2
times
2
square
1
FULL
./TRS/TRCSR/ExAppendixB_AEL03_FR.trs