
Deriving Comparators and Show Functions in
Isabelle/HOL

Christian Sternagel and René Thiemann

Institute of Computer Science, University of Innsbruck, Innsbruck, Austria
{christian.sternagel,rene.thiemann}@uibk.ac.at

Abstract. We present an Isabelle/HOL development that allows for the
automatic generation of certain operations for user-defined datatypes.
Since the operations are defined within the logic, they are applicable
for code generation. Triggered by the demand to provide readable error
messages as well as to access efficient data structures like sorted trees
in generated code, we provide show functions that compute the string
representation of a given value, comparators that yield linear orders, and
hash functions. Moreover, large parts of the employed machinery should
be reusable for other operations like read functions, etc.
In contrast to similar mechanisms, like Haskell’s “deriving,” we do not
only generate definitions, but also prove some desired properties, e.g.,
that a comparator indeed orders values linearly. This is achieved by a
collection of tactics that discharge the corresponding proof obligations
automatically.

1 Introduction

Before shedding light on how things are handled internally, let us have a look at
what the new mechanism does by means of an example.

As reasonably simple datatypes consider lists and rose trees

datatype α list = Nil | Cons α (α list) datatype α tree = Tree α (α tree list)

where both datatypes store content of type α. Typical operations that are required
on specific lists or trees include the following: determine which of two values is
smaller, e.g., for sorting; turning a value into a string, e.g., for printing; computing
a hash code for a value, e.g., for efficient indexing; etc.

With our development, obtaining such functionality for trees—assuming that
it is already available for lists—is as easy as issuing

derive compare tree derive show tree derive hashable tree

which may be read as “derive a compare function for trees, then derive a show
function for trees, and finally derive a hash function for trees.” Afterwards, we
can easily handle sets of trees or dictionaries where trees are used as keys in
code generation [3]: comparisons or hash codes are required to invoke the efficient
algorithms from Isabelle’s collections framework [6] and container library [7].

From the deriving mechanism we get the following functions at our disposal
where order is a type which consists of the three elements Eq , Lt , and Gt :

2 C. Sternagel and R. Thiemann

compare :: (α::compare) tree ⇒ α tree ⇒ order
show :: (α::show) tree ⇒ string
hashcode :: (α::hashable) tree ⇒ hashcode

Here, the annotation α::c denotes that type variable α has to be in type class c,
i.e., trees are comparable (“showable”, “hashable”) if their node contents are.

This is exactly what one would expect from similar mechanisms like Haskell’s
deriving or Scala’s case classes (which support automatic definitions of equality
checks, show functions, and hash functions).

However, we are in the formal setting of the proof assistant Isabelle/HOL [9],
and can thus go one step further and in addition to automatic function definitions
also provide automatic proofs of some properties that these functions have
to satisfy: since HOL is a logic of total functions, totality is obligatory; for
comparators we guarantee that they implement a linear order (see Section 3);
and for show functions that they adhere to the show law (see Section 4).

Overview. After presenting some preliminaries and related work in Section 2, we
first present our two main applications: comparators are the topic of Section 3 and
show functions are discussed in Section 4. While we also support the generation
of hash functions (without proving any properties about them), we do not discuss
them in the remainder, since this would give no further insight.

Afterwards we explain the main parts of the process to generate class instances.
Since this is mostly generic, we will present each part with only one of the classes
as a leading example. In general the process is divided into the following steps:

1. First, in Section 5, we show how to define the desired operations as recursive
functions. To this end, we illustrate a two-level construction principle that
guarantees totality.

2. In Section 6, we further illustrate how the defining equations of operations
are post-processed for code generation with the aim of improved efficiency.

3. After that, in Section 7, we discuss how to generate proof obligations for
the desired properties and use induction along the recursive structure of a
datatype to discharge them. Once these properties are proved it is straight-
forward to derive class instances.

After the explanation of the deriving mechanism, we continue in Section 8
and illustrate how the new infrastructure for comparators can be integrated into
existing Isabelle/HOL formalizations. Finally, we conclude in Section 9.

Our formalization is part of the development version of the archive of formal
proofs (AFP). Instructions on how to access our formalization as well as details
on our experiments are provided at:

http://cl-informatik.uibk.ac.at/software/ceta/experiments/deriving

2 Preliminaries and Related Work

Let us start with two remarks about notation: [] and # are syntactic sugar for
the list constructors Nil and Cons, and we use both notations freely; function
composition is denoted ◦.

http://cl-informatik.uibk.ac.at/software/ceta/experiments/deriving

Deriving Comparators and Show Functions in Isabelle/HOL 3

Our work is built on top of Isabelle/HOL’s new datatype package [1,15], which
thus had a strong impact on the specifics of our implementation. Therefore, some
more details might be helpful. The new datatype package is based on the notion
of bounded natural functors (BNFs). A BNF is a type constructor equipped
with a map function, set functions (one for each type parameter; collecting all
elements of that type which are part of a given value), and a cardinality bound
(which is however irrelevant for our purposes). Moreover, BNFs are closed under
composition as well as least and greatest fixpoints. At the lowest level, BNF-
based (co)datatypes correspond to fixpoint equations, where multiple curried
constructors are modeled by disjoint sums (+) of products (×). Finite lists, for
example, are obtained as least fixpoint of the equation β = unit + α× β.

While in principle this might provide opportunity for generic programming a
la Magalhães et al. [8]—which makes a sum-of-products representation available
to the user—there is the severe problem that we not only need to define the
generic functions, but also have to prove properties about them. For this reason,
we do not work on the low-level representation, but instead access BNFs via its
high-level interface, e.g., we utilize the primrec command for specifying primitive
recursive functions, and heavily depend on the induction theorems that are
generated by the datatype package. A further problem in realizing the approach
of [8] is the lack of multi-parameter type classes in Isabelle/HOL. In the following,
whenever we mention “primitive recursion,” what we actually mean is the specific
version of primitive recursion provided by primrec.

Given a type constructor κ with n type parameters α1, . . . , αn—written
(α1, . . . , αn) κ—the corresponding map function is written mapκ and the set
functions set1κ, . . . , setnκ, where the superscript is dropped in case of a single type
parameter.1 In the following we will use “datatype” synonymously with “BNF”
but restrict ourselves to BNFs obtained as least fixpoints. Moreover, we often
use types and type constructors synonymously.

In general we consider arbitrary datatypes of the form

datatype (α1, . . . , αn) κ = C 1 τ11 . . . τ1k1 | . . . | Cm τm1 . . . τmkm (1)

where each τij may only consist of the type variables α1, . . . , αn, previously
defined types, and (α1, . . . , αn) κ (for which the type parameters α1, . . . , αn
may not be instantiated differently; a standard restriction in Isabelle/HOL). In
general several mutually recursive datatypes may be defined simultaneously. For
simplicity’s sake we restrict to the case of a single datatype in our presentation.

Related Work. Our work is inspired by the deriving mechanism of Haskell [10,
Chapter 10], which was later extended by Hinze and Peyton Jones [4] as well as
Magalhães et al. [8]. Similar functionality is also provided by Scala’s2 case classes

1 A further technicality—allowing for things like phantom types—is the separation
between “used” and “unused” type parameters. To simplify matters, we consider
all variables to be “used” in the remainder, even though our implementation also
supports “unused” ones.

2 http://scala-lang.org

http://scala-lang.org

4 C. Sternagel and R. Thiemann

and Janestreet’s comparelib3 for OCaml.To the best of our knowledge there is
no previous work on a deriving mechanism that also provides formally verified
guarantees about its generated functions (apart from our previous work [12,14]
on top of the, now old, datatype package that was never described in detail).

However, the basics of generic programming in theorem provers—automati-
cally deriving functions for arbitrary datatypes, but without proofs—where
already investigated by Slind and Hurd [11] (thanks to the anonymous referees
for pointing us to that work). Not surprisingly, our basic constructions bear a
strong resemblance to that work, where the relationship will be addressed in
more detail in Section 5.

3 Linear Orders and Comparators

Several efficient data structures and algorithms rely on a linear order of the
underlying element type. For example, to uniquely represent sets by lists, they
have to be sorted; dictionaries often require a linear order on keys, etc. Hence, in
order to use these algorithms within generated code we require linear orders for
the corresponding element types.

There are at least two alternative approaches when representing linear orders
for some type α. The first one is to provide one (or both) of the orders < or ≤,
and the second one is to demand a comparator of type α⇒ α⇒ order. In the
following, we favor the approach using comparators for several reasons:

The first one is related to simplicity. When constructing comparators, only
one function has to be synthesized, whereas linear orders in Isabelle/HOL require
both of < and ≤. Of course we could just synthesize one of those, say <, and
then define the other using the built-in equality, i.e., x ≤ y iff x < y ∨ x = y. But
then even a single invocation of ≤ might result in two comparisons.

Concerning efficiency, for some algorithms, one has to invoke two comparisons
of elements of type α, where a comparator only needs one. For example, when
traversing a binary search tree, it may require two comparisons to figure out,
whether we have to go on left, or right, or whether we are already at the right
node. Similarly, also when generating linear orders for complex types, we might
want to define the lexicographic order on pairs, where we again may need to
perform two comparisons between the first entries of the pairs. In contrast, for
both examples we get all the required information from one invocation of the
comparator. This may lead to an exponential difference when comparing two
tree-shaped values. Despite these benefits of comparators we do not want to
hide that there are also some disadvantages. For example for numeral types,
where < and ≤ can be seen as built-in functions, there might be some overhead
when computing the full comparison result of a comparator (which needs two
comparisons), where a single invocation of < might have been sufficient as in a
sorting algorithm.

The last and perhaps most important reason for preferring comparators is the
fact that using comparators as a new dedicated class for sorting, etc., one does not

3 https://github.com/janestreet/comparelib

https://github.com/janestreet/comparelib

Deriving Comparators and Show Functions in Isabelle/HOL 5

interfere with the remaining formalization. The problem here is, that Isabelle’s
type class for orders allows to specify exactly one order <. As an example, in
IsaFoR [13] we defined < on positions (of terms) as the standard prefix order,
which is the natural choice for a large part of the whole formalization, except for
sorting. Still we can invoke a sorting algorithm via the comparator for positions,
since the orders within the classes “comparator” and “order” may differ.

In order to formalize comparators in Isabelle/HOL, we started by defining a
predicate is-cmp :: α comparator⇒ bool that demands three crucial properties
for symmetry, equality, and transitivity.

invert-order (c x y) = c y x

c x y = Eq =⇒ x = y

c x y = Lt =⇒ c y z = Lt =⇒ c x z = Lt

(2)

Here, α comparator is a type abbreviation for α⇒ α⇒ order, and invert-order ::
order⇒ order swaps Lt with Gt .

We further provide definitions to switch between comparators and linear
orders, which eases the integration of our results in the existing Isabelle/HOL
infrastructure which primarily works on linear orders, when it comes to sorting,
etc, cf. Section 8.

comparator-of x y = (if x < y then Lt else if x = y then Eq else Gt)

le-of-comp c x y = (case c x y of Gt ⇒ False | ⇒ True)

lt-of-comp c x y = (case c x y of Lt ⇒ True | ⇒ False)

It was an easy exercise to prove that is-cmp c implies that le-of-comp c and
lt-of-comp c satisfy the conditions of Isabelle/HOL’s class for linear orders, and
vice versa, if ≤ and < form a linear order, then also is-cmp comparator-of .

We further defined a type class for comparators, compare, which demands a
constant compare :: α comparator that satisfies is-cmp compare.

In order to define comparators for datatypes, we rely on an auxiliary function
that combines a list of elements of type order lexicographically.

Definition 1. We define the function comp-lex :: order list⇒ order as

comp-lex [] = Eq

comp-lex (x # xs) = (case x of Eq⇒ comp-lex xs | ⇒ x)

Now comparators for lists and trees are easily defined. We just compare the
constructors first, and in case of equality recurse and combine the results for
each argument via comp-lex .

Example 2. Since both lists and trees have one type variable α, the corresponding
comparators require a comparator c :: α comparator as additional argument.

6 C. Sternagel and R. Thiemann

Hence we will define the functions cmplist and cmptree of types α comparator⇒
α list comparator and α comparator⇒ α tree comparator, respectively.

cmplist c Nil Nil = comp-lex []

cmplist c Nil (Cons) = Lt

cmplist c (Cons) Nil = Gt

cmplist c (Cons x xs) (Cons y ys) = comp-lex [c x y, cmplist c xs ys] (3)

cmptree c (Tree x xs) (Tree y ys) = comp-lex [c x y, cmplist (cmptree c) xs ys]

Both comparators are constructed following a general schema which will be
discussed further in Section 5, and which produces a comparator cmpκ of type
α1 comparator⇒ . . .⇒ αn comparator⇒ (α1, . . . , αn) κ comparator.

4 Show

A show function for type α provides a string representation of any given value
of that type, i.e., show :: α ⇒ string. In order to allow for constant time
concatenation of results (and thus avoid unnecessary performance regression)
the actual transformation into a string is postponed as long as possible. This
is achieved by the usual trick of using functions of type string⇒ string (which
we will abbreviate to shows) instead of plain strings. Then show from above is
generalized to shows :: α⇒ shows. The original show function is easily recovered
by show x = shows x [].

In our implementation this is further extended by a nat argument representing
the “precedence” of the context in which the show function is used, providing
more flexibility with respect to parenthesization. For simplicity’s sake we omit
this detail in the following.

Another quirk that is required by user convenience is a special show function
for lists of αs, shows-list :: α list⇒ shows. E.g., we usually want lists of characters
to be printed as string, i.e., “abc” instead of “[a, b, c].” In addition, show functions
are required to satisfy the show law :

shows x (ys @ zs) = shows x ys @ zs

Together this brings us to the type class show :

class show =
fixes shows :: α ⇒ shows and shows-list :: α list ⇒ shows
assumes shows x (ys @ zs) = shows x ys @ zs and

shows-list xs (ys @ zs) = shows-list xs ys @ zs

The show law. One way of looking at the show law is that show functions do
not temper with or depend on output produced so far. To see this, consider the
specific instance shows x ([]@ zs) = shows x []@ zs and observe that this requires
shows always to behave as if called with [] as second argument.

Our goal is now to automatically derive a show function for a given datatype.

Deriving Comparators and Show Functions in Isabelle/HOL 7

Example 3. Assuming a show function for list elements s, this would look as
follows for the list datatype:

showslist s Nil = λ“Nil”
showslist s (Cons x xs) = λ“ (Cons” ◦ ◦ s x ◦ ◦ showslist s xs ◦ λ“)”

Here we use two notational conveniences: λ“text” is the show function producing
the literal string “text”; and is a show function producing a single space.

For the tree datatype from the introduction it would be:

showstree s (Tree x ts) =
λ“ (Tree” ◦ ◦ s x ◦ ◦ showslist (showstree s) ts ◦ λ“)”

The underlying general schema (Section 5) produces a show function showsκ
of type (α1 ⇒ shows)⇒ . . .⇒ (αn ⇒ shows)⇒ (α1, . . . , αn) κ⇒ shows.

5 Internal Constructions

In general we have to consider an arbitrary datatype (1) for which we want to
define some function

fκ :: (α1 ⇒ σ1)⇒ . . .⇒ (αn ⇒ σn)⇒ (α1, . . . , αn) κ⇒ σ′

that is parameterized by corresponding functions for type parameters and relies
on the existence of a function fκ′ for each datatype κ′ that was used in the
construction of κ. For comparators and show functions this specializes to

cmpκ :: (α1 comparator)⇒ . . .⇒ (αn comparator)⇒ (α1, . . . , αn) κ comparator

showsκ :: (α1 ⇒ shows)⇒ . . .⇒ (αn ⇒ shows)⇒ (α1, . . . , αn) κ⇒ shows

whose definitions will rely on a comparator (show function) for each of the αi as
well as each κ′ used in the definition of κ.

Note that for such κ′, the function fκ′ itself takes arguments for the type
parameters of κ′. Thus, for any occurrence (τ1, . . . , τk) κ′ there will be a subterm
of the shape fκ′ g1 . . . gk, where each gi depends on the structure of τi. For
nested recursive datatypes this may result in κ occurring inside a type parameter
position of κ′, e.g., the rose tree type makes a nested occurrence inside α tree list.

Before we discuss this any further, let us have a look at the specification
mechanisms of Isabelle/HOL that would in principle support the automatic
definition of a function fκ (like cmptree or showstree)

One candidate would be Isabelle’s function package [5] by Krauss. This would
require automatic termination proofs, and recursion through previously defined
fκ′ is only possible after the automatic generation of congruence rules, which
both seems at least tedious. Krauss himself remarked that the function package
might not be the right solution for our purposes (personal communication).

The other candidate is primitive recursion, which is provided by the datatype
package in form of the primrec command. When using primrec, termination is

8 C. Sternagel and R. Thiemann

obtained automatically in exchange for certain syntactic restrictions, which we will
call primitive recursive form in the following. Essentially, we may only perform
pattern matching on one argument, and for a left-hand side like g (C t1 . . . tn),
the recursive calls must be of the form maps g ti where maps is a combination
of canonical map functions of those types which are involved in nesting. For
instance, if g takes lists as argument, then maps is the identity, since the datatype
of lists is not nested. If g takes rose trees as argument then maps is the map
function on lists, since trees are nested within lists.

Note that neither cmplist and cmptree from Example 2 nor showstree from
Example 3 are in primitive recursive form. It is well-known how to reduce the
pattern matching to only one argument, by moving the pattern matching into
a case-expression on the right-hand side. In the case of lists we are done: the
defining equations are in primitive recursive form, and from these we can easily
derive the equations of Example 2 and Example 3. However, in the presence of
nesting there is still some work to be done.

For instance, one can apply a nested-to-mutual translation as proposed by
Slind and Hurd [11]. We actually applied this definitional principle in our previous
version [12,14]. However, it has the disadvantage of not being modular, in the
sense that in the presence of nesting we could not reuse existing constants. As
an example, in [14] the definition of cmptree will not contain cmplist itself, but
a fresh copy of the definition of cmplist, specialized to lists of trees. And even
worse, when proving properties of cmptree, the tactic has to reprove all properties
for the copy of cmplist and cannot reuse properties of cmplist.

In the remainder, we describe another workaround which will establish primi-
tive recursive form w.r.t. primrec, and allow modular proofs. The main problem
is that calls like cmplist (cmptree c) xs and showslist (showstree s) ts are not of
the desired form, as neither cmplist nor showslist is the map function for lists. In
general we have to gracefully handle patterns of the shape fκ′ (fκ f) (where fκ′

and fκ might of course take more than one argument function, but such cases
can be handled similarly).

The essential idea is now instead of defining fκ f1 . . . fn (Ci x1 . . . xn) = . . .,
to encode the information that is provided by the argument functions fi already
into the type of the first argument Ci x1 . . . xn of type (α1, . . . , αn) κ. This is akin
to assuming that the fi have already been partially applied to the appropriate
subterms xi, thus we call such functions partially applied (comparator or show)
functions and denote them by prefixing the function name with a p. In the
following we depict the type changes in the general case as well as for comparators
and show functions:

pfκ :: (σ1, . . . , σn) κ⇒ σ′

pcmpκ :: (α1 ⇒ order, . . . , αn ⇒ order) κ ⇒ (α1, . . . , αn) κ⇒ order

pshowsκ :: (shows, . . . , shows) κ⇒ shows

Deriving Comparators and Show Functions in Isabelle/HOL 9

Given a partially applied function it is easy to define the originally intended one
by using canonical maps:

fκ f1 . . . fn = pfκ ◦mapκ f1 . . . fn

cmpκ c1 . . . cn = pcmpκ ◦mapκ c1 . . . cn

showsκ s1 . . . sn = pshowsκ ◦mapκ s1 . . . sn

Now let us turn to the construction of such partially applied functions using
the primrec mechanism. To ease matters, we provide some auxiliary Isabelle/ML
functions (as opposed to HOL functions that can be reasoned about inside the
logic). Please keep in mind that in the following we just describe general schemas
of putting together certain terms and not recursive Isabelle/HOL functions. They
are similar to the interpretation J·KΘ,Γ of Slind and Hurd [11], but differ since
only the former produce terms which fit the requirements of primrec.

Given a type constructor κ together with a function fκ :: (α1, . . . , αn) κ⇒ σ,
we support the construction of what we call a map block for type τ

Mf
τ =


fκ if τ = (τ1, . . . , τn) κ

mapκ′ Mf
τ1 . . . Mf

τ`
if τ = (τ1, . . . , τ`) κ

′ with κ′ 6= κ

λx. x otherwise

The purpose of a map block is to relay recursive calls to fκ through arbitrary
layers of type constructors. Note that this matches exactly the requirements of
the primrec command.

Given a function fκ′ for each κ′ 6= κ occurring in τ , we further support the
construction of a corresponding compose block for type τ

Cfτ =


λx. x if τ = (τ1, . . . , τn) κ

fκ′ ◦mapκ′ Cfτ1 . . . Cfτ` if τ = (τ1, . . . , τ`) κ
′ and κ′ 6= κ

λx. x otherwise

whose purpose is to apply the fκ′ functions to (via Mf
τ) appropriately prepared

subterms. In this way we can cleanly separate recursive function calls as accepted
by primrec from further processing of the corresponding results (via the fκ′s).

Compose and map blocks are then combined into Cfτ (Mf
τ x) for a variable x

of type τ . We illustrate this general construction in the following example.

Example 4. For κ = tree and a variable x of type τ = α tree list we obtain

Cfτ (Mf
τ x) = Cfτ (map fκ x) = (flist ◦ map (λx. x)) (map fκ x)

For comparators with τ = (α⇒ order) tree list the last term would be

pcmplist (map pcmptree x) :: α tree list⇒ order

and for show functions with τ = shows tree list

pshowslist (map pshowstree x) :: shows

which both fit the rules of primrec.

Putting everything together, partial comparators are defined as follows.

10 C. Sternagel and R. Thiemann

pcmpκ (C i x1 . . . xki) z = case z of C j y1 . . . ykj ⇒
Lt if i < j

Gt if j < i

comp-lex [Cpcmpτi1 (Mpcmp
τi1 x1) y1, . . . , Cpcmpτiki

(Mpcmp
τiki

xki) yki] if i = j

Example 5. For our example types this results in the following definitions:

pcmplist Nil z = (case z of Nil ⇒ comp-lex [] | Cons ⇒ Lt)

pcmplist (Cons cx cxs) z = (case z of

Nil ⇒ Gt | Cons y ys⇒ comp-lex [cx y, pcmplist cxs ys])

pcmptree (Tree cx cxs) z = (case z of

Tree y ys⇒ comp-lex [cx y, pcmplist (map pcmptree cxs) ys])

For partial show functions the general schema is

showsκ (C i x1 . . . xki) =

λ“(Ci” ◦ ◦ Cpshows
τi1 (Mpshows

τi1 x1) ◦ ◦ · · · ◦ ◦ Cpshows
τiki

(Mpshows
τiki

xki) ◦ λ“)”

Example 6. For the type of rose trees this results in the following definition:

pshowstree (Tree s ts) =
λ“ (Tree” ◦ ◦ s ◦ ◦ pshowslist (map pshowstree ts) ◦ λ“)”

which is in the desired primitive recursive form.

It eventually remains to prove the equations of Example 2 and Example 3
from these definitions. For this, we mainly demand compositionality of the various
map functions, the simplification rules for map functions, the definitions of all
participating comparators (or show functions), and the definitions of the partially
applied functions. For example, for the comparator of trees we derive the desired
equation as follows, where in the step from (7) to (8) we use the compositionality
of maptree and map, and we go from (9) to (8) by unfolding both definitions of
cmptree and cmplist.

cmptree c (Tree x xs) (Tree y ys) (4)

= pcmptree (maptree c (Tree x xs)) (Tree y ys) (5)

= pcmptree (Tree (c x) (map (maptree c) xs)) (Tree y ys) (6)

= comp-lex [c x y, pcmplist (map pcmptree (map (maptree c) xs)) ys] (7)

= comp-lex [c x y, pcmplist (map (pcmptree ◦ (maptree c)) xs) ys] (8)

= comp-lex [c x y, cmplist (cmptree c) xs ys] (9)

6 Code Equations for Comparators

Recall that our main motivation was to define functions inside the logic which
then should become available for code generation. Hence, after having defined

Deriving Comparators and Show Functions in Isabelle/HOL 11

comparators as in Example 5, and having proved the equations of Example 2,
we just register the latter as code equations. In this way, only comparators will
appear in generated code, and the internal construction via the partially applied
comparators remains opaque—and for the same reasons, the partially applied
show functions will not occur in the generated code.

Still these code equations are not optimal w.r.t. execution time. Especially in
languages with eager evaluation, the right-hand side of (3),

comp-lex [c x y, cmplist c xs ys]

is problematic. Even if the first comparison c x y evaluates to Lt or Gt , also the
second argument cmplist c xs ys will be evaluated in eager languages.

To avoid this inefficiency, we completely unfold applications of comp-lex in
the right-hand sides of the equations in Example 2 before handing them over to
the code generator. To be more precise, unfolding is always performed w.r.t. the
following three equations (which are all easily proved):

comp-lex [] = Eq

comp-lex [x] = x

comp-lex (x # y # xs) = (case x of Eq ⇒ comp-lex (y # xs) | z ⇒ z)

The advantage of doing this just for code generation is that we can still use
properties of comp-lex within proofs, e.g., when showing that our comparators
really behave like comparators. Moreover, we can keep the canonical structure as
described in Example 2 without having to perform lots of case splits.

After the expansion, the right-hand side of the code equation for (3) becomes

case c x y of Eq ⇒ cmplist c xs ys | z ⇒ z

where even in eager languages the recursive call will only be evaluated on demand.

7 Correctness of Generated Functions

Eventually we have to ensure correctness of the generated show functions and
comparators. For comparators, this amounts to proving the following soundness
theorems for our example types and for the general case, and similar theorems
have to be proved regarding the show law.

is-cmp c =⇒ is-cmp (cmplist c) is-cmp c =⇒ is-cmp (cmptree c)

is-cmp c1 =⇒ . . . =⇒ is-cmp cn =⇒ is-cmp (cmpκ c1 . . . cn)
(10)

Although the theorems are clearly sufficient to easily plug together valid
comparators, they are not sufficient when proving the soundness theorem for a
new datatype which uses nested recursion, such as rose trees. To illustrate the
problem, recall the defining equation for cmptree:

cmptree c (Tree x xs) (Tree y ys) = comp-lex [c x y, cmplist (cmptree c) xs ys]

12 C. Sternagel and R. Thiemann

In order to prove the soundness theorem for cmptree, we clearly need correctness
of cmplist. However, since cmplist is invoked on cmptree c, the soundness theorem
for cmplist can only be applied if we already would have the soundness theorem
for cmptree, and thus the current form of the soundness theorems is not strong
enough in the presence of nesting.

As a solution, we always generate pointwise soundness theorems which are
based on pointwise properties of a comparator. From the pointwise theorems we
can then easily conclude the soundness theorems stated above.

In detail, for symmetry, transitivity, equality, the show law, etc., we define
pointwise variants. Here, we only illustrate transitivity. We define transitivity on
the level of order, and a pointwise variant on the level of comparators. It imposes
a stronger variant of transitivity in comparison to (2), which captures all possible
combinations of Lt and Eq . This is required, as we want to prove transitivity in
a standalone way, without having to refer to symmetry or equality.

definition trans-order :: order ⇒ order ⇒ order ⇒ bool where
trans-order x y z ←→

(x 6= Gt −→ y 6= Gt −→ z 6= Gt ∧ ((x = Lt ∨ y = Lt) −→ z = Lt))

definition ptrans-comp :: α comparator ⇒ α ⇒ bool where
ptrans-comp c x ←→ (∀ y z . trans-order (c x y) (c y z) (c x z))

The former definition is more low-level, but has the advantage of being smoothly
combinable with comp-lex , independent of any comparator:

lemma comp-lex-trans: assumes length xs = length ys and length ys = length zs
and ∀ i < length zs. trans-order (xs ! i) (ys ! i) (zs ! i)
shows trans-order (comp-lex xs) (comp-lex ys) (comp-lex zs)

In combination with the already proved partial transitivity property of cmplist

(
∧

x . x ∈ set xs =⇒ ptrans-comp c x) =⇒ ptrans-comp (cmplist c) xs (11)

we can now prove the partial transitivity property for trees in a modular way.

(
∧

x . x ∈ settree t =⇒ ptrans-comp c x) =⇒ ptrans-comp (cmptree c) t

We first apply induction on t. So let t = Tree x1 ts1 where we can assume the
premise and the induction hypothesis.

x ∈ settree (Tree x 1 ts1) =⇒ ptrans-comp c x for all x (12)

t1 ∈ set ts1 =⇒ ptrans-comp (cmptree c) t1 for all t1 (13)

We have to prove ptrans-comp (cmptree c) (Tree x 1 ts1), i.e.,

trans-order (cmptree c (Tree x 1 ts1) t2) (cmptree c t2 t3)
(cmptree c (Tree x 1 ts1) t3)

(14)

for all t2 and t3. In the general case, at this point we perform a case analysis
on both t2 and t3, where all of the cases where the three leading constructors

Deriving Comparators and Show Functions in Isabelle/HOL 13

are different are easily proved by unfolding the transitivity property followed by
simplification. Hence, it remains the interesting case with identical constructors.
Let t2 = Tree x2 ts2 and t3 = Tree x3 ts3. Then, (14) simplifies to

trans-order (comp-lex [c x 1 x 2, cmplist (cmptree c) ts1 ts2])
(comp-lex [c x 2 x 3, cmplist (cmptree c) ts2 ts3])
(comp-lex [c x 1 x 3, cmplist (cmptree c) ts1 ts3])

and via theorem comp-lex-trans , it remains to consider all the comparisons of the
arguments of the constructor Tree which leads to the following proof obligations.

ptrans-comp c x 1 (15)

ptrans-comp (cmplist (cmptree c)) ts1 (16)

Here, (15) is immediately solved by (12) and the simplification rules for set . And
for (16) we first apply (11), then conclude via the induction hypothesis (13).

The proof for the individual arguments is easily generalized to the generic case
and follows a simple schema: whenever we hit some foreign type (τ1, . . . , τm) κ,
we use the partial transitivity theorem of cmpκ and proceed recursively on each
τi; whenever we hit the comparator under consideration, we apply the induction
hypothesis, and whenever we hit a comparator for some type variable, we apply
the corresponding premise.

In a similar way, also partial symmetry and equality properties are defined
and proved. We separated the three properties and did not define a partial
comparator property, as the corresponding proofs are all a little bit different
and could not easily be merged into a single one. For example, for transitivity
we perform one induction and then do a case analyses on two other elements,
whereas for symmetry and equality, a single case analysis suffices.

Having proved the partial properties of a comparator and show function, it is
easy to derive the main (global) properties of comparators and show functions,
namely soundness theorems in (10) and the show law.

8 Integration into Isabelle/HOL Infrastructure

At this point, we have a machinery to automatically derive various class instances
for datatypes. Whereas for hash codes and show functions these mechanisms
are immediately applicable, this is not the case for comparators. The reason for
the latter is the fact, that comparators are not well supported in the Isabelle
distribution, where most algorithms for sorting, search-trees, etc. are defined via
class linorder, and a combination of ≤, <, and = is applied. To bridge this gap,
we offer three different alternatives.

The first alternative is to bridge everything via lt-of-comp, le-of-comp, and
comparator-of . This is done when invoking derive linorder tree. This command
creates a new class instance for trees, tree :: (linorder) linorder, where the
syntax says that if the type parameter α is an instance of linorder, then so is
α tree. Here, < and ≤ will be defined as lt-of-comp (cmptree comparator-of) and

14 C. Sternagel and R. Thiemann

le-of-comp (cmptree comparator-of), respectively. With this approach one can
easily use all the existing algorithms. For example, we used this approach to
generate linear orders for the datatypes of the CAVA LTL model checker [2],
without changing a single line in the remaining formalization. However the switch
between comparators and orders clearly has a negative impact on efficiency.

The second alternative is to modify the existing algorithms so that they are
defined via comparators. Here, we provide an easy solution which performs this
change just before code generation. It works as follows. First, we defined a class
compare-order, which demands that there is a linear order and a comparator
compare, where the induced orders coincide, i.e., < = lt-of-comp compare and
≤ = le-of-comp compare must hold. Afterwards we provide a method which
strengthens the class constraints from linorder to compare-order, where every
two consecutive comparisons are replaced by one comparator invocation with the
help of several lemmas of the shape:

(if x ≤ y then if x = y then P else Q else R) =
(case compare x y of Eq ⇒ P | Lt ⇒ Q | Gt ⇒ R)

For example, the standard code equations to lookup the value of some key in a
red-black tree, rbt-lookup :: (α, β) rbt⇒ α⇒ β option, are

rbt-lookup Empty k = None
rbt-lookup (Branch c l x y r) k =
(if k < x then rbt-lookup l k else if x < k then rbt-lookup r k else Some y)

but after invoking compare-code (α) rbt-lookup they are transformed into:

rbt-lookup Empty k = None
rbt-lookup (Branch c l x y r) k =
(case compare k x of Eq ⇒ Some y | Lt ⇒ rbt-lookup l k | Gt ⇒ rbt-lookup r k)

Note that in the original code equations, α only has to be an instance of linorder,
whereas the modified version enforces α to be an instance of compare-order.

In summary, the second approach is also easily integrated. For example,
it suffices to invoke compare-code on all constants rbt-ins, rbt-lookup, rbt-del,
rbt-map-entry, sunion-with, and sinter-with in order to completely adapt the
whole red-black tree implementation to work on comparators. And it suffices
to call derive compare-order list to make lists an instance of compare-order,
and similarly for other datatypes. This command internally just combines the
soundness lemmas (10) of the comparators to assemble a comparator, and then
defines < and ≤ via lt-of-comp and le-of-comp. In this way, we could remove over
600 lines of proofs for manually created linear orders in IsaFoR. Moreover, the
change from linear orders to comparators led in theory to a linear speed-up when
performing comparisons. To measure the impact in practice, we certified over
4122 termination and complexity proofs that have been produced by various tools
during the international termination competition, which the generated code had
to validate. Whereas the old code required around 17 minutes for the certification
of all proofs, the new version required less than 4 minutes.

Deriving Comparators and Show Functions in Isabelle/HOL 15

However, there remains one disadvantage, namely that an existing class
instance might interfere with the instance that derive compare-order wants to
create. For instance, if the ordering on products is defined to be pointwise, then
there is no chance to make prod an instance of compare-order.

Therefore, the third alternative does not require instances of compare-order.
Instead, one has to copy those functions which are relevant for code genera-
tion, manually integrate comparators, and then perform an equivalence proof.
Afterwards, one can reuse all of the theorems without much overhead.

As an example, we again consider red-black trees. Here, we manually adapted
the lookup function, and the corresponding equivalence proof is straightforward.

primrec rbt-comp-lookup :: α comparator ⇒ (α, β) rbt ⇒ α ⇒ β option where
rbt-comp-lookup c Empty k = None
| rbt-comp-lookup c (Branch - l x y r) k = (case c k x of

Lt ⇒ rbt-comp-lookup c l k
| Gt ⇒ rbt-comp-lookup c r k
| Eq ⇒ Some y)

lemma rbt-comp-lookup:
is-cmp c =⇒ rbt-comp-lookup c = ord .rbt-lookup (lt-of-comp c)

Afterwards, a theorem like map-of-entries—which required a proof of 66 lines—is
easily adapted for comparators via rbt-comp-lookup and proved in a single line.
Notice that ord.rbt-sorted and ord.rbt-sorted require the order as a parameter,
whereas rbt-lookup and rbt-sorted implicitly take the order from the type class.

lemma map-of-entries: rbt-sorted t =⇒ map-of (entries t) = rbt-lookup t

lemma comp-map-of-entries: is-cmp c =⇒ ord .rbt-sorted (lt-of-comp c) t
=⇒ map-of (entries t) = rbt-comp-lookup c t
using linorder .map-of-entries [OF comparator .linorder] rbt-comp-lookup by metis

In this way, as a case study we adapted the whole container framework of
Lochbihler to use comparators instead of linear orders. Most of the adaptation was
straightforward and just required the insertion of suitable equivalence statements
like rbt-comp-lookup, and the change from ord.rbt-lookup to rbt-comp-lookup.
Moreover, we could remove over 450 lines within the container framework, where
manual constructions for orders (now: comparators) and equality-checking have
been replaced by one-line invocations of our generators.

9 Conclusion

We presented a mechanism that allows for the automatic derivation of the
following operations for arbitrary user-defined datatypes: comparators, show
functions, and hash functions. Our work relies on the canonical map functions
and corresponding facts that are provided by Isabelle’s new datatype package.
We further showed how our work can be integrated into existing formalizations,
thereby saving lines of code as well as improving the efficiency of generated code.

16 C. Sternagel and R. Thiemann

Acknowledgments. We thank S. Berghofer, J. Blanchette, L. Bulwahn, F. Haft-
mann, B. Huffman, A. Krauss, P. Lammich, A. Lochbihler, C. Urban, T. Nipkow,
D. Traytel, and M. Wenzel for their valuable support w.r.t. motivating our devel-
opment, information on the old and new datatype packages, and for answering
several Isabelle/ML related questions. We thank the anonymous reviewers for
their helpful comments. This work was supported by Austrian Science Fund
(FWF) projects P27502 and Y757. The authors are listed in alphabetical order
regardless of individual contribution or seniority.

References

1. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:
Truly modular (co)datatypes for Isabelle/HOL. In: Proc. 5th ITP. LNCS, vol. 8558,
pp. 93–110 (2014), doi:10.1007/978-3-319-08970-6_7

2. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.: A
fully verified executable LTL model checker. In: Proc. 25th CAV. LNCS, vol. 8044,
pp. 463–478 (2013), doi:10.1007/978-3-642-39799-8_31

3. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Proc. 10th FLOPS. LNCS, vol. 6009, pp. 103–117 (2010), doi:10.1007/978-3-642-
12251-4_9

4. Hinze, R., Peyton Jones, S.: Derivable type classes. ENTCS 41(1), 5–35 (2001),
doi:10.1016/S1571-0661(05)80542-0

5. Krauss, A.: Partial and nested recursive function definitions in higher-order logic.
JAR 44(4), 303–336 (2010), doi:10.1007/s10817-009-9157-2

6. Lammich, P., Lochbihler, A.: The Isabelle collections framework. In: Proc. 1st ITP.
LNCS, vol. 6172, pp. 339–354 (2010), doi:10.1007/978-3-642-14052-5_24

7. Lochbihler, A.: Light-weight containers for Isabelle: Efficient, extensible, nestable.
In: Proc. 4th ITP. LNCS, vol. 7998, pp. 116–132 (2013), doi:10.1007/978-3-642-
39634-2_11

8. Magalhães, J.P., Dijkstra, A., Jeuring, J., Löh, A.: A generic deriving mechanism
for Haskell. SIGPLAN Not. 45(11), 37–48 (2010), doi:10.1145/2088456.1863529

9. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL – A Proof Assistant for Higher-
Order Logic, LNCS, vol. 2283. Springer (2002)

10. Peyton Jones, S.: The Haskell 98 language. JFP 13(1), 139–144 (2003), doi:10.
1017/S0956796803001217

11. Slind, K., Hurd, J.: Applications of polytypism in theorem proving. In: Proc. 16th
TPHOLs. LNCS, vol. 2758, pp. 103–119 (2003), doi:10.1007/10930755_7

12. Sternagel, C., Thiemann, R.: Haskell’s show-class in Isabelle/HOL. Archive of
Formal Proofs (Jul 2014), http://afp.sf.net/entries/Show.shtml

13. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Proc. 22nd TPHOLs. LNCS, vol. 5674, pp. 452–468 (2009), doi:10.1007/978-3-
642-03359-9_31

14. Thiemann, R.: Generating linear orders for datatypes. Archive of Formal Proofs
(Aug 2012), http://afp.sf.net/entries/Datatype_Order_Generator.shtml

15. Traytel, D., Popescu, A., Blanchette, J.C.: Foundational, compositional
(co)datatypes for higher-order logic: Category theory applied to theorem prov-
ing. In: Proc. 27th LICS. pp. 596–605 (2012), doi:10.1109/LICS.2012.75

http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-642-39799-8_31
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://dx.doi.org/10.1016/S1571-0661(05)80542-0
http://dx.doi.org/10.1007/s10817-009-9157-2
http://dx.doi.org/10.1007/978-3-642-14052-5_24
http://dx.doi.org/10.1007/978-3-642-39634-2_11
http://dx.doi.org/10.1007/978-3-642-39634-2_11
http://dx.doi.org/10.1145/2088456.1863529
http://dx.doi.org/10.1017/S0956796803001217
http://dx.doi.org/10.1017/S0956796803001217
http://dx.doi.org/10.1007/10930755_7
http://afp.sf.net/entries/Show.shtml
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://afp.sf.net/entries/Datatype_Order_Generator.shtml
http://dx.doi.org/10.1109/LICS.2012.75

	Deriving Comparators and Show Functions in Isabelle/HOL

