University of Innsbruck Department of Computer Science

Cumulative Habilitation Thesis

Certified Term Rewriting

Christian Sternagel

September 30, 2019

fiir Mikro, Emma und Mona

Contents

Preface

Introduction

Contributions

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

Code Generation (Chapter 3)
Certification (Chapter 5)

Well-Quasi-Order Theory (Chapter 4)

Completion (Chapters 7 and 8)
Confluence (Chapter 6)
Further Contributions

Selected Publications

A Mechanized Proof of GHC’s Mergesort

3.1.
3.2.
3.3.

3.4.

3.5.

Introduction
GHC’s Sorting Algorithm
Preliminaries
3.3.1. Correctness
3.3.2. Stability
333. Goal
Efficient Mergesort
3.4.1. Correctness
3.4.2. Stability
3.4.3. Complexity
Conclusion and Related Work

Certified Kruskal’s Tree Theorem

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.
4.8.

Introduction
Preliminaries
Homogeneous Sequences
Dickson’s Lemma
Minimal Bad Sequences
Higman’s Lemma
The Tree Theorem
Examples

11

15
15
16
18
18
20
21

25

27
27
29
31
32
33
33
34
34
35
36
38

43
43
46
47
48
49
52
53
56

Contents

4.9. Conclusion and Related Work 58
5. A Framework for Developing Stand-Alone Certifiers 59
5.1. Introduction 59
5.2. Certification 60
5.2.1. Human Inspection 61
5.2.2. Certification via Programs 61
5.2.3. Certification via Proof Assistants 62
5.2.4. Certification via Programs and Proof Assistants 64

5.3. Error Handling 66
5.4. Readable Error Messages 68
5.0. Parsing 70
5.5.1. A Parser from Strings to XML 71
5.5.2. A Library for Parsing XML 72

5.6. Soundness e 73
5.7. Conclusion e 77
6. Certified Confluence of Conditional Rewriting 79
6.1. Introduction 79
6.2. Preliminaries 83
6.3. Roadmap of Formalized Methods 86
6.4. Orthogonality 88
6.4.1. Certification e 93

6.5. A Critical Pair Criterion 94
6.5.1. Certification L 98
6.5.2. Certification Challenges, 101
6.5.3. Check Functions oo 103

6.6. Finding Witnesses for Non-Confluence of CTRSs 105
6.6.1. Implementation 107
6.6.2. Certification 108

6.7. Infeasibility of Conditional Critical Pairs 108
6.7.1. Unification e 109
6.7.2. Symbol Transition Graph 111
6.7.3. Decomposing Reachability Problems 112
6.7.4. Exact Tree Automata Completion 115
6.7.5. Exploiting Equalities o 0oL 120
6.7.6. Certification 121

6.8. Supporting Methods 123
6.8.1. Infeasible Rule Removal 124
6.8.2. Inlining of Conditions, 125
6.8.3. Certification and Implementation 126

6.9. Experiments. L 127
6.9.1. Comparing ConCon’s Confluence Methods 127
6.9.2. Comparing ConCon’s Non-Confluence Methods 129

6.9.3. Comparing ConCon’s Infeasibility Methods
6.10. Conclusiono
6.10.1. Formalization and Implementation
6.10.2. Future Work oo
6.10.3. Related Work

7. Abstract Completion, Formalized

7.1. Introduction
7.2. Preliminaries
7.2.1. Rewrite Systems
7.2.2. Abstract Confluence Criteria
7.2.3. Critical Peaks
7.3. Correctness for Finite Runs
7.4. Canonicity and Normalization Equivalence
7.5. Ground Completion,
7.6. Correctness for Infinite Runs
7.7. Ordered Completion
7.8. Completeness Results for Ordered Completion.
7.8.1. Ground-Total Orders
7.8.2. Linear Systems
7.9. Conclusion

8. Certified Equational Reasoning via Ordered Completion

8.1. Introduction
8.2. Preliminaries,
8.3. Formalized Ordered Completion.
8.4. Formalized Ground Joinability Criteria.

8.4.1. A Simple Criterion

8.4.2. Ground Joinability via Order Closures
8.5. Applications
8.6. Certification
8.7. Experiments. Lo
8.8. Conclusion

Bibliography

Contents

Part |I.

Preface

1. Introduction

Two of the most important properties in program wverification are termination and
confluence. The former guarantees that we always obtain a result eventually (e.g.,
essential for device drivers), while the latter allows for smooth reasoning in the presence
of nondeterminism (e.g., parallel execution of code). Thus, automatable formal methods
ensuring that a program satisfies either of these properties are of great interest. The
most successful approaches are based on general models of computation which capture
a variety of programming languages and paradigms (like C, Haskell, Java, Prolog, etc.;
ranging from imperative, to functional, to object oriented, and logic programming).

Arguably, the most widely adopted model of computation for proving termination and
confluence is term rewriting (as demonstrated by the annual international termination
and confluence competitions).!*> Another cornerstone of rewriting is the related topic of
completion, where the goal is to “complete” a given set of equations into an equivalent
term rewrite system (TRS) that is terminating and confluent, giving rise to a decision
procedure for the induced equational theory. While conceptually simple—based on the
slogan “replace equals by equals”—term rewriting comes with a formidable collection of
results concerning termination, confluence, and completion. These results are implemented
in powerful automated tools, so that to date we have a variety of termination provers [1,
26, 44, 72, 73, 123, 169, 181], confluence provers [5, 46, 54, 94, 104, 113, 126, 155, 184],
and completion tools [69, 159, 170, 178] for term rewrite systems at our disposal.

On the one hand, the goal of program verification is to prove that a program adheres
to its specification. On the other hand, automated program verification tools are
programs themselves, and pretty complex ones at that. Moreover, they are tuned for
efficiency using sophisticated data structures and often have very short release
cycles facilitating the quick integration of new techniques. So, why should we trust such
tools? The short answer is: we should not! There is a long history of bugs in the field.
And these are unavoidable, given the sheer complexity of tools.

What is more, the same reasons that make such tools complex, also make them
tremendously hard to verify. And even after managing such an arduous task, the gain
would just be a single verified tool. What about later versions of the tool, all the other
useful automated tools in the same application area? Verifying every single one of them
simply does not scale.

A more viable alternative is certification via proof assistants, also called the certifi-
cation approach. Proof assistants—Ilike Coq [18], HOL4 [127], and Isabelle [172]—are
computer programs that allow a user to interactively compose rigorous machine-checked
mathematical proofs. This usually means that a proof has to be completely reduced to

"http://termination-portal.org/wiki/Termination_Competition
2http://project-coco.uibk.ac.at

11

http://termination-portal.org/wiki/Termination_Competition
http://project-coco.uibk.ac.at
http://termination-portal.org/wiki/Termination_Competition
http://project-coco.uibk.ac.at

1. Introduction

primitive inferences using the basic axioms of the employed logic alone. Doing so by hand
would lead to an unusable system. Therefore, modern proof assistants provide powerful
automated proof tools. But those often only take hold after the user has either given
enough hints or broken down the proof into sufficiently small intermediate steps. While
the recent advent of hammers [19]—i.e., first-order automated theorem provers whose
results are rigorously reduced to primitive inferences in a proof reconstruction phase
inside a proof assistant—yields a tremendous boost in productivity, proving mathematical
theorems in this way can still be laborious. In return, we gain near 100% reliability.

A powerful feature of many proof assistants (supported by at least Coq, HOL4, and
Isabelle) is code generation. Code generation enables the automatic synthesis of a fully
verified program from a suitable mechanization. E.g., Isabelle’s code generator [52] allows
us to transform a purely equational subset of higher-order logic (HOL), first into an
intermediate functional language whose semantics is given by higher-order rewriting, and
in a further step into actual source code for several functional programming languages (at
the moment Standard ML, Haskell, OCaml, and Scala). In this way it is possible to first
rigorously prove results in Isabelle, then use them to prove correctness of a function also
specified in Isabelle, and finally code-generate this function to obtain an actual program
whose partial correctness is guaranteed by construction.

For certification, instead of requiring a tool to be verifiably correct, we only demand
that it justifies each of its claims (e.g., that a given TRS is terminating) by a formal
certificate. This is then complemented by a certifier—an automated tool that is able
to rigorously validate a given certificate. As formal judge of assertions that are made
by independent tools, a certifier’s impeccable authority is essential. In the following,
I present the predominant architecture of such certifiers for term rewriting, which has
proven to be powerful (e.g., covering more than 90% of all proofs of this year’s termination
competition® and around 90% of the proofs of this year’s confluence competition*) and
useful (by uncovering bugs in tools that have in some cases gone unnoticed for years).
So far, the most rigorous way of obtaining such a certifier is by a two-phase approach,
employing proof assistants (where “mechanize” is short for “formalize with a proof
assistant”):

(1) Use the proof assistant in order to mechanize the underlying theory.

(2) Mechanize a verified executable check function for certificates.

These two phases correspond to the left part of Figure 1.1. On its right, we can see
the resulting “certification pipeline,” consisting of an untrusted tool for producing a
certificate (a new certificate for each input, hence the dashed arrow), together with a
trusted certifier for validation. The certifier is obtained by the code generation facility of
the proof assistant, granting partial correctness in the sense that whenever a certificate
is accepted, we may conclude that it is correct.

Concrete realizations of this general approach are Coccinelle/CiME [26] (as part of
the A3PAT project), CoLoR/Rainbow [20], and IsaFoR/CeTA [165]—which I started for

3http://www.termination-portal.org/wiki/Termination_Competition_2019
“http://project-coco.uibk.ac.at/2019/

12

http://termination-portal.org/wiki/Termination_Competition
http://termination-portal.org/wiki/Termination_Competition
http://project-coco.uibk.ac.at
http://www.termination-portal.org/wiki/Termination_Competition_2019
http://project-coco.uibk.ac.at/2019/

implementation :
Literature : Automated Tool

theorems &
proofs :

(Proof Assistant) Certificates

A2

- : code generation ;
Formal Library : Certifier

Mechanization Certification

Figure 1.1.: The certification approach

my PhD. The former two use Coq for phase (1), while CeTA is code-generated [52] from
our Isabelle Formalization of Rewriting, which is a formal Isabelle library that contains
many results on rewriting (more specifically, most techniques that are employed by
modern termination tools as well as most of the first seven chapters of the textbook Term
Rewriting and All That by Baader and Nipkow [9]). The library and the certifier are
available at http://cl-informatik.uibk.ac.at/isafor, providing also an overview
of the supported techniques and the accompanying literature [6, 59, 76, 88, 95, 97—
99, 129, 135, 137-142, 146, 147, 149, 150, 154, 164, 165, 177, 182, 183].

Until recently, certification was restricted to confluence and termination of plain
first-order rewriting, where it is adopted by a significant number of tools. With this
thesis, my goals are threefold: (1) to make code generation of certifiers easier and
improve the performance of generated code in general, (2) to formalize selected topics
of the meta-theory and theory of term rewriting and its variants (like the theory of
simplification orders via Kruskal’s Tree Theorem, the theory of completion for plain and
ordered rewriting, and results on conditional term rewriting), and (3) to firmly establish
the certification approach also for conditional term rewriting; more specifically, to enable
certification of confluence proofs for conditional term rewrite systems.

The remainder is organized as follows: First, in Chapter 2, I summarize my contributions
(furthermore, contributions that are not part of this thesis are listed). Then, in Part II, I
present my selected publications.

13

http://cl-informatik.uibk.ac.at/isafor

2. Contributions

With this habilitation thesis I contribute to the certification approach in general and
its application to (conditional) term rewriting in particular. More specifically, our
contributions are as follows. First, regarding code generation of check functions for
certification:

e [give a formally verified natural mergesort implementation that can be used for
code generation without further ado (Chapter 3).

e Moreover, we provide a general framework for developing verified certifiers that
takes away a lot of the work that is typically required when applying the certification
approach in specific cases (Chapter 5).

And then, in the area of term rewriting we focus on the following three areas:

e mechanizing part of the meta-theory of term rewriting in form of Kruskal’s tree
theorem (Chapter 4),

e certified confluence of conditional term rewriting (Chapter 6), and
e formalizing the theory and certification of (ordered) completion (Chapters 7 and 8).

In the remainder, publications that are typeset in gray are either auxiliary results like
Isabelle/HOL theories in the Archive of Formal Proofs' (AFP, for short) or conference
publications that—while relevant to a topic—are subsumed by later journal articles.

In the following I discuss my contributions in chronological order of the main corre-
sponding publications.

2.1. Code Generation (Chapter 3)

Publications

[1] Christian Sternagel. Efficient Mergesort. The Archive of Formal Proofs, 2011
afp:Efficient-Mergesort
[2] Christian Sternagel. Proof Pearl—A Mechanized Proof of GHC’s Mergesort. Journal

of Automated Reasoning, 51(4):357-370, 2013
doi:10.1007/s10817-012-9260-7

"mttps://www.isa-afp.org/

15

https://www.isa-afp.org/entries/Efficient-Mergesort.shtml
http://dx.doi.org/10.1007/s10817-012-9260-7
https://www.isa-afp.org/

2. Contributions

Synopsis and Contributions

In [2] T give an Isabelle/HOL formalization of the natural mergesort algorithm that is for
example part of the library of the Glasgow Haskell Compiler (the de facto standard for
Haskell programs). In addition of its correctness I also prove mergesort to be a stable
sorting algorithm. In combination correctness and stability allow me to replace Isabelle’s
standard sorting algorithm (a variant of quicksort for immutable lists instead of arrays)
by my natural mergesort implementation. Natural mergesort performs far better on
immutable lists than quicksort and is especially well suited for (partially) (reverse) sorted
lists without sacrificing performance on random lists. As a result every Isabelle user who
imports my formalization—which is freely available from the Archive of Formal Proofs,
see [1]—enjoys an immediate performance boost in generated code.

My contributions were to first narrow a performance issue in CeTA down to sorting,
then identify natural mergesort as the most viable alternative sorting algorithm for our
intended target language Haskell, and finally formalize its correctness and stability in
Isabelle/HOL. Moreover, I took this opportunity to update Chapter 3 in comparison to
[2] by a formalized complexity proof and rerun all experiments on more modern hardware
using the latest Isabelle version.

Related Work

Variants of mergesort were formalized in other systems before: the first such formalization
I am aware of was in Coq,? another one in ACL2.3 However, both of them do not formalize
natural mergesort with its initial separation into (reverse) sorted sublists which is quite a
bit more complex than other mergesort variants that start from singleton lists. Moreover,
these earlier formalizations do not consider stability.

Other sorting algorithms where formalized in various systems, like insertion sort,
quicksort, and heapsort in Coq [38]; and insertion sort and quicksort in Isabelle/HOL (as
part of its standard library).

It seems that my work spawned renewed interest in the formalization of sorting
algorithms, as evidenced by: De Gouw, De Boer, and Rot formalize counting sort and
radix sort using the KeY system [27]. Then, Leino and Lucio formalize natural mergesort
using the verifier Dafny [79]. Later, De Gouw et al., through formalization, identified
and fixed a series flaw in OpenJDK’s Timsort algorithm [28, 29]. Another formalization
of Timsort, this time for C, is given by Zhang, Zhao, and Sanan [185].

2.2. Certification (Chapter 5)

Publications

[3] Christian Sternagel and René Thiemann. A Framework for Developing Stand-Alone
Certifiers. Electronic Notes in Theoretical Computer Science 312:51-67, 2014

*http://coq.inria.fr/stdlib/Coq.Sorting.Mergesort.html
Shttps://github.com/acl2/ac12/blob/master/books/powerlists/merge-sort.lisp

16

http://coq.inria.fr/stdlib/Coq.Sorting.Mergesort.html
https://github.com/acl2/acl2/blob/master/books/powerlists/merge-sort.lisp

2.2. Certification (Chapter 5)

d0i:10.1016/j.entcs.2015.04.004

[4] Christian Sternagel and René Thiemann. Certification Monads. The Archive of
Formal Proofs, 2014
afp:Certification_Monads

[5] Christian Sternagel and René Thiemann. Haskell’'s Show Class in Isabelle/HOL. The
Archive of Formal Proofs, 2014
afp:Show

[6] Christian Sternagel and René Thiemann. XML. The Archive of Formal Proofs, 2014
afp:XML

Synopsis and Contributions

In [3] we provide three general components that are useful in any formally verified certifier
in order to: (1) write check functions that validate proofs from a certificate, (2) produce
readable error messages in case of a faulty certificate, and (3) parse XML data from the
real world—the actual certificate—into the realm of proof assistants.

To achieve (1) we provide several flavors of error monads together with various primitive
check functions and commonly useful combinators that allow us to create more complex
check functions from simpler ones [4]. These monads incorporate error messages that are
composed in the style of Haskell’s Show class [5] and thereby enable (2). This setup is
rounded off by a formalization of XML trees as Isabelle/HOL data type together with a
parser from strings into that data type and a collection of transformation functions and
combinators that facilitate the translation of XML trees into user-defined data types [6],
enabling (3).

My specific contributions were as follows: I came up with the idea to employ monads
and their well-known properties in the construction of check functions, resulting in a
reusable framework; moreover, I formalized most of the port of Haskell’s Show class into
Isabelle/HOL; and finally, I initiated the use of XML transformers and started with their
implementation and formalization.

Related Work

The first instance of what we call the certification approach—using the proof assis-
tant Coq—I am aware of, is a tree automata completion checker due to Boyer, Genet,
and Jensen [23]. Two other projects—both based on Cogq—on certification of term
rewriting related properties that were initiated approximately at the same time as our
IsaFoR/CeTA project are CoLoR/Rainbow [20] and Coccinelle/CiME [26] (as part of the
A3PAT project).

In other areas like certification of proofs generated by SAT solvers, verified certifiers
are also gaining momentum: the first such tool is given by Lammich [78].

17

http://dx.doi.org/10.1016/j.entcs.2015.04.004
https://www.isa-afp.org/entries/Certification_Monads.shtml
https://www.isa-afp.org/entries/Show.shtml
https://www.isa-afp.org/entries/XML.shtml

2. Contributions

2.3. Well-Quasi-Order Theory (Chapter 4)

Publications

[7] Christian Sternagel. Well-Quasi-Orders. The Archive of Formal Proofs, 2012
afp:Well_Quasi_Orders

[8] Christian Sternagel. Certified Kruskal’s Tree Theorem. In Proceedings of the 3rd
International Conference on Certified Programs and Proofs (CPP), volume 8307 of
Lecture Notes in Computer Science, pages 178-193, Springer, 2013
d0i:10.1007/978-3-319-03545-1_12

[9] Christian Sternagel. Certified Kruskal’s Tree Theorem. Journal of Formalized
Reasoning, 7(1):45-62, 2014
doi:10.6092/issn.1972-5787/4213

Synopsis and Contributions

In [9] I give Isabelle/HOL formalizations of Dickson’s Lemma, Higman’s Lemma, and
Kruskal’s Tree Theorem—where the formalized proofs of the latter two are based on
Nash-William’s minimal bad sequence argument. These results are all part of well-quasi-
order theory and allow us to extend well-quasi-orders on base sets to well-quasi-orders
over pairs, lists (or equivalently, finite sequences), and trees (or equivalently, first-order
terms), respectively. A well-known application of well-quasi-orders is for example to
prove well-foundedness of simplification orders [31, 32].

My contribution was the first formalization of Kruskal’s Tree Theorem using a proof
assistant and its application to prove well-foundedness of a Knuth-Bendix order that is
part of IsaFoR [142]. I also formalized some other results that are part of well-quasi-order
theory [7] and worked on an alternative proof of Higman’s Lemma by open induction [110].

Related Work

While Higman’s Lemma has been formalized inside a proof assistant before—for example
by Berghofer in Isabelle/HOL [16], and by Martin-Mateos et al. in ACL2 [84]—1I am not
aware of any previous formalizations of Kruskal’s Tree Theorem.

My formalization has also been used by others. For example by Wu, Zhang, and Urban
to formalize the Myhill-Nerode Theorem for regular expressions [180] and by Nagele,
Felgenhauer, and Zankl to certify confluence proofs in term rewriting [99].

2.4. Completion (Chapters 7 and 8)

Publications

10| Nao Hirokawa, Aart Middeldorp, Christian Sternagel. A New and Formalized Proof
)) (=]

of Abstract Completion. In Proceedings of the 5th International Conference on

Interactive Theorem Proving, volume 8558 of Lecture Notes in Computer Science,

18

https://www.isa-afp.org/entries/Well_Quasi_Orders.shtml
http://dx.doi.org/10.1007/978-3-319-03545-1_12
http://dx.doi.org/10.6092/issn.1972-5787/4213

2.4. Completion (Chapters 7 and 8)

pages 292-307, Springer, 2014
d0i:10.1007/978-3-319-08970-6_19

[11] Nao Hirokawa, Aart Middeldorp, Christian Sternagel, and Sarah Winkler. Infinite
Runs in Abstract Completion. In Proceedings of the 2nd International Conference on
Formal Structures in Computation and Deduction, volume 84 of Leibniz International
Proceedings in Informatics, pages 19:1-19:16, Schloss Dagstuhl, 2017
d0i:10.4230/LIPIcs.FSCD.2017.19

[12] Nao Hirokawa, Aart Middeldorp, Christian Sternagel, and Sarah Winkler. Abstract
Completion, Formalized. Logical Methods in Computer Science, 15(3):19:1-19:42,
2019
doi:10.23638/LMCS-15(3:19)2019

[13] Christian Sternagel and Sarah Winkler. Certified Equational Reasoning via Ordered
Completion. In Proceedings of the 27th International Conference on Automated
Deduction, volume 11716 of Lecture Notes in Computer Science, pages 508-528,
Springer, 2019
doi:10.1007/978-3-030-29436-6_30

Synopsis and Contributions

In [12] we formalize many results on Knuth-Bendix completion and ordered completion—a
variant of completion based on ordered rewriting [83]—that are known from the literature
and further extend them. To this end, we do not just formalize existing proofs, but
provide new proofs that are not based on the traditional proof orders and thereby allow
for more separation into independent results that are reusable in different contexts. After
realizing that, at least for ordered rewriting, the abstract results from [12] are not enough
for certification, we developed an independent formalization of ordered completion in
[13] that is geared towards certification by incorporating variable renamings already in
the abstract inference system.

My specific contributions are as follows: I formalized all of the results on abstract
completion from [13] that are not concerned with ordered rewriting, like prime critical
pair criteria, completeness, ground completion, etc. This was not a formalization of
existing proofs but more an interaction between myself and my ingenious co-authors.
They had new ideas on how to prove something and I immediately put them to test
inside my ongoing formalization. In that way we were able to catch some not so obvious
errors early on and achieve what I think is a good compromise between complexity and
readability of proofs. Concerning certification of ordered completion I formalized basic
results on ordered rewriting and the completion inference system.

Related Work

Knuth and Bendix originally introduced completion [71], a procedure that aims at
obtaining a terminating and confluent term rewrite system for a given set of equations.
If completion succeeds, we therefore can decide arbitrary equations in the theory induced
by the initial set of equations.

19

http://dx.doi.org/10.1007/978-3-319-08970-6_19
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.19
http://dx.doi.org/10.23638/LMCS-15(3:19)2019
http://dx.doi.org/10.1007/978-3-030-29436-6_30

2. Contributions

Later, Bachmair, Dershowitz, and Hsiang devised an abstract inference system for
completion [10, 12, 13] and established proof orders as de facto standard for showing the
correctness of completion inference systems.

For certification of a successful completion run we do not require all the restrictions that
are needed in order to prove correctness of the original inference system, an observation
that was made and formalized by me and Thiemann [142]. In fact, in this setting, we can
certify the result of completion without ever mentioning an inference system. However,
for ordered completion the situation is more involved and we are not aware of any way
to certify a successful ordered completion run without specifying an inference system.

2.5. Confluence (Chapter 6)

Publications

[14] Christian Sternagel and Thomas Sternagel. Certifying Confluence of Quasi-Decreasing
Strongly Deterministic Conditional Term Rewrite Systems. In Proceedings of the
26th International Conference on Automated Deduction, volume 10395 of Lecture
Notes in Computer Science, pages 413-431, Springer, 2017
doi:10.1007/978-3-319-63046-5_26

[15] Christian Sternagel and Thomas Sternagel. Certifying Confluence of Almost Or-
thogonal CTRSs via Exact Tree Automata Completion. In Proceedings of the 1st
International Conference on Formal Structures for Computation and Deduction, vol-
ume 52 of Leibniz International Proceedings in Informatics, pages 29:1-29:16, Schloss
Dagstuhl, 2016
d0i:10.4230/LIPIcs.FSCD.2016.29

[16] Christian Sternagel and Thomas Sternagel. Certified Confluence of Conditional
Rewriting. Journal of Automated Reasoning, 2019
submitted

Synopsis and Contributions

In [16] we describe an IsaFoR-based formalization of results concerned with confluence
of conditional term rewriting, culminating in a certifier that allows us to check most
confluence techniques for conditional term rewrite systems (CTRSs) that are employed
during the international confluence competition.

With our work we bring certification in the CTRS category of the confluence competition
on par with the state of the art for termination and confluence of plain rewriting.

The techniques we formalize can basically be grouped into the following categories:
critical pair criteria (that allow us to conclude confluence for a restricted class of CTRSs),
transformational techniques (that “reduce” confluence of a given CTRS to confluence of
an “easier” CTRS), and methods for proving infeasibility of conditional critical pairs.

My specific contributions are as follows: I invented and formalized the inlining technique
described in Chapter 6 (Lemma 6.8.6) and a criterion that facilitates the removal of

20

http://dx.doi.org/10.1007/978-3-319-63046-5_26
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.29

2.6. Further Contributions

infeasible rules from a given CTRSs (Theorem 6.8.4). I formalized the critical pair
criterion for almost orthogonality modulo infeasibility and the requisite check functions
that allow for its certification. I also developed a locale based Isabelle/HOL formalization
of permutations/renamings that allows us to talk about entities like terms, rules, and
TRSs modulo renaming of variables in a general way. Concerning exact tree automata
completion for infeasibility, I implemented and formalized the check functions that provide
the link between certificates and abstract results on tree automata.

Related Work

Recently the notion of infeasibility (basically reachability between to “template” terms
that may be specialized by arbitrary substitutions) received interest apart from proving
confluence of CTRSs as witnessed by the new INF category of the confluence competition.*

While there are new approaches for proving infeasibility, like the work by Lucas and
Gutiérrez [80] and by Sternagel and Yamada [153], I am not aware of any other work
that is formalized using a proof assistant and thereby would enable certification.

2.6. Further Contributions

I have co-authored the following further publications since I received my PhD (listed in
chronological order).

[17] Christian Sternagel and René Thiemann. Modular and Certified Semantic Labeling
and Unlabeling. In Proceedings of the 22nd International Conference on Rewriting
Techniques and Applications, volume 10 of Leibniz International Proceedings in
Informatics, pages 329-344, Schloss Dagstuhl, 2011
do0i:10.4230/LIPIcs.RTA.2011.329

[18] Alexander Krauss, Christian Sternagel, René Thiemann, Carsten Fuhs, and Jiirgen
Giesl. Termination of Isabelle Functions via Termination of Rewriting. In Proceedings
of the 2nd International Conference on Interactive Theorem Proving, volume 6898 of
Lecture Notes in Computer Science, pages 152-167, Springer, 2011
doi:10.1007/978-3-642-22863-6_13

[19] Christian Sternagel and René Thiemann. Generalized and Formalized Uncurrying. In
Proceedings of the 8th International Symposium on Frontiers of Combining Systems,
volume 6989 of Lecture Notes in Artificial Intelligence, pages 243—-258, Springer, 2011
doi:10.1007/978-3-642-24364-6_17

[20] Christian Sternagel and René Thiemann. Executable Transitive Closures for Finite
Relations. The Archive of Formal Proofs, 2011
afp:Transitive-Closure

[21] Christian Sternagel and René Thiemann. Certification of Nontermination Proofs.
In Proceedings of the 3rd International Conference on Interactive Theorem Proving,

“http://project-coco.uibk.ac.at/2019/categories/infeasibility.php

21

http://dx.doi.org/10.4230/LIPIcs.RTA.2011.329
http://dx.doi.org/10.1007/978-3-642-22863-6_13
http://dx.doi.org/10.1007/978-3-642-24364-6_17
https://www.isa-afp.org/entries/Transitive-Closure.shtml
http://project-coco.uibk.ac.at/2019/categories/infeasibility.php

2. Contributions

[22]

23]

[24]

[26]

[27]

[28]

22

volume 7406 of Lecture Notes in Computer Science, pages 266—282, Springer, 2012
d0i:10.1007/978-3-642-32347-8_18

Mizuhito Ogawa and Christian Sternagel. Open Induction. The Archive of Formal
Proofs, 2012
afp:0pen_Induction

Christian Sternagel and René Thiemann. Formalized Knuth-Bendix Orders and
Knuth-Bendix Completion. In Proceedings of the 24th International Conference on
Rewriting Techniques and Applications, volume 21 of Leibniz International Proceed-
ings in Informatics, pages 287-302, Schloss Dagstuhl, 2013
d0i:10.4230/LIPIcs.RTA.2013287

Christian Sternagel and René Thiemann. Formalizing Monotone Algebras for Cer-
tification of Termination and Complexity Proofs. In Proceedings of the Joint 25th
International Conference on Rewriting Techniques and Applications and 12th Inter-
national Conference on Typed Lambda Calculi and Applications, volume 8560 of
Lecture Notes in Computer Science, pages 441-455, Springer, 2014
doi:10.1007/978-3-319-08918-8_30

Christian Sternagel and René Thiemann. The Certification Problem Format. In
Proceedings of the 11th Workshop on User Interfaces for Theorem Provers, volume
167 of Electronic Proceedings in Theoretical Computer Science, pages 61-72, 2014
doi:10.4204/EPTCS.167.8

Christian Sternagel. Imperative Insertion Sort. The Archive of Formal Proofs, 2014
afp:Imperative_Insertion_Sort

Martin Avanzini, Christian Sternagel, and René Thiemann. Certification of Com-
plexity Proofs using CeTA. In Proceedings of the 26th International Conference on
Rewriting Techniques and Applications, volume 36 of Leibniz International Proceed-
ings in Informatics, pages 23-39, Schloss Dagstuhl, 2015
d0i:10.4230/LIPIcs.RTA.2015.23

Christian Sternagel and René Thiemann. Deriving Comparators and Show Functions
in Isabelle/HOL. In Proceedings of the 6th International Conference on Interactive
Theorem Proving, volume 9236 of Lecture Notes in Computer Science, pages 421-437,
Springer, 2015

d0i:10.1007/978-3-319-22102-1_28

Christian Sternagel and René Thiemann. Deriving class instances for datatypes. The
Archive of Formal Proofs, 2015
afp:Deriving

Akihisa Yamada, Christian Sternagel, René Thiemann, and Keiichirou Kusakari. AC
Dependency Pairs Revisited. In Proceedings of the 25th EACSL Annual Conference on
Computer Science Logic, volume 62 of Leibniz International Proceedings in Informatics,
pages 8:1-8:16, Schloss Dagstuhl, 2016

d0i:10.4230/LIPIcs.CSL.2016.8

http://dx.doi.org/10.1007/978-3-642-32347-8_18
https://www.isa-afp.org/entries/Open_Induction.shtml
http://dx.doi.org/10.4230/LIPIcs.RTA.2013287
http://dx.doi.org/10.1007/978-3-319-08918-8_30
http://dx.doi.org/10.4204/EPTCS.167.8
https://www.isa-afp.org/entries/Imperative_Insertion_Sort.shtml
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.23
http://dx.doi.org/10.1007/978-3-319-22102-1_28
https://www.isa-afp.org/entries/Deriving.shtml
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.8

[31]

[32]

[34]

[35]

[36]

[37]

[39]

2.6. Further Contributions

Bertram Felgenhauer, Julian Nagele, Vincent van Oostrom, and Christian Sternagel.
The Z Property. The Archive of Formal Proofs, 2016

afp:Rewriting_Z

Julian Biendarra, Jasmin Blanchette, Aymeric Bouzy, Martin Desharnais, Mathias
Fleury, Johannes Ho6lzl, Ondfej Kunc¢ar, Andreas Lochbihler, Fabian Meier, Lorenz
Panny, Andrei Popescu, Christian Sternagel, René Thiemann, and Dmitriy Traytel.
Foundational (Co)datatypes and (Co)recursion for Higher-Order Logic. In Proceedings
of the 14th International Symposium on Frontiers of Combining Systems, volume
10483 of Lecture Notes in Computer Science, pages 321, Springer, 2017
d0i:10.1007/978-3-319-66167-4_1

Florian Mefiner, Julian Parsert, Jonas Schopf, and Christian Sternagel. Homogeneous
Linear Diophantine Equations. The Archive of Formal Proofs, 2017
afp:Diophantine_Eqns_Lin_Hom

Joachim Breitner, Brian Huffman, Neil Mitchell, and Christian Sternagel. HOLCEF-
Prelude. The Archive of Formal Proofs, 2017
afp:HOLCF-Prelude

Florian Mefiner, Julian Parsert, Jonas Schopf, and Christian Sternagel. A Formally
Verified Solver for Homogeneous Linear Diophantine Equations. In Proceedings of
the 9th International Conference on Interactive Theorem Proving, volume 10895 of
Lecture Notes in Computer Science, pages 441-458, Springer, 2018
doi:10.1007/978-3-319-94821-8_26

Christian Sternagel and René Thiemann. First-Order Terms. The Archive of Formal
Proofs, 2018

afp:First_Order_Terms

Alexander Lochmann and Christian Sternagel. Certified ACKBO. In Proceedings of
the 8th International Conference on Certified Programs and Proofs, pages 144-151,
ACM, 2019

doi:10.1145/3293880.3294099

Florian Mefiner and Christian Sternagel. nonreach — A Tool for Nonreachability
Analysis. In Proceedings of the 25th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, volume 11427 of Lecture Notes in
Computer Science, pages 337-343, Springer, 2019
doi:10.1007/978-3-030-17462-0_19

Christian Sternagel and Akihisa Yamada. Reachability Analysis for Termination and
Confluence of Rewriting. In Proceedings of the 25th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, volume 11427 of
Lecture Notes in Computer Science, pages 262278, Springer, 2019
doi:10.1007/978-3-030-17462-0_15

Jirgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann, and Akihisa
Yamada. The Termination and Complexity Competition. In Proceedings of the 25th
International Conference on Tools and Algorithms for the Construction and Analysis

23

https://www.isa-afp.org/entries/Rewriting_Z.shtml
http://dx.doi.org/10.1007/978-3-319-66167-4_1
https://www.isa-afp.org/entries/Diophantine_Eqns_Lin_Hom.shtml
https://www.isa-afp.org/entries/HOLCF-Prelude.shtml
http://dx.doi.org/10.1007/978-3-319-94821-8_26
https://www.isa-afp.org/entries/First_Order_Terms.shtml
http://dx.doi.org/10.1145/3293880.3294099
http://dx.doi.org/10.1007/978-3-030-17462-0_19
http://dx.doi.org/10.1007/978-3-030-17462-0_15

24

2. Contributions

of Systems, volume 11429 of Lecture Notes in Computer Science, pages 156—166,
Springer, 2019

doi:10.1007/978-3-030-17502-3_10

http://dx.doi.org/10.1007/978-3-030-17502-3_10

Part Il.

Selected Publications

25

3. A Mechanized Proof of GHC'’s
Mergesort

Publication Details

Christian Sternagel. Proof Pearl—A Mechanized Proof of GHC’s Mergesort. Journal of
Automated Reasoning, 51(4):357-370, 2013
doi:10.1007/s10817-012-9260-7

Christian Sternagel. Efficient Mergesort. The Archive of Formal Proofs, 2011 (last
update: 2019)
afp:Efficient-Mergesort

Abstract

In this Isabelle/HOL proof pearl I prove correctness, stability, and linearithmic complexity
of the natural mergesort implementation that comes with the Glasgow Haskell Compiler.
This not only constitutes another example of applying a state-of-the-art poof assistant
to real-world code, but also allows users to take advantage of the formalized algorithm
during code generation.

3.1. Introduction

In proof assistants like Isabelle/HOL [103], it is common to define algorithms in terms
of abstract specifications instead of actual implementations. Where specifications are
typically easy to understand and reason about, but potentially inefficient. For imple-
mentations in contrast, efficiency is often key, but may come at the price of code that is
incomprehensible for the uninitiated.

Specifications facilitate high-level proofs that are mostly concerned with abstract
properties and avoid “implementation details” that tend to be tedious to reason about.
From the logical viewpoint this is mostly the end of the story: we define an algorithm and
prove its desired properties. For actual use in real-world code, however, such specifications
are often not efficient enough. This is where algorithm refinement comes into play. That
is, we implement an alternative, more efficient, variant of our algorithm and formally
prove that both versions are equivalent, or in other words, that given equal arguments,
both variants yield the equal results.

Additionally, Isabelle/HOL supports code generation [52], that is, to automatically
generate actual source code in various target languages (currently, Haskell, OCaml, Scala,
and StandardML) from a given formalization of an algorithm. The resulting code is
correct by construction.

27

http://dx.doi.org/10.1007/s10817-012-9260-7
https://www.isa-afp.org/entries/Efficient-Mergesort.shtml

3. A Mechanized Proof of GHC’s Mergesort

Together with algorithm refinement, code generation opens up the following three-step
workflow for efficient verified programs: First formalize “easy” variants of the constituting
algorithms and prove all desired properties. Then, formalize efficient variants of the same
algorithms and prove them equivalent. And finally, use code generation to obtain an
efficient program that is guaranteed to satisfy all properties that have been proven in
initially.

Contribution. In the following I present my Isabelle/HOL! formalization of GHC’s
sorting algorithm for lists? (for brevity, referred to as sort in the remainder).
More specifically, my contributions are as follows:

I describe the implementation of sort in GHC’s standard library and give a corre-
sponding implementation in Isabelle/HOL (Section 3.2).

e Then, I explain some preliminaries (Section 3.3) related to sorting that are already
provided by Isabelle/HOL.

e In the main part I sketch my formalized proofs of correctness and stability of sort.

e Finally, I present my formalization of its linearithmic complexity (regarding the
required number of comparisons).

Since sort is part of GHC’s standard library, this formalization constitutes a verification
of real-world code that is (at least implicitly) used in many Haskell programs. In this
work, I just give an overview of the most important ideas and refer to the Archive of
Formal Proofs [130] for details.

Motivation. My original motivation was to tune CeTA? a fully verified program whose
code is generated from an underlying Isabelle/HOL formalization [165]. CeTA is a certifier
for termination proofs of first-order term rewrite systems (TRSs for short). Such proofs are
highly modular—in the sense that typically, a given TRS is split into several smaller TRSs
for which termination is proved separately—and often use transformation techniques
(like semantic labeling) that can blow up the number of rewrite rules exponentially.
Moreover, for reduction pairs—which are employed to delete rewrite rules from TRSs that
cannot be the cause of nontermination—a common task for a certifier is to check that
the remaining TRS is a subset of the original one. Since in CeTA, TRSs are represented
as lists of rewrite rules, this check incorporates sorting those lists and was identified as
one of the performance bottle-necks of CETA. My first step was to replace Isabelle/HOL’s
default sorting algorithm (an insertion sort variant provided in the HOL.List theory) by
a supposedly more efficient version from the library (a quick sort variant provided in
HOL-Library.Multiset). Since this did not give the desired speedup (unfortunately, CeTA
does not work properly together with HOL-Library.Code_Binary_Nat; see also the remark

'Our development is based on version Isabel1e2019 (June 2019).
thtp ://hackage .haskell.org/package/base-4.12.0.0/docs/src/Data.0ldList.html#sort
3More precisely, to make its runtime scale better on large inputs.

28

http://hackage.haskell.org/package/base-4.12.0.0/docs/src/Data.OldList.html#sort

3.2. GHC’s Sorting Algorithm

sequences key (a # b # xs) =

(if key b < key a then desc key b [a] xs else asc key b ((#) a) xs)
sequences key [x] = [[x]]
sequences key [] = []

asc key a as (b # bs) =
(if key a < key b then asc key b (Ays. as (a # ys)) bs
else as [a] # sequences key (b # bs))

asc key a as [] = [as [a]]

desc key a as (b # bs) =
(if key b < key a then desc key b (a # as) bs
else (a # as) # sequences key (b # bs))

desc key a as [] = [a # as]

Figure 3.1.: Formalization of sequences.

in Section 3.5) and our target programming language is Haskell, we decided to formalize
the sorting algorithm of GHC’s standard library.

3.2. GHC’s Sorting Algorithm

Consider GHC’s sorting algorithm for lists depicted in Listing 3.1. It is a mergesort
variant that takes advantage of (reverse) sorted subsequences occurring in the input. The
three mutually recursive functions sequences, descending, and ascending take care
of transforming an input list into a list of sorted lists. To this end, ascending detects
sorted subsequences and returns them unchanged, while descending detects reverse
sorted subsequences and flips them along the way. The resulting sequence of sorted
lists is merged into a single list by mergeAll. Note that this implementation behaves
especially well on typically problematic cases like sorted lists or reverse sorted lists as
input. In both cases, sequences just needs a single traversal and no merging is required.

Before 1 treat my Isabelle/HOL formalization of sort, some words on it’s origin.
According to the GHC sources, the algorithm is rumored to be based on code by Lennart
Augustsson* and possibly bears similarities to an algorithm by Richard O’Keefe [112]
(which does not seem to be available any longer). This rumor is supported by the chapter
about sorting of [116]. However, I was not able to find a definite answer.

In my Isabelle/HOL formalization I define sequences and merge_all as shown in
Figure 3.1 and Figure 3.2, respectively. When comparing these definitions to those from
Listing 3.1 there are some differences that may need explanation. First, partly for brevity
and partly to conform to Isabelle/HOL’s naming conventions, I changed the names of
some functions (ascending and descending became asc and desc, and merge_pairs as
well as merge_all use underscores instead of CamelCase). Furthermore, Isabelle/HOL’s
syntax is slightly different from Haskell’s. More specifically, ‘#’ denotes list-cons (‘:’ in

‘www.mail-archive.com/haskell@haskell.org/msg01822.html

29

www.mail-archive.com/haskell@haskell.org/msg01822.html

3. A Mechanized Proof of GHC’s Mergesort

sort = sortBy compare
sortBy cmp = mergeAll . sequences
where

30

sequences (a:b:xs)

| a “cmp™ b == GT = descending b [a] xs
| otherwise = ascending b (a:) xs
sequences xs = [xs]

descending a as (b:bs)
| a “cmp™ b == GT
descending a as bs

descending b (a:as) bs
(a:as) : sequences bs

ascending a as (b:bs)
| a “cmp™ b /= GT = ascending b (\ys -> as
ascending a as bs = let !x = as [a]
in x : sequences bs

mergeAll [x]
mergeAll xs

X
mergeAll (mergePairs xs)

mergePairs (a:b:xs) = let !x = merge a b
in x : mergePairs xs
mergePairs xs = Xs

merge as@(a:as') bs@(b:bs')

| a “cmp™ b == GT = b : merge as bs'
| otherwise = a : merge as' bs
merge [] bs = bs
merge as [] = as

Listing 3.1: GHC’s Sort

(a:ys)) bs

3.3. Preliminaries

merge key (a # as) (b # bs) =
(if key b < key a then b # merge key (a # as) bs
else a # merge key as (b # bs))

merge key [] bs = bs

merge key (v # va) [] = v # va

merge_pairs key (a # b # xs) = merge key a b # merge_pairs key xs
merge_pairs key [] = []
merge_pairs key [v] = [v]

merge_all key [] = []
merge_all key [x] = x
merge_all key (v # vb # vc) = merge_all key (merge_pairs key (v # vb # vc))

Figure 3.2.: Formalization of merge_all.

Haskell). Another difference is that instead of Haskell’s Ord typeclass, we are using
Isabelle/HOL’s built-in typeclass l1inorder, whose instances are all linearly ordered types.
As a consequence I do not parametrize my functions over a compare-function, but rather
over a key-function that turns list-elements into elements of some linearly ordered type.

Further note that Isabelle/HOL disambiguates the patterns on the left-hand sides of
equations such that at most one defining equation is applicable to any term. In Haskell,
on the other hand, this is guaranteed by trying patterns from top to bottom.

Despite these rather cosmetic changes, I hope that it is still sufficiently obvious that
my formalization is indeed handling the function of Listing 3.1. (By the way, if you want
to see the Haskell code that can be generated from the formalization, just use

export_code msort_key in Haskell

inside Isabelle/HOL.)

Note. The Haskell implementation of mergeAll is potentially nonterminating (when
called on the empty list), however, by construction the result of sequences contains at
least one element. Hence there is no problem. In Isabelle/HOL all functions must be
terminating and hence the Haskell version is not accepted. That is, why our formalization
of merge_all contains an extra case for the empty list (which is never encountered during
executions of sort).

3.3. Preliminaries

Before I describe the default sorting algorithm of Isabelle/HOL, let us have a closer look
at the properties that we are interested in. The two properties of sorting algorithms that
are of main interest are correctness and stability. In the following, we investigate each of
them in turn and show how they are formalized in Isabelle/HOL’s library.

31

3. A Mechanized Proof of GHC’s Mergesort

3.3.1. Correctness

Probably the first thing that comes to mind, when we think about the correctness of a
sorting algorithm, is that its result should be, well, sorted.

Definition 3.3.1 (Sortedness). A list is sorted when every two consecutive elements are
in order. In Isabelle/HOL this is expressed as a recursive function given by the equations:

sorted [] = True
sorted (x # xs) = ((Vyeset xs. x < y) A sorted xs)

Note, however, that sortedness on its own is not sufficient to describe the correctness
of a sorting algorithm. Consider, for example, the function wrongsort xs = []. Even
though, its result is sorted, it is clearly not a correct sorting algorithm. We also have to
make sure that a prospective sorting algorithm does not add or remove elements. This
property is formulated using multisets in Isabelle/HOL. Where a multiset is like a set in
that the order of elements is not important, but may contain multiple copies of equal
elements.

Definition 3.3.2 (Element Invariance). A function f::’a list = ’a list is element
invariant if it does neither add nor remove elements. More formally, £ has to satisfy

mset (f xs) = mset xs
where mset (defined in theory HOL-Library.Multiset) turns a list into a multiset.

Together, the above two properties allow us to define the correctness of a sorting
algorithm.

Definition 3.3.3 (Correctness). A function f::’a list = ’a list is a correct sorting
algorithm whenever it is element invartant and produces only sorted results.

In the standard Isabelle/HOL distribution an archetypical sorting algorithm is provided
by

sort_key f xs = foldr (insort_key f) xs [] (3.1)
(in theory HOL.List) where insort_key is defined by the equations
insort_key f x [] = [x]
insort_key f x (y # ys) =

(if f x < f y then x # y # ys else y # insort_key f x ys)

The correctness proof of sort_key is distributed over the theories HOL.List (for sortedness)
and HOL-Library.Multiset (for element invariance):

sorted_sort_key: sorted (map f (sort_key f xs))
mset_sort: mset (sort_key f xs) = mset xs

32

3.3. Preliminaries

3.3.2. Stability

A sorting algorithm is stable when it does not change the relative order of equal elements.
Since in Isabelle/HOL equality is built-in (and hence there is no way to distinguish
between two equal elements), stability of a sorting algorithm can only be expressed in
presence of a key-function, that is, a function that, given an element, produces a key
according to which this element should be sorted.

Example 3.3.4. Consider the list [2, 3, 2]. After sorting we obtain [2, 2, 3]. It is
impossible to say inside Isabelle/HOL whether the first 2 in the result is the same as
the first one in the input (or rather, all four occurrences of 2 refer to the same entity).
Having a key-function, we can apply a simple trick. First we add the indices of elements
to the input [(2, 0), (3, 1), (2, 2)]. Then we sort the list using the key-function fst
(that is, projecting to the first components of the pairs). Finally, we can see for each
2, from which index in the input list it originates. If the result is [(2, 0), (2, 2), (3,
1)1 sorting was indeed stable.

Definition 3.3.5 (Stability). A sorting function f::(’a = ’b) = ’a list = ’a list
is stable (with respect to the key-function key::’a = ’b) whenever the relative order of
elements having the same key does not change between xs and f key xs. In Isabelle/HOL
this is expressed as follows

Vk. [y<f key xs.key y = k] = [y<=xs.key y = k]

where we use the convenience syntax [x<+xs. P x] instead of filter P xs (where
filter keeps just those elements of a list that satisfy the given predicate P).

3.3.3. Goal

Why are we actually interested in the above properties? Correctness should be clear, we
want to make sure that sort really is a sorting algorithm. But why do we need stability?
In principle there are several reasons why stability is interesting: only stable sorting
algorithms allow for incremental sorting (for example, sort according to key A and for
those elements with equal A, sort according to key B), swapping elements may cause
memory updates on physical media, etc. However, my interest in stability has more ad
hoc reasons. Those will become clear after showing the following lemma (which is to be
found in theory HOL-Library.Multiset)

[mset (f key xs) = mset xs;
N\k. k € set (f key xs) —
[x<f key xs.key k = key x] = [x<xs.key k = key x]; (3.2)
sorted (map key (f key xs))]
— sort_key key xs = f key xs

which states that it is sufficient for a function £ to be a correct (with respect to the
key-function key) and stable sorting algorithm, in order to be logically equivalent to
sort_key. Hence, if we succeed in proving the above three assumptions for some function
£, we may use it interchangeably with sort_key. This, in turn, allows us to install a more

33

3. A Mechanized Proof of GHC’s Mergesort

efficient sorting algorithm than (3.1) for code generation. Thus, every formalization using
sort_key can take advantage of the more efficient algorithm in generated code for free.

3.4. Efficient Mergesort

The definition of sorting as given in (3.1) is a reasonable implementation and a good
compromise between efficiency and ease of specification. In the end, efficiency is irrelevant
for the logic and hence definitions should be as natural and easy as possible. For code
generation on the other hand, efficiency is a concern. The typical way of handling this
situation is starting with a natural, (maybe) inefficient, but easy to use definition and
use it throughout the formalization. Then, before generating code, prove so called code
equations that show the equivalence of this natural definition to some more efficient
variant. In the remainder of this section I provide a code equation for sort_key that
tunes its performance. As we have seen at the end of Section 3.3, we need to show element
invariance, stability, and sortedness in order to prove a function equivalent to sort_key.

In the following, I describe my corresponding formalization, where most of the proofs
are automatic (that is, solved by automatic methods like auto, blast, simp, etc., after
indicating the used induction schema).

Obviously most non-trivial proofs about sequences require induction. Since we have a
mutual dependency between sequences, asc, and desc we have to prove facts about these
three functions simultaneously. The corresponding induction schema that is provided by
Isabelle/HOL can be seen in Figure 3.3 at the end of this chapter. Applying this schema
typically requires us to strengthen the induction hypothesis and introduce additional
assumptions for asc with its function argument.

Concerning the functional argument of asc we need that it behaves “reasonably.” What
exactly I mean by reasonable behavior is covered by the predicate ascP that is given by

ascP f = (Vxs. f xs = f [] @ xs)

and basically says that a function is reasonable as argument to asc whenever it only
adds some prefix to its (list) argument.

3.4.1. Correctness

Now we have the main ingredients to prove two important facts, sequences does not
remove or add elements and generates a list of sorted lists

When proven simultaneously with appropriate facts about asc and desc, both proofs
run through automatically in Isabelle/HOL. Hence I just give the corresponding lemmas
that are proven by mutual induction. First for element invariance:

mset xs (3.3)
ascP f = mset (concat (asc key x f ys)) = {#x#} + mset (f []) + mset ys

mset (concat (sequences key xs))

mset (concat (desc key x xs ys)) = {#x#} + mset xs + mset ys

34

3.4. Efficient Mergesort

where concat concatenates all elements of a list of lists into a single list. Then for
sortedness:

Vx€Eset (sequences key xs). sorted (map key x) (3.4)

lascP f; sorted (map key (f [1)); Vx€set (f []). key x < key a]
=—> Vx€set (asc key a f ys). sorted (map key x)

[sorted (map key xs); VxEset xs. key a < key x|
—> Vx€set (desc key a xs ys). sorted (map key x)

The corresponding facts for merge_all are automatically proven by induction:

mset (merge_all key xs) = mset (concat xs)
(3.5)
Vx€Eset xs. sorted (map key x) = sorted (map key (merge_all key xs))
(3.6)

Together, (3.3) and (3.5) yield element invariance of msort_key key which is given by
msort_key key xs = merge_all key (sequences key xs), whereas (3.4) and (3.6) yield
sortedness:

mset (merge_all key (sequences key xs)) = mset xs

sorted (map key (merge_all key (sequences key xs)))
This shows that msort_key key is a correct sorting algorithm.

3.4.2. Stability

At this point, we turn our attention to stability. Stability (or at least a very similar
property) of sequences is proven by the lemma

[y<concat (sequences key xs).key y = k] = [y<xs.key y = k]

(3.9)
whose proof, when proven simultaneously with the two facts
ascP f —
[y<—concat (asc key a f ys).key y = k] = [y<f [a] @ ys.key y = k]
[sorted (map key xs); VxEset xs. key a < key x|
= [y<concat (desc key a xs ys).key y = k] =
[y+—a # xs @ ys.key y = k]
is fully automatic.
The first step towards stability of merge_all, is proving the lemma
sorted (map key xs) — (3.10)

[y<merge key xs ys.key y = k] = [y<=xs.key y = k] @ [y¢<ys.key y = k]

which states that for sorted lists xs, merge behaves like list-append on lists that are
filtered corresponding to a specific key.

35

3. A Mechanized Proof of GHC’s Mergesort

Using (3.10), we then prove “stability” of merge_pairs

Vxs€E€set xss. sorted (map key xs) —>
[y<concat (merge_pairs key xss).key y = k] = [y<-concat xss.key y = (3.11)
k]

which, in turn, finally allows us to prove stability of merge_all:

Vxs€set xss. sorted (map key xs) —

[y+merge_all key xss.key y = k] = [y<-concat xss. key y = k] (3.12)
An easy consequence of (3.12) and (3.4) is
[x<merge_all key (sequences key xs).key x = k] = [x<+xs.key x = k] (3.13)

showing stability of msort_key key.
Finally, using (3.2), whose assumptions are discharged by (3.7), (3.13), and (3.8), we
can establish the equation:

sort_key key = msort_key key

3.4.3. Complexity

Concerning the complexity of sort, I concentrate on the number of comparisons that are
required. This number is captured by the following definitions, where c_f computes the
number of comparisons required by the corresponding function f:

c_sequences key (x # y # zs) =

1 + (if key y < key x then c_desc key y zs else c_asc key y zs)
c_sequences key [] = 0
c_sequences key [x] = 0

c_asc key x (y # ys) =
1 + (if — key y < key x then c_asc key y ys else c_sequences key (y # ys))
c_asc key x [] =0

c_desc key x (y # ys) =
1 + (if key y < key x then c_desc key y ys else c_sequences key (y # ys))
c_desc key x [] =0

c_merge key (x # xs) (y # ys) =

1+

(if key y < key x then c_merge key (x # xs) ys else c_merge key xs (y # ys))
c_merge key [] ys = 0
c_merge key (v # va) [] =0

c_merge_pairs key (xs # ys # zss) = c_merge key xs ys + c_merge_pairs key zss
c_merge_pairs key [] = 0
c_merge_pairs key [x] = 0

c_merge_all key [] =0
c_merge_all key [x] = 0
c_merge_all key (v # vb # vc) =
c_merge_pairs key (v # vb # vc) +
c_merge_all key (merge_pairs key (v # vb # vc))

36

3.4. Efficient Mergesort

c_msort key xs = c_sequences key xs + c_merge_all key (sequences key xs)

Some easy facts about the merge and merge_pairs related functions are as follows
(where |x| is short for length x which computes the number of elements in a given list

x):

|merge_pairs key xs| = (1 + |xs|) div 2 (3.14)

|concat (merge_pairs key xss)| = |concat xss| (3.15)

c_merge key xs ys < [xs| + |ys| (3.16)

c_merge_pairs key xss < |concat xss| (3.17)
The key fact about merge_all is:

c_merge_all key xss < [concat xss| * [log 2 [xss|]| (3.18)

Proof. The proof is by induction on the computation of c_merge_all. We concentrate on
the nontrivial recursive case arising from the third equation. It follows that xss is of the
form xs # ys # zss. Further note that

[log 2 (real n + 2)] = [log 2 (real ((n + 1) div 2 + 1))] + 1 (%)

for arbitrary n.
Now, let m = /concat xss|. Then we have

c_merge_all key xss
= c_merge_pairs key xss + c_merge_all key (merge_pairs key xss)

< m + c_merge_all key (merge_pairs key xss) using (3.17)
<m + |concat (merge_pairs key xss)| * [log 2 |merge_pairs key xss|]| (IH)
=m+m * [log 2 |merge_pairs key xss| | by (3.15)
=m+m* [log 2 ((1 + |xss|) div 2)] by (3.14)
=m+m* [log 2 ((1 + |zssl|) div 2 + 1)]

=m * ([log 2 ((1 + [zss|) div 2 + 1)]| + 1)

=m * [log 2 (|zss| + 2)] by (%)
=m * [log 2 |xssl|]

O O

Mutual induction yields the following useful results about sequences. The first group
of three gives a bound on c_sequences:

c_sequences key xs < |xs| - 1

(3.19)
c_asc key x ys < |ys|
c_desc key x ys < |ysl

37

3. A Mechanized Proof of GHC’s Mergesort

The second group of three is concerned with the total number of elements in the resulting
lists of lists:

|concat (sequences key xs)| = |xs|

(3.20)
ascP f = |concat (asc key a f ys)| =1 + |[f [1] + lysl|

|concat (desc key a xs ys)| = 1 + [xs| + |ys|

The third group of three with the fact that for nonempty inputs sequences yields
nonempty results.

xs # [] = sequences key xs # []

(3.21)
ascP f = asc key a f ys # []
desc key a xs ys # []
Using these facts we obtain the desired linearithmic bound on c_msort:
c_msort key xs < |xs| + [xs| * [log 2 Ixs|] (3.22)
Proof. Let n = |xs| and note that
c_merge_all key (sequences key xs) < n * [log 2 n| (*)

as shown by the derivation:

c_merge_all key (sequences key xs)
< n * [log 2 |sequences key xs|] by (3.18) with xss = sequences key xs
<n * [log 2 n] by (3.20)

We conclude the proof by:

c_msort xs xs = c_sequences Xs XS + c_merge_all XS (sequences XS XS)
<n+n* [log 2 n] using (3.19) and (x)

O O

3.5. Conclusion and Related Work

I have given an Isabelle/HOL formalization of GHC’s mergesort algorithm, showing
correctness, stability, and linearithmic complexity. On the one hand, this showcases
once more that state-of-the-art proof assistants like Isabelle/HOL, can be used to
verify real-world code. On the other hand, our formalization allows existing theo-
ries that rely on Isabelle/HOL’s default sorting algorithm to take advantage of the
more efficient sort during code generation. In order to do so, you just have to import
Efficient-Mergesort.Efficient_Sort (from the Archive of Formal Proofs) in the header
of your theory.

38

3.5. Conclusion and Related Work

Haskell OCaml Scala StandardML

#-elements is gqs s gs is gs is gs
100,000 1.1 19 33 157 1.2 144 0.8 25

inc 500,000 1.1 23 4.0 13.2 32 190 09 2.2
1,000,000 1.1 2.8 4.6 140 45 271 06 2.0
100,000 oo 2.0 oo 94.0 oo 203 oo 84.0

dec 500,000 o© 29 oo 285 oo 237 oo 15.6
1,000,000 oo 3.2 oo 298 oo 313 oo 139
100,000 oo 14 oo 14 o0 2.8 o0 2.3

rnd 500,000 oo 14 oo 14 o0 2.6 oo 1.4
1,000,000 oo 1.6 o© 14 oo 2.7 o0 1.5

Table 3.1.: Relative speedup of sort.

The key points to achieve a compact (240 lines for correctness and stability, plus another
130 lines for complexity) formalization are mutual induction using the induction schemas
that are generated by Isabelle’s function package [74] and generalizations. The latter is
of course well-known, nevertheless, I think that the generalizations in my formalization
constitute another nice example of this concept.

Assessment. In order to compare the generated code for sort to Isabelle/HOL’s de-
fault insertion sort (is) and the alternative quicksort (gs) implementations from theory
HOL-Library.Multiset in the standard library, I conducted some experiments whose
results can be seen in Table 3.1 on page 39. I tested code generated for different target
languages (Haskell, OCaml, Scala, and StandardML) on ascending (inc), descending (dec),
and random (rnd) lists of integers of various sizes (100,000 elements, 500,000 elements,
and 1,000,000 elements, respectively). In each column of the table, the speedup of sort
with respect to the given algorithm is listed (that is, a number greater than 1 indicates
that sort was faster), where I aborted tests after a timeout of 60 seconds (indicated by a
speedup of oo). Each value corresponds to the average results on 100 samples. For every
target language, a small wrapper program reads a list of integers and applies the sorting
algorithm under consideration. Note that qs performs worse, if it is not used together
with the theory HOL-Library.Code_Binary_Nat, since the pivot of a list is computed using
Isabelle/HOL’s nat type which by default uses Peano numbers (also in generated code).
In total sort is the algorithm of choice, independent of the used target language. It
performs slightly better than gs, even when HOL-Library.Code_Binary_Nat is loaded.

A note on HOL-Library.Code_Binary_Nat. The default representation of natural num-
bers in Isabelle/HOL is the data type

datatype nat = 0 | Suc nat

that is, a unary encoding by so called Peano numbers.

39

3. A Mechanized Proof of GHC’s Mergesort

Compared to the integer types which are typically part of any programming language,
arithmetic operations on Peano numbers are quite slow. To solve this problem, the theory
HOL-Library.Code_Binary_Nat (which in turn is based on HOL-Library.Code_Abstract_Nat)
may be loaded to set up the code generator such that it uses the following more efficient
binary encoding of natural numbers:

datatype num = One | BitO num | Bitl num

In the quicksort variant of Isabelle/HOL, the pivot is computed by division on natural num-
bers. An advantage of sort is that it does not involve any arithmetic operations on natural
numbers and thus performs well even without loading HOL-Library.Code_Binary_Nat.

Related Work. I am aware of two other formalizations of mergesort. The first is a Coq
formalization® which does, however, not consider stability (which I personally found to
be the most challenging part). The second is an ACL2 formalization® which, again, does
not consider stability and is based on a theory of so called powerlists.

There are also formalizations of other sorting algorithms in various systems, like
insertion sort, quicksort, and heapsort in Coq [38]; insertion sort (theory HOL.List) and
quicksort (theory HOL-Library.Multiset) in Isabelle/HOL.

Acknowledgments. I thank the anonymous referees for helpful suggestions.

"http://coq.inria.fr/stdlib/Coq.Sorting.Mergesort.html
Shttps://github.com/acl2/ac12/blob/master/books/powerlists/merge-sort.lisp

40

http://coq.inria.fr/stdlib/Coq.Sorting.Mergesort.html
https://github.com/acl2/acl2/blob/master/books/powerlists/merge-sort.lisp

3.5. Conclusion and Related Work

[Aa b xs.

[key b < key a = R b [a] xs; — key b < key a = @ b ((#) a) xs]
= P (a # b # xs);
Nx. P [x]; P [];
/\a as b bs.
[key a < key b = Q@ b (Ays. as (a # ys)) bs;
-~ key a < key b = P (b # bs)]
— @ a as (b # bs);
Na as. Q a as [];
/\a as b bs.
[key b < key a = R b (a # as) bs; - key b < key a = P (b # bs)]
— R a as (b # bs);
N\a as. R a as []]
= P a0.0
[Aa b xs.
[key b < key a = R b [a] xs; - key b < key a = @ b ((#) a) xs]
— P (a # b # xs);
Nx. P [x]; P [];
/\a as b bs.
[key a < key b = Q@ b (Ays. as (a # ys)) bs;
—~ key a < key b = P (b # bs)]
— @ a as (b # bs);
Na as. Q a as [];
/\a as b bs.
[key b < key a = R b (a # as) bs; - key b < key a = P (b # bs)]
=—> R a as (b # bs);
M\a as. R a as []]
= al.0 a2.0 a3.0
[Aa b xs.
[key b < key a = R b [a] xs; — key b < key a = @ b ((#) a) xs]
— P (a # b # xs);
Nx. P [x]; P [];
\a as b bs.
[key a < key b = Q@ b (A\ys. as (a # ys)) bs;
-~ key a < key b = P (b # bs)]
— @ a as (b # bs);
Na as. Q a as [];
\a as b bs.
[key b < key a => R b (a # as) bs; - key b < key a = P (b # bs)]
— R a as (b # bs);
N\a as. R a as []]
= R a4.0 a5.0 a6.0

Figure 3.3.: Generated mutual induction schema for sequences, asc, and desc.

41

4. Certified Kruskal’s Tree Theorem

Publication Details

Christian Sternagel. Certified Kruskal’s Tree Theorem. Journal of Formalized Reasoning,
7(1):45-62, 2014
do0i:10.6092/issn.1972-5787/4213

Christian Sternagel. Well-Quasi-Orders. The Archive of Formal Proofs, 2012 (last update:
2017)
afp:Well_Quasi_Orders

Christian Sternagel. Certified Kruskal’s Tree Theorem. In Proceedings of 3rd Inter-
national Conference on Certified Programs and Proofs (CPP), volume 8307 of Lecture
Notes in Computer Science, pages 178-193, Springer, 2013
doi:10.1007/978-3-319-03545-1_12

Abstract

This article presents the first formalization of Kurskal’s tree theorem in a proof assistant.
The Isabelle/HOL development is along the lines of Nash-Williams’ original minimal bad
sequence argument for proving the tree theorem. Along the way, proofs of Dickson’s
lemma and Higman’s lemma, as well as some technical details of the formalization are
discussed.

4.1. Introduction

Termination is a key ingredient for total correctness of programs and thus key to program
verification. Instead of focusing on a specific programming language, termination is
typically considered in a more abstract setting. In this respect, one of the most studied
models of computation is term rewriting, as confirmed by the many automatic tools
that are available nowadays (for example, AProVE [44], CiME [26], Matchbox [169], MU-
TERM [1], TTy [73], and VMTL [123]; to name a few). A central task in this area is to
synthesize well-founded relations. Often this is done incrementally, for example, a given
well-founded relation is extended to a bigger structure, like sets, multisets, lists, etc. Since
this is not always easy, there is interest in stronger conditions than well-foundedness that
preserve well-foundedness when extending a given order to bigger structures in more
cases. To illustrate the issue, consider the following example.

Example 4.1.1. Given a quasi-order < and two sets A and B, write A <T B whenever
for every a € A there is some b € B such that a < b. In other words, B majorizes A
element-wise. One might ask whether the strict part of <, that is, <t = <7\ >, is

43

http://dx.doi.org/10.6092/issn.1972-5787/4213
https://www.isa-afp.org/entries/Well_Quasi_Orders.shtml
http://dx.doi.org/10.1007/978-3-319-03545-1_12

4. Certified Kruskal’s Tree Theorem

well-founded whenever the strict part of < is. The following counterexample shows that
this is not the case. Take >4 to denote the divisibility order on natural numbers, that
is, m >4 n whenever there is a natural number k such that k- n = m. Note that the
strict part of >4 is well-founded but admits infinite antichains, for example, the sequence
D1, D2, P3, - - - of all prime numbers in increasing order. Now let P; denote the set of all
prime numbers starting from the i-th, that is, P; = {pi}r>i. Then we obtain the strictly
decreasing sequence

P >:jr Py >:jr P3 >d+
showing that >4 is not well-founded.

It turns out that by preventing infinite antichains, one can obtain well-foundedness
of (the strict part of) <*, that is, when the given quasi-order < does not admit infinite
antichains and its strict part is well-founded, then so is the strict part of <*. An order
satisfying these two conditions (or several equivalent ones) is called a well-quasi-order
(wqo for short).

A famous result of wqo theory is Kruskal’s tree theorem [77] (sometimes called the
tree theorem or Kruskal’s theorem in the following).

Kruskal’s Tree Theorem 1. Whenever a set A is well-quasi-ordered by a relation =<,
then the set of finite trees over A is well-quasi-ordered by homeomorphic embedding with
respect to <.

Its usefulness for termination proving was first shown by Dershowitz [31, 32], who
employed simplification orders—a class of reduction orders for which well-foundedness
follows from Kruskal’s theorem.

Nash-Williams gave a short and elegant proof of the tree theorem [100], where he first
established what is now known as the minimal bad sequence argument: first assume the
existence of a minimal “bad” infinite sequence of elements, then construct an even smaller
“bad” infinite sequence, thus contradicting minimality and proving well-quasi-orderedness
(since the definition of wqo requires all infinite sequences of elements to be “good”).

Besides the minimal bad sequence argument, Nash-Williams’ work [100] contains proofs
of Dickson’s lemma [35] (if A and B are well-quasi-ordered, then so is the Cartesian
product A x B) and a variant of Higman’s lemma [57] (if A is well-quasi-ordered, then so
is the set of finite subsets of A), where the latter also incorporates an instance of the
minimal bad sequence argument.

The work at hand constitutes a formalization along the lines of Nash-Williams’ original
proofs in the proof assistant Isabelle[103].! His argumentation is short (in fact, Nash-
Williams’ paper consists of only two and a half pages in total) and elegant (which was
also the main reason for basing the formalization on his work). However, formalizations
using proof assistants typically require us to be more rigorous than with pen and paper.
Thus, the formalization is more detailed in places, which results in somewhat longer
(about two thousand lines of Isabelle/HOLtheories) proofs. In this article, a high-level

! Available from http://isabelle.in.tum.de (try Isabelle/jEdit for browsing).

44

http://isabelle.in.tum.de

4.1. Introduction

overview of the formalization is given. The full development is part of the Archive of
Formal Proofs [131].

Contributions This article is a reworked version of an earlier account by the author [133].
To the best of the author’s knowledge, the presented work constitutes the first unrestricted
formalization of Higman’s lemma in Isabelle/HOLas well as the first formalization of
Kruskal’s tree theorem ever. Both are important combinatorial results with applications in
rewriting theory. For example, the theory of simplification orders [32, 91] was formalized—
on top of the presented work—as part of IsaFoR,? where it is applied to show well-
foundedness of the Knuth-Bendix order [142].

Moreover, the author believes that besides their high trustworthiness, formalizations of
existing mathematical results are also of archival and educational value. Especially since
a formalization contains all non-trivial steps of a proof. No doubt, more often than not,
those steps were already conducted in the minds of the original proof authors. However,
when the original author writes down a proof in condensed form for publishing, some
of the steps may get lost. If, much later, another person tries to understand the proof,
there may be some mental gaps (or in the worst case even errors).

Finally, formalizations are often hard to read for non-experts (but note that the Isar
language for Isabelle[171] is a huge improvement in that respect). Thus, the author hopes
that this high-level overview makes the presented formalization more accessible.

Comparison to Previous Work In my previous work [133] the focus was on following
Nash-Williams’ original argumentation as closely as possible. In hindsight this turned
out to pose unnecessary complications in some proofs. However, it is always easier to
say which of two variants of a proof is better suited for mechanization after formalizing
both. By slightly deviating from the original proofs and starting from a crucial fact
about homogeneous subsequences (for example, presented by Marc Bezem [163, Appendix
5]) I was able to significantly simplify three parts of the development compared to my
previous work: the construction of minimal bad sequences, the proof of Higman’s lemma,
and the proof of the tree theorem.

A more detailed comparison to my previous work can be found at the end of every
section whose corresponding formalization changed significantly.

Overview The remainder is structured as follows. In Section 4.2, necessary preliminaries
are covered. Then, in Section 4.3, a crucial fact about almost-full relations is discussed,
which will be useful for many of the later proofs. The next four sections present a
formalization of Dickson’s lemma, in Section 4.4; a general construction of minimal
bad sequences, in Section 4.5; a formalization of Higman’s lemma, in Section 4.6; and
ultimately, a formalization of Kruskal’s tree theorem, in Section 4.7. Some example
instances of finite tree data types are discussed in Section 4.8. Finally, the paper concludes
in Section 4.9, where also applications are sketched, and future as well as related work is
discussed.

2http://cl-informatik.uibk.ac.at/software/ceta/

45

http://cl-informatik.uibk.ac.at/software/ceta/

4. Certified Kruskal’s Tree Theorem

4.2. Preliminaries

Throughout this article, standard mathematical notation is used as far as possible.
However, additionally some Isabellespecific notation is employed, since Isabelle’s document
preparation facilities were used for typesetting all lemmas and theorems (in the words of
Haftmann et al. [53]: no typos, no omissions, no sweat; alas, this does not extend to the
regular text). Thus, some explanation might be in order.

Isabelle/HOLis a higher-order logic based on the simply-typed lambda calculus. Thus,
every term has a type, with type variables ’a, ’b, ’c, ...; and type constructors like nat
for natural numbers, a = ’b for the function space, ’a x ’b for ordered pairs, ’a set
for sets, and ’a 1ist for finite lists. Type constraints are written t::’t and denote that
term t is of type ’t. As usual for lambda calculi, function application is denoted by
juxtaposition, that is, f x denotes the application of function f to the argument x. The
type ’a = ’a = bool is used to encode binary relations.

The following constants from Isabelle/HOL’s library are freely used in the remainder:
(o)::(’a = ’b) = (’c = ’a) = ’c = ’b, where f o g denotes the functional com-
position of the two functions £ and g, that is, f o g £ Ax. f (g x), and sometimes £, is
used instead of £ o ¢ for brevity (especially when £ denotes an infinite sequence and ¢ is
an indez-mapping, that is, a function from the natural numbers to the natural numbers);
fst::’a x ’b = ’a and snd::’a x ’b = ’b extract the first and second component
of a pair, respectively; set::’a list = ’a set, where set xs is the set of elements
occurring in the list xs; [J::’a 1list, the empty list; (-)::’a = ’a list = ’a list,
where x - xs denotes adding the element x in front of the list xs; and (@) ::’a list =
’a list = ’a list, where xs @ ys denotes the concatenation of the two lists xs and ys.
Note that since (-) and (@) are both right-associative and have the same priority, xs @
y - ys is the same as xs @ (y-ys) and denotes a list that is constructed by inserting the
element y between those of xs and ys.

When stating formulas, sometimes Isabellespecific notation is used. Then, A de-
notes universal quantification and = (right-associative) implication. Moreover, nested
implication, like A = B = C, is abbreviated to [4; B] = C.

Let =< be a binary relation and 4 a set. The relation =< is reflexive on A, written
refla (=), if and only if Vx€A. x < x; and transitive on A, written trans 4 (<), if and only
if VxeA. VyceAd. Vzed. x Xy ANy =<z — x =X z.

An infinite sequence over elements of type ’a is represented by a function f of
type nat = ’a. The set of all infinite sequences over elements from a set 4 is denoted
by A“. A binary relation < is transitive on a sequence f, written transy (<), if and only
if Vi j. i <j — f i < f j. Note that <::nat = nat = bool is transitive on an
index-mapping ¢ if and only if ¢ is a strictly monotone mapping from natural numbers
to natural numbers. Thus, for every f and strictly monotone ¢, f, is a subsequence of £
whose elements are in the same relative order.

A sequence f is good with respect to a relation =<, written good< (£), if and only if
there are indices i < j such that £ i < £ j. A sequence that is not good, is called bad.

The author follows Veldman [168] and Vytiniotis et al. in basing wqos on almost-full
relations (which are basically wqos without transitivity). The main reason for doing

46

4.3. Homogeneous Sequences

S0, is that all the properties of interest also hold for almost-full relations and are easily
extended to wqos.

The relation =< is almost-full on A, written afa (<), if and only if all infinite sequences
over elements of 4 are good, that is, Vf€A“. good<(f). Note that every almost-full
relation is necessarily reflexive: just take an infinite sequence f that repeats an arbitrary
element a € A ad infinitum, then reflexivity trivially follows from the definitions of
almost-full and good, that is, there are i < j such that f i < f j and thus a < a.

Let < be almost-full on A. If in addition < is transitive on 4, then < is a wqgo on A
(or 4 is well-quasi-ordered by <), written wqos (<). In the literature, several equivalent
definitions for wqos are used. One of them, also mentioned in the introduction, is that
a wqo is a quasi-order that does not admit infinite antichains and whose strict part
is well-founded (see theory Well_Quasi_Orders.Well_Quasi_Orders for other definitions
and equivalence proofs). Here, an infinite antichain f is an infinite sequence such that
every two elements at disjoint positions are incomparable, that is, Vi j. i < j —

Fi2fonfa2AT i

4.3. Homogeneous Sequences

While the definition of almost-full relations just requires that in every infinite sequence
there are two elements such that the former is smaller than or equal to the latter, it can
be shown that every infinite sequence contains a subsequence on which < is transitive.
(In the literature, such sequences are called homogeneous [163].) In some cases, this
result allows us to obtain transitivity for free (and hence prove several results already for
almost-full relations rather than wqos).

Before formally stating the above result, let us have a look at the following variant
of Ramsey’s theorem (see Isabelle/HOL’s library, file ~~/src/HOL/Library/Ramsey.thy)
which is used in its proof.

linfinite Z; Vi€Z. Vje€Z. i # j — h {i, j} < n]
= 3I c. I C Z A infinite I A ¢ <n A (Vi€Il. Vj€I. i # j — h {i, j} = c)

In words: Let Z be an infinite set and let h be a function that, given a two-element subset
of Z, returns a natural number smaller than n. Then there is an infinite subset I of zZ
and a natural number ¢ smaller than n such that h encodes all two-element subsets of T
by c. More abstractly, assume there is an infinite graph with nodes from Z such that
every edge has exactly one of n colors. Then there is an infinite subgraph with nodes
from I and all edges of color c.

Lemma 4.3.1. Every infinite sequence f over elements of a set A that is almost-full with
respect to < contains a homogeneous subsequence. That is, there is a strictly monotone
index-mapping ¢::nat = nat such that £, is transitive with respect to <. In Isabelle:
lafa(=2); £ € A¥] = Fp. Vi j. i <j — i< jAfy,i=T*F,]

Proof. Let < be almost-full on 4 and f € A¥. Then partition the set of two-element
subsets of the natural numbers into the set X = {{i, j} | i < j A f i =< f j} and

47

4. Certified Kruskal’s Tree Theorem

its complement ¥ = - X and colorize two-element sets {i, j} of natural numbers by 0
(white) and 1 (black) according to the following function:

o if {i, j} € X,
b {i, jF= J
1 otherwise.

Now Ramsey’s theorem can be applied (since the set of natural numbers is infinite and
there are exactly two colors). Thus, an infinite set I and a color ¢, such that for all i
j in I the corresponding color h {i, j} is c, are obtained. Since I is well-ordered,
there is a function ¢::nat = nat that enumerates its elements in increasing order, that
is, ¢ i < ¢ j for all i < j. Moreover, h {¢ i, ¢ j} = c for all i < j. Consider the
following two cases (for arbitrary but fixed i < j):

e case (c is white). Then, h {¢ i, ¢ j} = 0 and thus {¢ i, ¢ j} € X which
implies f, i <X f, j.

e case (c is black). Then, h {p i, ¢ j} = 1, and thus {p i, ¢ j} € Y which
implies f, i Z f, j and thus yields the bad sequence £, contradicting the fact
that < is almost-full on A. O

Comparison to Previous Work Also in my previous work Ramsey’s theorem was
employed. However, only to obtain a proof of Dickson’s lemma without transitivity and
not for the more general result about homogeneous subsequences of this section.

4.4. Dickson’s Lemma

In essence, the presented formalization is about preservation of well-quasi-orderedness by
certain type constructors (Dickson’s lemma for pairs, Higman’s lemma for lists, and the
tree theorem for trees). For each of these constructors, a way to extend the orders on the
base types to an order on the newly constructed type is required. For Dickson’s lemma
the following is used:

Definition 4.4.1. Given two orders =<1 and =<5, the pointwise order on pairs is defined
by (a;, as) =<1x=y (b1, by) = a; <y by A ag =g by.

Using Lemma 4.3.1, Dickson’s lemma for almost-full relations is shown.

Lemma 4.4.2. The pointwise combination <1 x=s of two almost-full relations <1 and =3
on sets Ay and Az, is almost-full on the Cartesian product Ay x As. In Isabelle: [afa, (X1);
afa, (22)] = afa, xa, (Z1x=22).

Proof. Assume afa, (=1) and afa, (X2). Moreover, to derive a contradiction, assume -
afa, x A, (21x=2). Then there is a sequence f on A; x A which is bad. Note that fst o £ €
A1¥ and snd o f € Ayx*. With Lemma 4.3.1 we obtain a strictly monotone index-mapping
¢ such that fst (f, i) =y fst (f, j) for all i < j. Then snd o f o ¢ € Ay¥ and
thus snd o £ o ¢ is good since A, is almost-full by assumption. Thus, we obtain indices
i < j such that snd (f, i) <, snd (f, j). In total, we have f, i <yx=y f, j which
together with ¢ i < ¢ j contradicts the badness of f. O

48

4.5. Minimal Bad Sequences

Lemma 4.4.2 trivially extends to wqos.

Dickson’s Lemma 1. The pointwise combination of two wqos is again a wqgo. In
Isabelle: [wgoa, (Z1); wgoa, (R2)] = wqoa, x4, (X1X=2).

Proof. Assuming transitivity of <; on 4; and =<5 on A,, it is trivial to show transitivity
of <1x=5 on A; x A;. With Lemma 4.4.2, this concludes the proof. O

Comparison to Previous Work The new proof of Lemma 4.4.2 for almost-full relations
is based on homogeneous subsequences. As before, the effect is that transitivity on some
infinite sequence is obtained without requiring transitivity of the whole relation.

4.5. Minimal Bad Sequences

Since the minimal bad sequence argument is needed for Higman’s lemma as well as
Kruskal’s theorem, a general construction that is applicable to both cases is provided (see
theory Well_Quasi_Orders.Minimal_Bad_Sequences for the formal proof development).
To this end, Isabelle/HOL’s locale mechanism is employed which allows us to define new
constants and prove facts using an “interface” of hypothetical constants and assumptions.
As long as the assumptions can be discharged, the new constants and proven facts can
be instantiated to arbitrary special cases.

Below, the locale mbs which captures the construction of a minimal bad sequence
over elements from a given set is described (early versions, that could be simplified
drastically since, were presented at the Isabelle Users Workshop in 2012 [132] and at the
3" International Conference on Certified Programs and Proofs [133]). The locale fixes
the following constant:

e A set A whose elements are equipped with a size-function /-/::’a = nat.

(For Isabelleinitiates: here |- refers to the library type class size, which is automatically
instantiated for all data types). Since |-/ is a well-founded measure, it makes sense
to talk about mintmal elements. It turns out that these ingredients are enough to
construct—under the assumption that there is a bad sequence—a minimal bad sequence.
Informally, a bad infinite sequence is a minimal bad sequence, when replacing any element
by a smaller one, turns it into a good sequence. To make this more formal, a partial
order on bad infinite sequences is introduced.

Definition 4.5.1. Infinite sequences over A are partially ordered by the following relation.
An infinite sequence f is considered less than another infinite sequence g, written £ <¥
g, whenever there is a position i such that the two sequences are equal for all earlier
elements and |f il < |lg il, that is, 3i. [f il < |g il N (Vj<i. g j = £ j). The
reflexive closure of <* on A is denoted by <v.

In other words, infinite sequences are compared lexicographically with respect to the
size of their elements. First note that this order is not well-founded in general.

49

4. Certified Kruskal’s Tree Theorem

Example 4.5.2. Take the set of strings over the alphabet {a1,az,as, ...}, ordered by w
=< v if and only if the set of letters in w is a subset of the set of letters in v. Moreover,
let size of w be its length. Now, consider the infinite descending sequence of sequences

Ap= a1 ax a3 a4

Ay= a1 agaz a3 a4

A3= a1 az azaz a4

Ay= a1 az a3 agayq
that is, A; = a1, a9,as,...,a;a;,.... Obviously all the A; are bad infinite sequences.
Furthermore, Ay, As, As, ... is an infinite decreasing sequence that shows that < is not
well-founded.

The example shows that we cannot directly obtain a minimal bad sequence by means
of <¥. Thus, in the following we will construct a minimal bad sequence by choosing
smallest possible elements from left to right, which is possible since |-/ is well-founded.
To this end, we need some auxiliary constructions, for example, to filter the set of bad
sequences such that only those remain that are equal to a given sequence up to a certain
point.

Definition 4.5.3. Two infinite sequences are equal up to position i, when they are equal
for all previous positions. For a set of infinite sequences S over elements of 4, let 7
denote all those elements of S that are equal to £ up to position i. Moreover, let S[i]
denote the “i-th column” of the sequences in S, that is, the set {f i | £ € S}. Finally,
for a subset B of A, let ming denote a minimal element of B with respect to its size
(which exists, whenever B is not empty; note however that in general it is not uniquely
determined, thus the use of Hilbert’s choice operator below).

In the formalization minp is defined by
ming = (SOME x. x € B A (Vy€A. |yl < |x| — y ¢ B))

where SOME x. Q x is Hilbert’s epsilon operator, that is, it yields a witness x such that
Q@ x, whenever 3x. @ x, and some arbitrary value of the appropriate type, otherwise.
The above definitions are employed to construct an infinite sequence from a given set of
infinite sequences as follows:

Definition 4.5.4. Given the set B of all bad infinite sequences over elements of A, define
a new infinite sequence { (intended to be a lower bound of B with respect to <) as
follows:

¢ i= mian[i]

That is, ¢ 0 is a minimal element among the first elements of sequences in B (since
Sg; = S for all sets S and sequences f); and to obtain the i+1-th element, first restrict

50

4.5. Minimal Bad Sequences

B to those sequences that are equal to £ up to position i+1, and of the resulting set of
sequences take a minimal element among their i+1-th elements. The well-definedness of
the above definition is guaranteed by the fact that to obtain the i+1-th element, we only
have to consult all the previous elements of 4.

The elements of ¢ satisfy the following properties:

heB = (ic Bi] (4.1)
[h € B; y € 4; Iyl < It il] = y ¢ Bi[i] (4.2)

That is, under the assumption that there is a bad sequence h, the i-th element of ¢ is in
the i-th column of the sequences of B that are equal to ¢ up to position i, and is minimal
amongst its elements.

Of course it has to be shown that ¢ is indeed a bad infinite sequence.

Lemma 4.5.5. If there is at least one bad infinite sequence, then £ is bad. In Isabelle: h
€eB=(ebkB

Proof. To derive a contradiction, assume that ¢ is good. Then there are indices i < j
such that ¢ i < ¢ j. Moreover, from (4.1) we obtain ¢ j € B[j], which means that
there is some bad infinite sequence g in Bﬁ such that g k = ¢ k for all k < j, and thus g
i < g j. This, in turn, means that g is good and therefore contradicts the previously
derived g € BS. O

The second crucial property of ¢ is that it is a lower bound of the set B. That is, every
infinite sequence that is strictly smaller than ¢ is not bad.

Lemma 4.5.6. If there is at least one bad infinite sequence, then every infinite sequence
that is strictly smaller than ¢ with respect to <* is good. In Isabelle: h € B = Vg. g
vl — g & B.

At this point it can be shown that if a relation is not almost-full, then there is a
minimal bad sequence.

Theorem 4.5.7. Let < be a relation that is not almost-full on A. Then there is a minimal
bad sequence, that is, a bad sequence such that all sequences that are strictly smaller with
respect to < are good. In Isabelle: = afa(X) = ImeB. Vg. g <¥ m — good< (g).

Proof. Assume that < is not almost-full. Then there is some sequence h € B. Together
with Lemma 4.5.5 and Lemma 4.5.6, we obtain that ¢ is a minimal bad sequence.]

Comparison to Previous Work Instead of basing the mbs locale on some arbitrary
well-founded and transitive relation (as in [133]), minimality is now fixed to refer to the
size of elements. While this is only a specific instance of the previous construction, it
suffices for all the later proofs.

Moreover, the construction of a minimal bad sequence could be significantly simplified
by step-wise narrowing down the set of all bad sequences using the notions of equal up
to, filtering sets of infinite sequences with respect to a given infinite sequence, column
of a set of infinite sequences, and minimal element of a set (only the first of which was
present in my previous work).

o1

4. Certified Kruskal’s Tree Theorem

4.6. Higman’s Lemma

Before Higman’s lemma for almost-full relations is stated formally, a construction that
extends a given order on elements to an order on lists is required: homeomorphic embedding.
The set of lists over elements from a set 4, written 4*, is defined inductively:

x € A xs € A*
[] € &A* x - xs € A*

The size of a list is measured by its length (that is, number of elements). Homeomorphic
embedding on lists, for a given base order =<, is defined inductively by the rules

xs 3* ys x Xy xs =¥ ys

[0 X*ys xs Xy - ys x-xs X"y -ys

(In this article the notation <* is used consistently to denote list-embedding with respect
to the base order < and is not to be confused with the reflexive and transitive closure
of a relation.) Intuitively, it might be easier to think about homeomorphic embedding
on lists as follows: a list xs is embedded in a list ys if and only if xs can be obtained
from ys by dropping elements and replacing elements with arbitrary smaller ones (with
respect to the base order). An important special case of embedding is =*, which is called
the sublist relation. Then, xs =* ys if and only if the list xs can be obtained from the
list ys by dropping elements.

The mbs locale can be instantiated by taking A* for its parameter 4 and the length of
lists as their size. Thus,

- afar (%*) = ImeB. Vg. g <¥ m — good<- (g)
which allows us to prove Higman’s lemma for almost-full relations.

Lemma 4.6.1. Homeomorphic embedding with respect to an almost-full relation < on a
set A, is almost-full on the set of finite lists over A. In Isabelle: afa (X) = afa- (X*).

Proof. Assume af4 (=) but — afa- (2*), for the sake of a contradiction. Then there is a
minimal bad sequence m. All lists in m are non-empty (since otherwise m would be good).
Hence, there are sequences h and t of heads and tails of m (that is, m i =h i - t i).

Clearly, h € A“ and thus, by Lemma 4.3.1, there is a strictly monotone index-mapping
such that b, is a <-homogeneous sequence. Moreover, t, is bad, since otherwise m would
be good.

Let n abbreviate ¢ 0 and ¢ be the combination of the infinite sequences m and t,
defined by ¢ i £ if i < n thenm i else t (p (i - n)) (thatis, ¢ is the same as t,, but
prepended by the first n elements of m). Then c is bad, since otherwise a contradiction
is obtained as follows: Assume c is good. Then there are i < j such that ¢ i <* ¢ j.
Now, analyze the following cases:

e case (j < n). Thenm i <* m j, contradicting the badness of m.

e case(n < i). Leti’ =i -nandj’ = j - n. Theni’ < j?andt, i’ <* t, j’,
contradicting badness of t,.

52

4.7. The Tree Theorem

e case (i <nandn < j). Letj’ = j - n. Thenm i <* t (¢ j?) (fromc i <* ¢ j).
Moreover, m i <* m (¢ j’) (by the second clause of the inductive definition of
embedding). Together with i < ¢ j’, this contradicts the badness of m.

Thus, ¢ is bad. Furthermore, Vi<n. ¢ i = m i and [c n/ < |m n/, and thus c is good
(since m is minimal): A contradiction, concluding the proof. O

This result can be easily extended to wqos.

Higman’s Lemma 1. Whenever a set A is well-quasi-ordered by a relation <, then the
set of finite lists over A is well-quasi-ordered by homeomorphic embedding with respect
to =*. In Isabelle: wgos (%) = wqoa- (Z*).

Proof. For transitivity of <* (under the assumption that < is transitive), refer to lemma
list_emb_trans in theory HOL-Library.Sublist. Together with Lemma 4.6.1, this yields
Higman’s lemma. O

Comparison to Previous Work By employing Lemma 4.3.1, the slightly tedious reason-
ing about the non-existence of an infinite bad sequence “of special shape” (which is also
to be found in Nash-Williams’ original proof) could be completely avoided. This change
made it possible to shorten the previous 166-line proof to more reasonable 66 lines.

4.7. The Tree Theorem

The tree theorem is for finite trees, what Higman’s lemma is for finite lists. However,
whereas for finite lists, their representation inside Isabelle/HOLis quite unambiguous and
the existing data type is generally applicable; this is not so much the case for finite trees.
Consider the following two data types

datatype ’a t = Tree ’a (’a t list)
datatype ’a t’> = E | N ’a (’a t’ list)

or the type of first-order terms
datatype (’f, ’v) term = Var ’v | Fun °f ((°f, ’v) term list)

also a kind of finite tree (and more importantly, one of the types to which the tree
theorem is applied, in order to formalize the fact that the Knuth-Bendix order is a
simplification order [142]). Restricting the tree theorem to a specific data type would
strongly restrict its applicability. Therefore, again Isabelle/HOL’s locale mechanism is
employed. This time, for a locale kruskal_tree that fixes the following constants (see
theory Well_Quasi_Orders.Kruskal for details):

e A set F::(’b x nat) set representing the signature over which trees are built.

e A function mk::’b = ’a list = ’a that is used to construct a finite tree from a
given node and a given list of finite trees.

93

4. Certified Kruskal’s Tree Theorem

e A function root::’a = ’b x nat that extracts the root node together with its
arity from a given tree.

o A function args::’a = ’a list that extracts the list of arguments (direct subtrees)
from a given tree.

o As well as the set T (F)::’a set of well-formed trees with respect to the signature
F.

These constants are required to satisfy the following assumptions (thereby turning mk
into kind of a data type constructor with extractors root and args):

[t € T(F); s € set (args t)] = Is| < [t (F1)
(f, Its|) € F = root (mk f ts) = (f, [tsl) (F2)
(f, Its]) € F = args (mk f ts) = ts (F3)
t € T(F) = mk (fst (root t)) (args t) =t (F4)
t € T(F) = root t € F (F5)
t € T(F) = largs t| = snd (root t) (F6)
[t € T(F); s € set (args t)] = s € T (F) (F7)

That is, the size of a direct subtree of a well-formed tree is strictly smaller than
the size of the tree itself (F1); mk is injective when applied to a number of arguments
corresponding to the arity of a node (that is, [(£, Issl) € F; (g, Itsl) € F] = (mk
fss=mkgts)=(f=g A ss=ts); (F2)and (F3)); and mk, root, and args interact
“as expected” on well-formed trees ((F4), (F5), (F6), and (F7))

Homeomorphic embedding on (well-formed) finite trees is defined inductively by the
two rules:

(f, m) € F Its] = m set ts C T (F) t € set ts S =emb t
s =emb mk f ts
(f, m) € F (g, n) € F Iss| = m Its| = n
set ss C T(F) set ts C T(F) (f, m) = (g, n) 558 Zemb tS

mk f ss Xemp mk g ts

The first rule subsumes what is often called the subterm property (that is, a proper
subtree of a well-formed tree is also in the embedding relation). The second rule states
that the nodes of a tree may be replaced by smaller ones with respect to < and their
arguments by smaller ones with respect to list-embedding where the underlying order is
=emb-

To instantiate the mbs locale, take 7 (F) for its parameter A. Thus,

- afrr)y Semb) = ImeB. Vg. g <¥ m — good<

emb

(g)

Finally, the tree theorem for almost-full relations can be stated and proved (see theory
Well_Quasi_Orders.Kruskal for details).

o4

4.7. The Tree Theorem

Theorem 4.7.1. Homeomorphic embedding with respect to an almost-full relation =<
on a set F, is almost-full on the set of finite trees over F. In Isabelle: afr (=) =

afr(F) (Kemb)

Proof. Assume that < is almost-full on F but, for the sake of a contradiction, <¢mp is not
almost-full on 7 (F). Then, by Theorem 4.5.7, there is a minimal bad sequence m such
that any smaller sequence with respect to <* is good. Moreover, there are sequences r
and a of roots and arguments of m (that is, m i = mk (fst (r i)) (a i)). Let A denote
the set of all trees occurring in a (that is, the set of arguments of all m i).

Then it is shown that <.mp, is almost-full on A. To this end, suppose the contrary. Thus,
there is a sequence s € A“ which is bad. Let n be the least index such that there is some
element s k that is an argument of m n (that is, s k € set (a n) for some k). Let ¢ be
the combination of m and s, defined by
ci®jifi<nthenmielses (k+ (i - n))

Clearly,c i =m iforalli <nandc i =s (k + (i - n)), otherwise. Then c is bad,
since otherwise a contradiction is obtained as follows: Assume c is good. Then, there are
i < j such that ¢ i <emp ¢ j. Now analyze the following cases:

e case (j < n). Thenm i =<emp m j, contradicting the badness of m.

ecase(n < i). Leti’ =k + (i -n) and j7 =k + (j - n). Then i’ < j’ and s
i’ Zemb 8 j’, contradicting the badness of s.

ecase (i <nandn < j). Let j7 =k + (j -n). Then m i <emp s j’. Thus,
there is some index 1 > n such that s j’ € set (a 1), which in turn implies
m i <emp m 1. Together with i < 1, this contradicts the badness of m.

Thus term c is bad. Since also ¢ <* m (since ¢ n is and argument of m n), we obtain the
desired afs (Zemp).

Now, by Lemma 4.6.1 and Lemma 4.3.1 we obtain a strictly monotone index-mapping ¢
such that ¢ i < ¢ j and a, i <emp* a, j for all i < j. Moreover, r, i € F for all
i and thus there are indices i < j such that r, i < r, j. Together, this implies
m, i <emb m, j, contradicting the badness of m. O

Kruskal’s Tree Theorem 2. Whenever a set F is well-quasi-ordered by a relation =<,
then the set of finite trees over F is well-quasi-ordered by homeomorphic embedding with
respect t0 Zemp. In Isabelle: wqor (%) = wqor(r) (Zemb)-

Proof. By induction on the definition of embedding, it can be shown that <., is
transitive whenever the base order < is. Together with Theorem 4.7.1 this yields the tree
theorem. O

Notes As in my previous work [133], the definition of homeomorphic embedding on
trees could have ignored arities of nodes and in turn well-formedness of trees. This
would constitute a slightly simpler definition and still allow us to obtain the tree theorem.

95

4. Certified Kruskal’s Tree Theorem

Moreover, as in my previous work, closure under context and transitivity could have
been built-in. However, note that every extension of an almost-full relation is again an
almost-full relation (an easy consequence of the definition of almost-full). Thus it seems
desirable to have an embedding relation that is as small as possible. Since the proof of
the tree theorem goes through with the current version, I went with it. But considering
arities does not only make embedding potentially smaller, it is also necessary for some
applications as shown in the next section.

Comparison to Previous Work Again, by employing Lemma 4.3.1, the very tedious
reasoning about the non-existence of an infinite bad sequence “of special shape” (which is
also to be found in Nash-Williams’ original proof) could be avoided completely. Thereby
shortening the original 188-line proof to 90 lines and, more importantly, making the
argument much simpler.

4.8. Examples
In this section we consider concrete instances of the kruskal_tree locale for the following
data types:
e Rose trees: datatype ’a tree = Node ’a (’a tree list)
e First-order terms: datatype (°f, ’v) term = Var ’v | Fun ’f ((’f, ’v) term list)
e “Arithmetic” expressions involving addition of variables and constants:
datatype ’a exp = V ’a | C nat | Plus (’a exp) (’a exp)

For rose trees consider the selector functions node (Node f ts) = (f, [ts]) and succs
(Node f ts) = ts, as well as the inductive set of trees over a given set of nodes 4:

f el VtcEset ts. t € trees A
Node f ts € trees A

The kruskal_tree locale is easily instantiated by

interpretation kruskal_tree "(A x UNIV)" Node node succs "(trees A)"
and we obtain the following variant of the tree theorem

wWqoAxUNIV (X)) = W(q0trees A (Semb)-

However, arities are actually not interesting (since nodes in a rose tree may have arbitrarily
many successors) thus it might be desirable to start from a base order < on 4 (instead of
A x UNIV). This is easily possible by noting that the full relation (x < y for all x and y)
is a wqo on any set and invoking Dickson’s lemma.

For first-order terms consider the selector functions root (Fun f ts) = (f, [ts/) and
args (Fun f ts) = ts, as well as the inductively defined set of ground terms over a
signature F:

(f, n) € F I[ts| = n Vscset ts. s € T(F)
Fun f ts € T (F)

56

4.8. Examples

Again, the kruskal_tree locale is easily instantiated by

interpretation kruskal_tree F Fun root args 7T (F)”
and we obtain the following variant of the tree theorem
wqor (X)) = wqor(F) (Semb)-

For arithmetic expressions consider the constructor function

mk (vx)[]=Vx
mk (cn) [] =Cn
mk p [a, b] = Plus a b

the root selector function

rt (Vx) = (vx, 0)
rt (C n) (¢ n, 0)
rt (Plus a b) = (p, 2)

and the argument selector function

[J
[J
ags (Plus a b) = [a, b]

ags (V x)

ags (C n)

where
datatype ’a symb = v ’a | ¢ nat | p.
Moreover, consider the inductively defined set of arithmetic expressions:

a € exps b € exps

Vx € exps Cn € exps Plus a b € exps
For the signature ¥ = {(v z, 0) |z >0} U {(c n, 0)|n >0} U {(p, 2)} (which ensures

that constructors are applied to the correct number of arguments), the kruskal_tree
locale can be instantiated by

interpretation kruskal_tree ¥ mk rt ags exps

and we obtain the following variant of the tree theorem

wgox, (X)) == WQOexps (Zemb)-

o7

4. Certified Kruskal’s Tree Theorem

4.9. Conclusion and Related Work

An Isabelle/HOL formalization of three important results from combinatorics was pre-
sented: Dickson’s lemma, Higman’s lemma, and Kruskal’s tree theorem. The formalized
proofs are reasonably simple and the tree theorem is presented in a general version that
is applicable to several instances.

Parts of the presented formalization were used by Wu et al. [179] to formalize a proof
of: For every language A, the languages of sub- and superstrings of A are regular. (Details
are given in the corresponding journal article [180].)

Moreover, the presented formalization of the tree theorem is employed for a proof that
the Knuth-Bendix order is a simplification order [142].

There are formalizations of Higman’s lemma in Isabelle/HOL by Berghofer [16] and
using other proof assistants by Murthy [93], Fridlender [39], Herbelin [56], Seisenberger
[125], and Martin-Mateos et al. [84].

Since Berghofer’s work was also conducted using Isabelle/HOL, some comments on
the relation to the presented work are in order. First note that Berghofer’s formalization
is constructive (based on an earlier proof by Coquand and Fridlender in an unpublished
manuscript entitled A Proof of Higman’s Lemma by Structural Induction). Furthermore,
it is restricted to a two letter alphabet (and Berghofer notes that “the extension of the
proof to an arbitrary finite alphabet is not at all trivial”). Also noteworthy is that the
focus of Berghofer’s work is on program extraction and the computational behavior of
the resulting program. In contrast, the presented work constitutes a formalization of
Higman’s lemma without restricting the alphabet, that is, the alphabet may be infinite
as long as it is equipped with a wqo (which is always the case for finite alphabets).

An intuitionistic proof of Kruskal’s tree theorem is presented in [168]. However, to the
best of the author’s knowledge the presented work constitutes the first formalization of
the tree theorem in a proof assistant ever.

The tree theorem is a special case of the graph minor theorem, which was proved by
Robertson and Seymour in a series of twenty papers [120, 121]. The size of this (pen
and paper) proof alone makes a formalization interesting. However, an extension of
the current proof would constitute significant extra effort and it is unclear whether the
minimal bad sequence argument could be applied at all. Thus, we leave it as future work.

o8

5. A Framework for Developing
Stand-Alone Certifiers

Publication Details

Christian Sternagel and René Thiemann. A Framework for Developing Stand-Alone
Certifiers. Electronic Notes in Theoretical Computer Science 312:51-67, 2014
doi:10.1016/j.entcs.2015.04.004

Christian Sternagel and René Thiemann. Certification Monads. The Archive of Formal
Proofs, 2014
afp:Certification_Monads

Christian Sternagel and René Thiemann. Haskell’s Show Class in Isabelle/HOL. The
Archive of Formal Proofs, 2014 (last update: 2015)
afp:Show

Christian Sternagel and René Thiemann. XML. The Archive of Formal Proofs, 2014
afp:XML

Abstract

Current tools for automated deduction are often powerful and complex. Due to their
complexity there is a risk that they contain bugs and thus deliver wrong results. To
ensure reliability of these tools, one possibility is to develop certifiers which check the
results of tools with the help of a trusted proof assistant. We present a framework
which illustrates the essential steps to develop stand-alone certifiers which efficiently
check generated proofs outside the employed proof assistant. Our framework has already
been used to develop certifiers for various properties, including termination, confluence,
completion, and tree automata related properties.

5.1. Introduction

Due to their increased power, automated provers like SAT-solvers, SMT-solvers, auto-
mated first-order theorem provers, model checkers, termination provers, etc., are becoming
increasingly popular for software verification. However, the complexity of these provers
comes with the risk of bugs that cause wrong answers (e.g., a termination claim for
a nonterminating program). Hence, the reliability of the generated answer is usually
reduced whenever the complexity of the prover is increased.

99

http://dx.doi.org/10.1016/j.entcs.2015.04.004
https://www.isa-afp.org/entries/Certification_Monads.shtml
https://www.isa-afp.org/entries/Show.shtml
https://www.isa-afp.org/entries/XML.shtml

5. A Framework for Developing Stand-Alone Certifiers

For reliability it is therefore of major importance to validate answers. To this end,
provers not only have to deliver a binary answer like SAT or UNSAT, but must additionally
provide justification in form of a certificate, which usually depends on the domain of
the prover. It might be a satisfying assignment or a natural deduction proof for a
SAT-solver, a well-founded measure or looping sequence for a termination prover, etc.
Certification—i.e., validation of the certificate—can be applied to recover the desired
degree of reliability for powerful but complex automated provers.

In this paper we present a concrete framework for conveniently developing highly
reliable, efficient, and easy-to-use certifiers. To this end, in Section 5.2, we first discuss
various alternatives on how to perform certification. Then, our framework is introduced
step-by-step. We discuss error handling in Section 5.3, error generation in Section 5.4,
parsing in Section 5.5, and proving soundness of the final certifier in Section 5.6. We
conclude in Section 5.7.

We illustrate our framework by means of a running example. Since this example poses
only a quite simple certification task, we shortly want to mention that the framework
has already successfully been applied for much more complex certification tasks where
the certifier itself consists of over 35,000 lines of Haskell code.

In the following, everything is illustrated for the proof assistant Isabelle/HOL [103],
but most parts should easily be adaptable to similar proof assistants like Coq [18] or
PVS [114], provided they support code generation mechanisms. By code generation we
mean an automatic and trusted translation from functions defined in the logic of the
used proof assistant into actual program code. For example, Isabelle’s code generator
supports Standard ML and Haskell (amongst others) as target languages. We refer to
the work of Haftmann and Nipkow [52] for more details.

All components of the framework have been made available in the archive of formal
proofs [143, 145, 148], and the sources of the running example are freely available under
http://cl-informatik.uibk.ac.at/software/ceta/framework. Some parts of this
work have already been presented earlier [165], but in a much less complete and detailed
form.

Our approach is aimed to ease the construction of verified checkers for certifying
algorithms [21]. In the running example this is demonstrated for Post’s correspondence
problem, while in earlier work [165] we employed the same methodology to build the
checker CeTAfor termination provers (in fact, the framework we present here was distilled
from those parts of CéTAwe deemed generally useful).

5.2. Certification

Certification of an automatically generated proof (asserting that some input has some
property) can be performed in several ways, shortly discussed in the following.

As a running example, we consider Post’s Correspondence Problem (PCP) [119]. Given
an alphabet X, a PCP instance p is a set of pairs of words over Y. It is solvable iff there
is a nonempty list [(x1,91),- .., (Tn,yn)] of pairs of words such that each (z;,y;) € p and
T1...Tp =Y1..-Yn.

60

http://cl-informatik.uibk.ac.at/software/ceta/framework

5.2. Certification

It is well-known that solvability of PCP instances is undecidable in general. We want
to validate certificates for solvable PCP instances. This is a trivial certification task, but
can be used to illustrate various design choices and challenges in the process of developing
a certifier. We assume that the certificate numbers each pair of words in p and provides
the solution as a list of numbers.

5.2.1. Human Inspection

Clearly, humans can check certificates, provided that certificates are rendered in a human
readable form. For example, the PCP instance p = {0 : (A, ABA),1: (AB,BB),2:
(BAA, AA)} and the certificate in form of the solution 0, 2, 1, 2 is rendered in the
following table.

0 2 1 2

Aq BoA3Ay AxBg B;AgAg
A1ByAs AyAs B¢Br AgAg

It is easy to see from this table that p is solvable: just check whether the columns
correspond to word pairs in p. Moreover, the subscripts 1, ..., 9 for the position within
the word help when checking that both rows contain the same word: just check that
both rows contain the subscripts 1 to 9 in ascending order and each number is attached
to the same letter in both rows.

However, human inspection is clearly error-prone and therefore not the best method
for certification. For example, consider the PCP instance

p'={0:(AAB,A),1: (AB,ABB),2: (AB,BAB),3: (BA, AAB)}

for which the shortest solution is 1, 3, 2, 3, 3, 1,0, 1, 3, 2, 3, 2, 3, 3, 2, 3, 3,1, 0, 3, 3,
1,0,2,3,0,0,2,3,3,3,1,0,1,0,0,0,2,3,2,3,0,1,0, 3,3,1,0, 3,0, 0, 2, 3, 0, 0,
2,0,0,2,0,1,0, 3,0, 0, 2. Checking this solution by hand is at least tedious. When
we move from PCP to more complex certificates—whose validation involves elaborate
computations—human inspection is not feasible any more.

5.2.2. Certification via Programs

Instead of human inspection, we can write a program that checks all proof steps mentioned
in the certificate.

This is often not too complex—in comparison to writing the program which has to
produce the proof—and also possibly a good option for getting a certifier in case of simple
certificates like the ones for solvable PCP instances. Nevertheless, this approach also has
some severe drawbacks: e.g., if checking certificates requires some complicated decision
procedure, then the program which implements this decision procedure is itself complex
and may be buggy. Hence, the reliability of the certifier decreases with its complexity.

Another problem is the dependence on potentially flawed paper proofs and inconsistent
assumptions: for example, theorems as they are stated in papers (and implemented in

61

5. A Framework for Developing Stand-Alone Certifiers

datatype letter = A | B

type_synonym word = "letter list"

type_synonym pcp_problem = "(word X word) set"
definition solvable :: "pcp_problem = bool"
where

"solvable pcp +— (3 pair_list.
set pair_list C pcp A
pair_list # [] A
concat (map fst pair_list) = concat (map snd pair_list))"

definition p’ :: pcp_problem
where
np) =
{([A, A, Bl, [AD),
([A, BI, [A, B, Bl),
([A, BI, [B, A, Bl),
([B, Al, [A, A, BD}"

Figure 5.1.: Specifying Input and Solvability

tools) might be wrong; and when combining methods from different papers, it might
happen, that the methods make slightly different but incompatible assumptions where this
incompatibility might remain undetected. For example, [25] contains some inconsistent
assumptions that have only been spotted in [166, §5] during the development of a
certifier—in this case all problems could be repaired, but this is not always the case.

An example of this approach is the algorithmic library LEDA (which was extended to
use verified checkers by Alkassar et al.[2]).

5.2.3. Certification via Proof Assistants

To increase reliability, we can make use of LCF-style [49, 50, 115] proof assistants, i.e.,
proof assistants whose soundness relies on a small trusted kernel and where definitional
packages allow us to write more high-level proofs which are then broken down into
kernel-primitives without adding new axioms.

When using proof assistants, one first has to model the property of interest. Whether
the model corresponds to the real property that one is interested in, has to be carefully
checked by humans.

However, afterwards one can turn the certificate into a proof script which can then be
checked by the proof assistant, yielding the desired high degree of reliability.

As an example, consider the following Isabelle/HOL [103] formalization of PCP. It
starts with the specification of PCP instances and their solvability, and defines one
instance p’ (corresponding to example p’ mentioned in Section 5.2.1), cf. Figure 5.1.

In the definition of solvable, the condition set pair-list C pcp asserts that all pairs in

62

5.2. Certification

fun pair_of_index :: "nat = word X word"
where
"pair_of_index i = nth

[([A, A, B], [AD),

(4, B1, [A, B, BI),
([A, B], [B, A, BI),
([B, Al, [A, A, B])] i"

lemma pcp_solvable: "solvable p’"
apply (unfold solvable_def p’_def)
apply (rule exI [of _ "(map pair_of_index

[113)2)3)3,150}1)3)2’3)2)313)2)3)3,130)313)1,0’2}310)0’2)3)313)110)
1,0,0,0,2,3,2,3,0,1,0,3,3,1,0,3,0,0,2,3,0,0,2,0,0,2,0,1,0,3,0,0,2])"])
apply simp
done
Figure 5.2.: Proving Solvability
the list are contained in the PCP instance, and in the equality test concat ... = concat ...,

map fst pair-list and map snd pair-1list projects the list of pairs of words into the list
of words for the left- and right-hand sides of the pairs, respectively.

After the specification, solvability (of p’) can be proven by the script in Figure 5.2. First,
the function pair-of-index is defined, which maps indices to corresponding word-pairs

of p'.

Then, the proof of solvability is performed: first, the solution from the certificate

is used as witness for the existential quantifier, and then Isabelle’s simplifier is invoked
to check that all conditions of a valid solution are met.
This approach has several advantages, but also some disadvantages:

l’
+

The validation is highly reliable.

One can perform a shallow embedding, i.e., features of the proof assistant may be
used for modeling the given input problem and for establishing the proof. As a
consequence it is often possible to specify the model succinctly and readable, and
it also eases the generation of proofs.

In the case of PCP, as example for shallow embedding we created a datatype
for letters which is specific to the PCP instance p’. Moreover, we used Isabelle’s
simplifier to conclude validity of a solution. Similarly, one might use built-in
operators or quantifiers like A, V, etc., to model the input problem; or one might
invoke some powerful routines from the proof assistant to discharge proof obligations,
like an arithmetic solver, etc.

If the property of interest is related to proof obligations in the proof assistant itself,
then certification allows safe integration of untrusted automated tools into the
proof assistant in order to increase the degree of automation.

For example, the Sledgehammer tool of Isabelle [22] can solve open proof goals
by invoking external automated theorem provers, where the generated proofs are

63

5. A Framework for Developing Stand-Alone Certifiers

then replayed within the proof assistant with the help of metis, an Isabelle internal
prover acting as a certifier.

— For certification, one needs to have the proof assistant installed and started. More-
over, checking proofs within the proof assistant is usually slower than just executing
a program as in Section 5.2.2.

— If a certificate is not accepted, then the proof assistant gets stuck on some inter-
mediate proof obligation, potentially with some error message. Some knowledge
of the proof assistant may be required in order to understand why the certificate
was rejected. For example, for understanding rejected PCP certificates, it might be
required to understand Cog-, or Isabelle-, or PV S-scripts.

— Changes in the proof assistant are only detected at run-time. E.g., if Isabelle
would change the configuration of the simplifier, then it might be the case that the
simplifier invocation in Figure 5.2 no longer succeeds.

Successful examples of this approach are the two termination proof certifiers Coc-
cinelle/CiME [26], and CoLoR/Rainbow [20]. Here, Coccinelle and CoLoR are Cog-libraries
on termination of rewrite systems, i.e., they define the notion of termination, and contain
soundness theorems of some termination criteria. And CiME and Rainbow are tools which
turn the certificates from the automated termination tools into proof scripts, which then
apply suitable tactics based on the theorems that are available in the libraries.

5.2.4. Certification via Programs and Proof Assistants

Finally, we also present an approach which combines the best of Sections 5.2.2 and 5.2.3.
The basic idea is to write a program check-prop :: input = certificate = bool which
efficiently checks certificates as in Section 5.2.2, but is completely written within a proof
assistant. As a result, we can develop a model of the desired property P within the proof
assistant, in combination with a static soundness proof of check-prop:

check-prop input certificate —> P input (5.1)

Hence, we get the high reliability of Section 5.2.3.

Once this is established one just needs to execute check-prop. This can be done within
the proof assistant via reflection. Alternatively, one can invoke the code generator of the
proof assistant to get check-prop as stand-alone program, which can then be conveniently
and efficiently executed by everyone, without even having to install the proof assistant.
As an example, consider Figure 5.3 which contains a checker for solvable PCP instances,
where in the last line the full checker is made available as Haskell code via Isabelle’s code
generator [52].

With the described approach, one can overcome all disadvantages which are mentioned
at the end of Section 5.2.3, at the cost of not being able to perform shallow embedding.
Therefore, we cannot create suitable datatypes like letters on the fly as in Section 5.2.3,
but instead use a polymorphic type for the alphabet with type variable ’a (we could

64

5.2. Certification

type_synonym ’a word = "’a list"

type_synonym ’a pcp_problem = "(’a word X ’a word) set"
definition solvable :: "’a pcp_problem =- bool"

where

"solvable pcp <— (3 pair_list.
set pair_list C pcp A
pair_list # [] A
concat (map fst pair_list) = concat (map snd pair_list))"

type_synonym ’a pcp_problemI = "(’a word X ’a word) list"
fun pair_of_index :: "’a pcp_problemI = nat = ’a word X ’a word"
where

"pair_of_index pcp i = nth pcp 1"

type_synonym pcp_certificate = "nat list"
fun check_solvable :: "’a pcp_problemI =- pcp_certificate = bool"
where

"check_solvable pcp solution =
(let pair_list = map (pair_of_index pcp) solution in
list_all (A i. i < length pcp) solution A
solution # [] A
concat (map fst pair_list) = concat (map snd pair_list))"

lemma check_solvable:
assumes check: '"check_solvable pcp solution"
shows "solvable (set pcp)"

proof -

let ?pair_list = "map (pair_of_index pcp) solution"

have "concat (map fst 7pair_list) = concat (map snd 7pair_list)" using check
by simp

moreover have "7pair_list # []" using check by simp
moreover have "set 7pair_list C set pcp" using check by (auto simp add:
list_all_iff)
ultimately show ?thesis
unfolding solvable_def by (intro exI [of _ ?pair_list]) auto
qed

export_code check_solvable in Haskell

Figure 5.3.: A First Certified Checker for PCP

65

5. A Framework for Developing Stand-Alone Certifiers

also have chosen strings or numbers, etc.). As a further consequence, all routines within
check-prop have to be programmed as such, i.e., if we need an arithmetic solver, we
need to program it and prove it correct, and there is no possibility to just invoke the
arithmetic solver that may be available via some tactic in the proof assistant.

In the running example, let us shortly describe the differences between Figure 5.2
and Figure 5.3. The latter solution cannot encode the concrete PCP instance into
pair-of-index but has to pass it as parameter. It further uses a new type for representing
PCP instances in an executable form, namely lists of word-pairs instead of sets of word-
pairs: pcp-problemI. Moreover, conditions that have previously been discharged by the
simplifier are now explicit in the check-solvable function, e.g., the check via 1ist-all
that all indices within the solution point to valid word-pairs.

In the remainder of this paper, we will illustrate how to improve this basic version of a
check-prop-program.

5.3. Error Handling

At the moment, the type of check-prop is input = certificate = bool. That is, the
return value just provides one bit of information. Whereas for accepted certificates this
is sufficient, for rejected ones we are often interested in the reason for rejection.

With the current approach (check-solvable from Figure 5.3), we are even worse off in
case of rejection than in Section 5.2.3 (where we were required to interpret error messages
from the proof assistant), since now we only obtain the resulting value: False.

Hence, our next goal is to extend check-prop in a way that it returns error messages
in case of rejection. Moreover, this should be done without much overhead and especially
it should not clutter the soundness proof of check-prop.

We propose to use the error monad represented by Isabelle’s sum type

datatype ’a + ’b = Inl ’a | Inr ’b

where errors are indicated by Inl and proper results by Inr. Booleans are now replaced
by type ’e check which is an abbreviation for ’e + unit. Then Inr () corresponds to
True and Inl e to False enriched by the error message e.

More general check functions may also return new results Inr x instead of plain () in
case of success. For example, a function for checking some inference rule might fail if
the preconditions of the inference rule are not met, and return the new proof obligations
arising from applying the rule, otherwise.

In the following, we focus on ’e check which replaces the Boolean return type of
check-prop. We provide the following functionality to ease the transition from Booleans
to the error monad.

e inspection: a function isOK which tests whether a given monadic value is an error
or not. Consequently, soundness proofs like (5.1) are now reformulated as

is0K (check-prop input certificate) —> P input (5.2)

66

5.3. Error Handling

fun check_solvable :: "’a pcp_problemI = pcp_certificate = string check"
where
"check_solvable pcp solution = do {
check_all (A i. i < length pcp) solution
<+? (A i. ’’index i invalid’’);
let pair_list = map (pair_of_index pcp) solution;
check (solution # []) ’’solution must not be empty’’;
check (concat (map fst pair_list) =
concat (map snd pair_list)) ’’resulting words are not equal’’
} <+? (A s. ’’problem in ensuring satisfiability of PCP: ’’ @ s)"

lemma check_solvable:
assumes check: "isOK (check_solvable pcp solution)"
shows "solvable (set pcp)"

Figure 5.4.: A Certified Checker with Error Messages

e assertions: for asserting basic properties, we provide the function check::bool
= ’e = ’e + unit, where check b e = (if b then Inr () else Inl e), i.e., the
asserted property is coupled with an error message.

e combinators: we provide several combinators like monadic bind (>=)::’e + ’a =
(’a = ’e + ’b) = ’e + ’b (acting as short-circuited conjunction) and check_all
(’a = bool) = ’a list = ’a check (which behaves like V on lists in case of
success, and returns the first element for which the given predicate fails, otherwise).
Moreover, specifically for monadic bind, we extended Isabelle’s parser in a way that

it supports Haskell’s do-notation, facilitating writing of readable check functions.

e error messages: there are operators for changing error messages like (<+?)::%e +
’a = (’e = ’f) = ’f + ’a which takes a function that is used to modify the
error message of the given monadic value. Since modification takes only place in
case of error, this operation has no impact below is0OK.

e proving: we configured Isabelle in a way that most of the time the simplifier can
easily eliminate monadic overhead and error message processing.

At this point, it is quite easy to integrate error messages into our PCP checker. The
result is depicted in Figure 5.4, where @ is Isabelle’s append operator for lists.

Note that the soundness proof remains almost unchanged w.r.t. Figure 5.3. We only
change the assumption check_solvable pcp solution into isOK (check_solvable pcp
solution). This works since after our setup, Isabelle’s simplifier immediately translates
the new assumption into

(Vxeset solution. x < length pcp) A

solution # [] A

concat (map fst (map (pair_of_index pcp) solution)) =
concat (map snd (map (pair_of_index pcp) solution))

67

5. A Framework for Developing Stand-Alone Certifiers

type_synonym "shows" = "string = string"

class "show" =
fixes shows_prec :: "nmat = ’a = shows"
and shows_list :: "’a list = shows"
assumes "shows_prec p x (y @ z) = shows_prec p xy @ z"
and "shows_list xs (y @ z) = shows_list xs y @ z"

begin

abbreviation "shows = shows_prec 0"
abbreviation "show x = shows x []"
end

Figure 5.5.: A show-class in Isabelle/HOL

which speaks again about Boolean connectives and does not contain any monadic values
or error messages at all.

5.4. Readable Error Messages

In the previous section we made use of some rudimentary error messages. However, these
were just static strings. For example, invoking check-solvable on p’ with certificate
[1,3,2,3,4,1,2] yields the output.

Inl ’’problem in ensuring satisfiability of PCP: index i invalid’’

The “4” in index i invalid is just an uninformative character and does not reflect the
more informative number 7 that would be available inside check-all via the binding 3.
Similarly, the resulting words are not displayed if they do not match, and it is also not
shown which PCP instance instance is actually analyzed.

However, to generate all these error messages, we need some functionality to display
arbitrary values. To this end, we introduced a type class show similar to Haskell’s Show
class [60]. The class interface is shown in Figure 5.5.

Here, shows is the type of functions from strings to strings, which allows for constant
time concatenation. For each instance ’a of the show-class, there is a function shows-prec
that takes a precedence (which may influence parenthesization) and a value of type ’a.
The given value is turned into a string, wrapped inside the shows type. To display lists in
a special form, shows-1ist can be used, e.g., to allow special treatment of strings, which
in Haskell and Isabelle are just lists of characters. The show-law which should be satisfied
according to the Haskell documentation (and more or less states that a show-function is
not allowed to modify an incoming string) is enforced in the Isabelle class definition.

In addition to shows-prec and shows-list which have to be defined for each instance,
there are the functions shows and show which do not require any precedence and deliver
a string, potentially wrapped into the type shows.

Note that in comparison to Haskell where it suffices to define shows-prec during
instantiation (in which case shows-list gets a default implementation), in Isabelle’s

68

5.4. Readable Error Messages

instantiation unit :: "show"
begin

definition "shows_prec p (x::unit) = shows_string ’’()’’"
definition "shows_list (xss::unit list) = showsp_list shows_prec 0 xss"

instance
by (standard) (auto simp: shows_prec_unit_def shows_list_unit_def
show_law_simps)

end

Figure 5.6.: Instantiating the show-class for the unit-type

type-class system, there is no direct possibility to define default implementations.

To this end, we designed a dedicated command standard-shows-list which automat-
ically generates a definition for shows-list, based on shows-prec, and also proves the
show-law for shows-1ist, using the one for shows-prec.

For example, the instantiation for the unit type is provided in Figure 5.6.

In a similar way, we defined show functions for lists, N, Z, Q, and products. Only for
characters, we defined a dedicated shows-1ist function.

For some other standard types of Isabelle, namely bool, sum, and option, we have used
a more automatic method, similar to Haskell’s deriving Show. To be more precise, we
have written a tactic that automatically defines show functions for datatypes—printing
the constructors of the datatypes with added parentheses—and proving the required
show-law. It is then possible to instantiate the show-class with the simple command:
derive show datatype.

Although we could have used this facility to define the instances for N and products,
we did not choose this solution in order to get a nicer presentation. Currently, show
(3, True) results in the string (3,True), whereas if we would have used derive, the result
would have been Pair (Suc (Suc (Suc (zero)))) (True).

Using show it is now possible to add proper error messages into the PCP checker, cf.
Figure 5.7. Here, +#+ and +@+ are constant time concatenation operators of type string
= shows = shows and shows = shows = shows, respectively.

When comparing the new definition with the previous one in Figure 5.4, one first
notices a difference in the type of check-solvable: the type of letters ’a now is equipped
with the type class constraint show. Moreover, the resulting error message is of type
shows instead of string.

Within the definition, clearly the error messages changed from static to dynamic ones,
e.g., the index 7 is printed, the resulting words are displayed, and even the whole PCP
instance is returned in the error message.

Note that the performed modifications (w.r.t. Figure 5.4) did not require a single
change in the soundness proof.

69

5. A Framework for Developing Stand-Alone Certifiers

fun check_solvable :: "(’a :: show) pcp_problemI = pcp_certificate = shows
check"
where
"check_solvable pcp solution = do {
check_all (X i. i < length pcp) solution
<+? (M i. ’’index ’’ +#+ shows i +@+ shows ’’ invalid’’);
let pair_list = map (pair_of_index pcp) solution;
check (solution # []) (shows ’’solution must not be empty’’);
let left = concat (map fst pair_list);
let right = concat (map snd pair_list);
check (left = right)
(’’resulting words are not equal: ’’ +#+ shows left +@+ ’’ = 7’ +#+
shows right)
} <+? (A s. ’’problem in ensuring satisfiability of PCP ’’ +#+ shows pcp +@+
shows_nl +@+ s)"

Figure 5.7.: A Certified Checker with Proper Error Messages

5.5. Parsing

Let us shortly recapitulate what we have achieved so far: we can conveniently define
check-prop programs of type input = certificate = shows check, which guarantee
semantic properties, deliver readable error messages in case of rejection, and can be
exported into various target languages via code generation.

Hence, for validating some concrete input and certificate, one just needs to transform
the input and certificate provided by the automated prover into the types input and
certificate that are expected by check-prop. However, these transformations usually
depend on the code generator and the target language: how are the Isabelle types input
and certificate reflected in the generated code, e.g., what are the exact names of the
constructors, etc. Therefore, instead of having to build several parsers—one for each
target language—and also maintain them by reflecting for example changes in the naming
scheme of the code generator, we propose to build only one parser which does not need
any maintenance.

The idea is to define the parser directly within the proof assistant. Then this parser
can also be exported to all target languages, and the only interface to the target language
that must be maintained are strings.

Since we are not aware of any automatic parser generators for proof assistants, i.e.,
generators which automatically produce parsers within the logic of the proof assistant,
we developed some machinery to ease the manual definition of parsers.

Here, we restrict to inputs and certificates in the structured XML format. Our support
is divided into two steps: we provide functionality to parse strings into XML-documents
(with an accompanying Isabelle datatype to represent XML-documents), and a set of
combinators to ease parsing XML-documents.

70

5.5. Parsing

parse_nodes ts =
(if ts = [] V take 2 ts = ’’</’’ then return [] ts
else if hd ts # CHR ’’<’’
then (do {
t < parse_text;
ns < parse_nodes;
return (XML_text (the t) # ns)
P
ts
else (do {
exactly ’’<’’;
n < parse_name;
atts < parse_attributes;
e < omeof [’7/>’7, ’’>77];
Ats’. if e = ?7/>77
then (do {
cs < parse_nodes;
return (XML n atts [] # cs)
»
ts’
else (do {
cs < parse_nodes;
exactly ’’</’’;
exactly n;
exactly ’’>’7;
ns < parse_nodes;
return (XML n atts cs # ns)
P
ts’
P
ts)

Figure 5.8.: A Parser for Lists of XML-Nodes.

5.56.1. A Parser from Strings to XML

For the first phase, where strings should be converted into XML, we specified a hand-
written parser as a monadic function where the monad is a state-monad with error, i.e.,
it captures a state (the remaining list of characters) and either returns a normal result or
ends with an error message. Using the do-notation for monads, this parser was quite
easy to define in a readable way. For example, the most complicated parser is the one for
lists of XML-nodes which is depicted in Figure 5.8, where the current state is mostly
hidden within the monad and where xml1 1ist parser is just an abbreviation for string
= string + (xml list X string).

However, since for the definition we used Isabelle’s function package [74], we needed to
prove termination of the parser. This required tedious reasoning about the internal state
of the state monad, where we had to prove that some of the auxiliary parsers actually

71

5. A Framework for Developing Stand-Alone Certifiers

consume tokens before each recursive invocation of parse-nodes, and that none of the
parsers which are invoked before a recursive call, increases the length of the token list,
which includes parse-nodes itself. Therefore, a simple structural termination argument
is not applicable, and instead we wrote a proof of 160 lines that simultaneously shows
termination and a decrease of the length of the resulting token list.

As the final result of the first phase, we provide a function doc-of-string of type
string = string + xmldoc which takes a string and either returns an error message or
an XML-document.

5.5.2. A Library for Parsing XML

In the second phase, where XML-parsers for input and certificates have to be defined,
we support the developer of the certifier by a collection of combinators which can be
used to easily define parsers. In contrast to Section 5.5.1, here we do not use the
function package, but use Isabelle’s partial-function command [75]. The advantage is
that this command allows us to define functions without any termination proof. And as
indicated in the previous paragraph, these termination proofs can become quite tedious
even for simple parsers; in fact, before using partial-function we often just postulated
termination of various parsers as axioms. However, there is one prerequisite for using
partial-function: the functions have to be monadic, and monotone w.r.t. some pointed
complete partial order with a least element |, which is required to specify the behavior
in case of nontermination.

In principle the error monad ’a + ’b would be an appropriate return type for the XML
parsers. However, this type does not satisfy the preconditions, since it does not possess a
unique least element |, as it admits different error messages.

To this end, we defined a dedicated monadic type ’a +, ’b with constructors Left
’a (for errors), Right ’b (for results), and L (for nontermination). Moreover, changing
results or error messages are monotone operations on this type.

To conveniently specify monadic XML parsers on this type we provide several basic
parsers (for strings, numbers, etc.) as well as combinators like pair or many which
combine two parsers or lift a parser for single XML nodes to one over lists of XML
nodes. Although the definitions of these combinators are straightforward, we would like
to mention that setting up the combinators was not a completely trivial task: we had to
configure Isabelle in a way that the required monotonicity proofs of parsers defined by
the combinators are automatic.

For PCP, an XML-schema and parser is easily setup using the combinators, cf. Fig-
ures 5.9 and 5.10. The former provides the certificate for the PCP instance p in XML
format, and the latter shows the parser as well as the function certifier which is the
final certifier that invokes all required components.

First, the parsers for solutions and PCP instances are defined. Whereas the former,
certificate-of-xml is a standard (non-recursive) definition, the latter pcp-of-xml is
defined via partial-function and could use recursion without requiring termination;
however, the format for PCP is so simple that no recursion is required.

Afterwards, parse-input-and-certificate combines the string-to-XML parser with

72

5.6. Soundness

<7xml version="1.0"7>
<?7xml-stylesheet type="text/xsl" href="pcp.xsl"?>
<certificate>
<pcp>
<pair>
<lhs><sym>A</sym></lhs>
<rhs><sym>A</sym><sym>B</sym><sym>A</sym></rhs>
</pair>
<pair>
<lhs><sym>A</sym><sym>B</sym></lhs>
<rhs><sym>B</sym><sym>B</sym></rhs>
</pair>
<pair>
<lhs><sym>B</sym><sym>A</sym><sym>A</sym></lhs>
<rhs><sym>A</sym><sym>A</sym></rhs>
</pair>
</pcp>
<solution>
<idx>0</idx><idx>2</idx><idx>1</idx><idx>2</idx>
</solution>
</certificate>

Figure 5.9.: The PCP Instance p and its Solution in XML

the XML-parsers to yield the full parser from strings to pairs of PCP instance and
solution. This is also the place, where a conversion from the error monad ’a + ’b to its
variant ’a +, ’b with bottom element takes place.

Finally, the full certifier is defined which just parses the input string s, invokes
the check-solvable function and converts again between the two kinds of error monads.
Moreover, the error message e of type shows is converted into a string, by starting the
evaluation via invocation with the empty string >’’’ as argument.

It is now quite easy to wrap the certifier function inside some glue-code in the target
language in order to get a stand-alone program.

For example, Figure 5.11 shows the full Haskell program that is used as wrapper to
invoke the certifier for PCP, where the certifier was exported via:

export_code certifier sumbot Inl Inr in Haskell module_name Certifier

This command exports the main certifier as Haskell program, in combination with the
constructors sumbot, Inl, and Inr which are required for pattern matching the result of
type string +, string.

5.6. Soundness

Now that we have the fully executable certifier, we also want to have some soundness
guarantees about it. Recall that the return type of certifier is string +, string with

73

5. A Framework for Developing Stand-Alone Certifiers

definition certificate_of_xml :: "xml = string +, pcp_certificate"
where
"certificate_of_xml = Xmlt.many ’’solution’’ (Xmlt.nat ’’idx’’) id"

partial function (sum_bot) pcp_of_xml :: "xml = string +, string pcp_problemI"
where
[code]: "pcp_of_xml xml =
Xmlt.many ’’pcp’’
(Xmlt.pair ’’pair’’
(Xmlt.many ’’lhs’’ (Xmlt.text ’’sym’’) id)
(Xmlt.many °’’rhs’’ (Xmlt.text ’’sym’’) id)
Pair) id xml"

definition
parse_input_and_certificate :: "string = string +, (string pcp_problemI X
pcp_certificate)"
where
"parse_input_and_certificate s =
(case Xml.doc_of_string s of
Inl e = error e
| Inr doc = Xmlt.pair ’’certificate’’ pcp_of_xml certificate_of_xml Pair
(root_node doc))"

definition certifier :: "string = string +, string"
where
"certifier s = do {
(pcp, ¢) < parse_input_and_certificate s;
(case (check_solvable pcp c) of
Inl e = error (e ’’’7)
| Inr _ = return ’’certified that pcp is solvable’’)

}"

Figure 5.10.: A Parser and Certifier for Solvability of PCP

74

5.6. Soundness

module Main (main) where

import Certifier -- the certifier

import System.Environment -- for getArgs
import System.I0 -- for file reading
import System.Exit -- for error codes

main = do args <- getArgs
case Prelude.length args of
1 -> do input <- readFile (args !! 0)
start input
-> error "usage: pcp certificate.xml"

start input =
case certifier input of
Sumbot (Inr message) ->
do putStrLn "ACCEPT"
putStrLn message
exitSuccess
Sumbot (Inl message) ->
do putStrLn "REJECT"
hPutStrLn stderr message
exitWith (ExitFailure 1)

Figure 5.11.: A Haskell Wrapper to Invoke the Certifier

75

5. A Framework for Developing Stand-Alone Certifiers

constructors 1, Left, and Right. For the success-case we can easily prove the following
lemma inside the proof assistant (here specialized to our PCP certifier).

certifier s = Right m —

3 pcp c. solvable (set pcp) A parse_input_and_certificate s = Right (pcp,c)
(5.3)

The problem in (5.3) is the brittle connection between the input string s and the
semantic object pcp: the only connection between s and pcp is the parser. Hence, if one
does not trust the parser and has nothing proven about it, then (5.3) is reduced to the
following theorem.

certifier s = Right m = 3 pcp. solvable (set pcp) (5.4)

This implication clearly lacks any connection between s and pcp, i.e., if the certifier
accepts s, one only knows that some pcp is solvable, which is not necessarily the PCP
instance that is encoded in s. And indeed, if the parser would be written in a way that
it always returns the trivial PCP instance {(A, A)} with solution [0], then the certifier
will never reject any proof.

Whereas a full correctness proof of the parser might be possible, there definitely is a
simpler way to ensure soundness, namely via show functions. One can for example replace
the last return-statement in Figure 5.10 by return (show pcp). Then the soundness
theorem is the following one

certifier s = Right m = dpcp. solvable (set pcp) A m = show pcp (5.5)

where at least the returned message m is related to the semantic object, pcp, via the show
function show. Then the user of the certifier can inspect whether the string obtained
from pcp corresponds to the intended input that is given in s. Clearly, here one has to
trust the show function, but usually this is less complex than the parser and hence, also
more reliable.

Instead of a human inspection we also integrated a way for an automatic comparison
that the parsed input corresponds to the given input string. To this end, we make use of
an XML show function to-xml which outputs the semantic object pcp as an XML-string.
Then one can also easily check whether the string obtained from the parsed input is
contained in the original input s, i.e., in (5.4) and (5.5) one gets the additional guarantee:

Jbefore input after. s = before @ input @ after A input =, to-xml pcp (5.6)

Here, the input string s is decomposed into three parts where usually before is some
XML preamble, after contains the certificate, and where =, is pure string-comparison
modulo whitespace.

Of course, if one enforces such a strict comparison via strings, then the input XML
string has to be normalized in some way, e.g., it must not contain comments, since the
show function to-xml will not be able to invent the right comments. Moreover, there
must be consensus about the input XML string and the show function, whether to print
<foo></foo> or <foo/>, etc.

76

5.7. Conclusion

5.7. Conclusion

We presented a framework to develop stand-alone certifiers, with a simple certifier for
PCP as an example. To adapt it to other certification problems, of course one has to
adapt the major soundness proofs, but the method of integrating error messages, and
the theories on parsing, show functions, etc. should all be easily reusable.

Based on this schema we developed CelTA, a certifier which supports (non)termination
proofs [165], (non)confluence proofs [96], and complexity proofs [144]. Each of the
soundness results is in the form of (5.4) in combination with (5.6).

We also considered safety properties like —*(initial-states)Nbad-states = (), stating
that no bad state is reachable via evaluation with —. Here, a prototype certifier is available
which accepts certificates in the form of tree automata which over-approximate the set of
reachable states, cf. [36, 41].

Acknowledgments.

We thank the anonymous reviewers for their helpful comments. The authors are listed in
alphabetical order regardless of individual contributions or seniority.

7

6. Certified Confluence of Conditional
Rewriting

Publication Details

Christian Sternagel and Thomas Sternagel. Certified Confluence of Conditional Rewriting.
Journal of Automated Reasoning, 2019
submitted

Christian Sternagel and Thomas Sternagel. Ceritfying Confluence of Almost Orthogonal
CTRSs via Exact Tree Automata Completion. In Proceedings of the 1st International
Conference on Formal Structures for Computation and Deduction, volume 52 of Leibniz
International Proceedings in Informatics, pages 29:1-29:16, Dagstuhl, 2016
do0i:10.4230/LIPIcs.FSCD.2016.29

Christian Sternagel and Thomas Sternagel. Certifying Confluence of Quasi-Decreasing
Strongly Deterministic Conditional Term Rewrite Systems. In Proceedings of the 26th
International Conference on Automated Deduction, volume 10395 of Lecture Notes in
Computer Science, pages 413-431, Springer, 2017
do0i:10.1007/978-3-319-63046-5_26

Abstract

Conditional term rewriting is a Turing-complete model of computation that allows for
more direct translations between programs and rewrite systems than is typically the case
for plain term rewriting without conditions. On the one hand, this alleviates program
verification. On the other hand, properties of the corresponding conditional term rewrite
systems, like confluence, are typically harder to establish than for plain term rewrite
systems.

However, there are several automated tools that try to establish confluence of conditional
term rewrite systems. In order to make the results of such tools more reliable, we formalize
most of the state-of-the-art techniques they use for proving confluence of conditional
term rewrite systems using the proof assistant Isabelle/HOL. Using these results, we
provide a fully verified certifier that allows us to validate proofs that are generated by
automated tools. Moreover, we evaluate our approach on standard benchmarks.

6.1. Introduction

Term rewriting is a well-studied and Turing-complete model of computation used in
many different areas of computer science. One such area is program verification, where

79

http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.29
http://dx.doi.org/10.1007/978-3-319-63046-5_26

6. Certified Confluence of Conditional Rewriting

gsort [] = [l
gsort (x:xs) = qgsort us ++ [x] ++ gsort vs
where
(us, vs) = split x xs
split x [] = (1, [
split x (y:ys) | y <= x = (y:us, vs)
| otherwise = (us, y:vs)
where
(us, vs) = split x ys

Listing 6.1: Haskell implementation of quicksort

we typically first translate a given computer program into a corresponding term rewrite
system (TRS for short) and then apply term rewriting techniques in order to establish
properties like confluence and termination. Of course this approach only allows us to
transfer an inferred property from the TRS to the original program, provided the employed
translation is sound with regard to the property. The more direct the translation, the
easier it is to guarantee its soundness. Typically, conditional term rewrite systems
(CTRSs for short) allow for more direct translations than plain TRSs.

Consider, for example, the Haskell program from Listing 6.1 that implements a version
of the quicksort algorithm for lists.

It can be translated into the following CTRS, where where-clauses as well as pattern
guards (like | y <= x”) of the Haskell program are directly captured by conditions:

gs(nil) — nil
as(z : zs) — qs(us) ++ (z : nil) ++ qs(vs)
< split(z, zs) — (us, vs)

split(z, nil) — (nil, nil}
split(z,y : ys) = (y : us, vs)
< split(z, ys) — (us, vs), leq(y,) — true
split(z, v : ys) = (ys,y : vs)
< split(z, ys) — (us, vs), leq(y, z) — false

In recent years automatic tools that try to show various properties of (C)TRSs have
been developed. Since these tools are complex pieces of software, wrong answers are not
unheard of. To increase their trustworthiness a common approach is to formalize the
techniques used in these tools on the computer using a proof assistant.! From such a

Tn the following, whenever we use the words “formalize” or “formalization,” we mean a computer
aided formalization using a proof assistant.

80

6.1. Introduction

input system \‘\ ,’/ property
algorithms ~ ~ L
[F Literature @ Tool)

techniques

theorems | proofs

@@i Isabelle/HOL > Proof

generate ¥

B IsaFoR @ can)

accept i reject

Figure 6.1.: The certification approach for automated tools.

formalization we then obtain a formally verified program that can certify the output of
automated tools.

One of the largest efforts in this respect is the IsaFoR/CeTA? project. The Isabelle
Formalization of Rewriting (or IsaFoR for short) is developed in the proof assistant
Isabelle/HOL employing Higher-Order Logic. Before we can formally certify the output
of automated tools, we have to formalize all of the underlying theory. In Isabelle/HOL
it is possible to generate code [52] for a certifier from a formalization provided that
check functions for all techniques and corresponding soundness lemmas have first been
formalized. The certifier which is code generated from IsaFoR is called CeTA (short for
Certified Tool Assertions) and is a fully verified, stand-alone Haskell program. Figure 6.1
gives a schematic overview of the general approach: We first search the literature
for results on the properties we want to prove. Then we formalize the corresponding
theorems and proofs in a proof assistant like Isabelle/HOL. Most of the time, this is not
straightforward: Sometimes proofs in the literature contain real errors and we have to fix
them before we can proceed. Some other time the authors built their proofs on some
implicit assumptions that we have to state explicitly in order for the proof to succeed.
Almost always there are gaps in the proofs, missing details or tedious technicalities that
one may skip on paper and still convince an informed reader about the correctness of the
proof but that are needed to convince the computer, that is, Isabelle/HOL.

Then the certifier itself is specified and proved correct inside the proof assistant to
allow us to automatically code generate it from IsaFoR—the formal library that is the
result of our formalization work.

In parallel we implement the algorithms and techniques we found in the literature in
an automatic tool and adapt its output in order for the certifier to be able to parse it. A
tool has to provide detailed information about every technique it employed in a proof
and state this in form of a certificate that is readable by CelA.

2http://cl-informatik.uibk.ac.at/isafor

81

http://cl-informatik.uibk.ac.at/isafor

6. Certified Confluence of Conditional Rewriting

Finally, we arrive at an automatic and reliable two-stage approach to check properties
of the input system:

1. The tool tries to decide the desired property of a given input system automatically.

2. If a certificate is generated it is given to CeTA which in turn checks all the involved
steps and accepts the certificate if it is correct or rejects it otherwise (giving a
hopefully helpful error message).

Of course in general there are various different tools for a certain property, all using
similar techniques. The main advantage of the certification approach is that instead of
having to prove each of these tools correct independently, we just provide one certifier
that is able to rigorously assure correctness of the tools’ output with respect to a given
input and we only have to prove correctness of this certifier once and for all.

For termination and confluence of plain TRSs, CeTA can handle more than 80% of all
generated certificates in the respective tool competitions [45, 92]. However, for many
applications plain TRSs are either inconvenient or not expressible enough, leading to
several extensions of the base formalism. The one we are interested in here is conditional
term rewriting. Two prominent areas where conditional rewriting is employed are
the rewriting engines of modern proof assistants (like Isabelle’s simplifier [102]) and
functional(-logic) programming with where-clauses (like Haskell [82] and Curry [3]).
An important property of conditional term rewrite systems (CTRSs) is confluence and
recently interest in automatic tools to show this property has been growing (see for
example the conditional category of the confluence competition [92]).

Contribution. Our goal is to get the same coverage as for termination and confluence
of plain term rewriting for confluence of conditional term rewriting. So we need a
formalization against which we can verify the output of the automatic confluence tools
for conditional term rewriting. To this end we have extended IsaFoR by several results
from the conditional term rewriting and tree automata literature as well as related topics.
More concretely, our contributions are as follows:

e We start with a formalization of orthogonality results for CTRSs (Section 6.4).
e Then, we present the formalization of a critical pair criterion (Section 6.5).
e We also give methods for finding non-confluence witnesses (Section 6.6).

e Moreover, we discuss three methods that help us to ignore certain cases of the
confluence analysis (Section 6.7) by identifying so called infeasible conditional
critical pairs: the symbol transition graph, decomposition of reachability problems,
and tree automata techniques.

e We introduce two supporting methods that allow us to ignore or simplify rules of
CTRSs (Section 6.8).

e Finally (Section 6.9), we evaluate our approach with extensive experiments.

82

6.2. Preliminaries

To facilitate our experiments we have implemented all the formalized methods in the
automatic tool ConCon that is able to check confluence (and some other properties)
of programs represented as CTRSs. ConCon is taking part in the annual confluence
competition—CoCo.? There automatic confluence tools test their mettle in several
different categories. The problems that these tools try to solve come from the confluence
problems database—Cops* (version 1137 at the time of writing; where the version of
Cops is the number of problems that are contained in that version). Beyond the results
we get from this competition we provide extensive experiments, comparing the different
methods of ConCon to each other. Certification is really a joint effort by the tool that
outputs a proof and the certifier that reads it. For that reason we extended both ConCon
and IsaFoR in such a way that the certifier CelA is now able to check all of the above
mentioned techniques and at the same time ConCon can provide detailed enough output
for all methods it implements in a format readable by CeTA. Concerning check functions
in our formalization it is worth mentioning that their return type is only “morally” bool.
In order to have nice error messages we actually employ a monad. So whenever we need
to handle the result of a check function as bool we encapsulate it in a call to isOK which
results in False if there was an error and True, otherwise.

This work extends and unifies our previous work [135, 136, 156, 158]. Additionally, we
added many examples to clarify the presented results.

In the remainder we give hyperlinks (marked by ®) to an HTML rendering of our
formalizations.

6.2. Preliminaries

While we try to be self-contained, some familiarity with the basics of (conditional) term
rewriting [9, 111] will be helpful. We recapitulate terminology and notation that we use
in the remainder in a condensed form.

An abstract rewrite system (ARS for short) A is a carrier A together with a binary
relation — 4 on A. If A is clear from context we just write —. Instead of the more common
(a,b) € — we write a — b and we call this a rewrite step. Given an arbitrary binary
relation —,, we write o<, =1, and —7 for its inverse, its transitive closure, and its
reflexive transitive closure, respectively. Moreover, given another arbitrary binary relation
— 3, the relations j<— - —>E and —7% - j<— are called meetability and joinability. We may
abbreviate the relation —7% - j4= by |. Sometimes we call a situation b 5= a =5 c a
diverging situation or a peak if it consists of two single steps b o« a —5 c¢. We say that
—« has the diamond property whenever o+ - —o C — - o< holds. We say that —,
and —g commute whenever < - —5 C —5 - < holds. The same property is called
confluence, in case o and (coincide. If we have b | ¢ whenever b o< a —, ¢ we call —,
locally confluent. If —, has the diamond property and the inclusion —5 € —, C —>Z
holds then — 3 is confluent. An ARS A is terminating if there is no a € A that admits
an infinite rewrite sequence starting from a. The following famous result by Newman

3http://project-coco.uibk.ac.at
‘http://cops.uibk.ac.at

83

http://project-coco.uibk.ac.at
http://cops.uibk.ac.at

6. Certified Confluence of Conditional Rewriting

[101] establishes a connection between termination and confluence: Every terminating
and locally confluent ARS is confluent.

We use V() to denote the set of variables occurring in a given list of syntactic objects,
like terms, rules, etc. The set of terms 7 (F, Var) over a given signature of function
symbols F and set of variables V is defined inductively: = € T (F, Var) for all variables
x € V, and for every n-ary function symbol f € F and terms ti,...,t, € T(F,Var)
also f(t1,...,tn) € T(F,Var). A term is called linear if it does not contain multiple
occurrences of the same variable. Furthermore, we say that a term t is ground if
Var(t) = &. The root position of a term is denoted by €. Given a term ¢, we write Pos(t)
for the set of positions in ¢ and t|, with p € Pos(t) for the subterm of ¢ at position p.
We write st], for the result of replacing s|, by ¢ in s. Given a term ¢ € T (F, Var) and a
fresh constant L ¢ F the function root that returns the root symbol of ¢ is defined as
root(t) = fif t = f(t1,...,tn) and L otherwise. Although the use of L in root is unusual,
it will be helpful in Section 6.7.2.

Given a fresh constant [J the terms in the subset of 7 (F U {0}, Var) where there is
exactly one occurrence of U are called contexts. We denote the set of all contexts by
C(F,V) and we also call OJ the empty context. If C' is a context, p the position of O in
the context, and ¢ some term then C[t] denotes the term C[t],. A binary relation >
on terms is closed under contexts if C[s] > C|[t] for all contexts C and terms s,¢ where
s > t. A rewrite rule is a pair of terms written ¢ — r where the left-hand side ¢ is
not a variable and there are no variables in r that do not already occur in ¢. A rule
with variable right-hand side is called collapsing. We sometimes label rewrite rules like
p: £ — 1. A set of rewrite rules is called a term rewrite system (TRS). A TRS is called
(left-, right-)linear if all (left-hand, right-hand side) terms are linear. Sometimes we use
extended TRSs where we only impose the first variable restriction. As usual R~ denotes
the inverse of a TRS R. Note that the inverse of a TRS could very well have variable
left-hand sides. Given a TRS R over signature F the set D = {root({) | { — r € R} is
called the defined symbols of R. In contrast the set C = F \ D is called the constructor
symbols (or just the constructors) of R. A term over T(C,V) is called a constructor
term. A substitution is a mapping from variables to terms where only finitely many
variables are not mapped to themselves. The empty substitution is the identity on V
and written e. We write to to denote the application of the substitution o to the term

t that is defined recursively as to = o(t) if t is a variable and to = f(t10,...,ty0) if
t = f(t1,...,t,). Sometimes it is useful to represent a substitution by its set of variable
bindings o = {x1 +— t1,..., 2z, — t,}. We call a bijective variable substitution 7 : V — V

a variable renaming or (variable) permutation, and denote its inverse by w—. For two
substitutions o, 7 and a set of variables V' we write 0 = 7 [V] if o(z) = 7(x) for all z € V.
We write o7 for the composition of the two substitutions o and 7 which is defined to be
(o7)(z) = o(z)T, that is, a composition lists substitutions in their order of application.
Finally, a substitution o is called a ground substitution if it maps variables to ground
terms. A binary relation > on terms is closed under substitutions if so > to for all
substitutions ¢ and terms s,t where s > ¢. A term s matches a term t if ¢ = so for some
substitution . We say that ¢ is an instance of s and conversely that s is a generalization
of t. We say that terms s and ¢ unify, written s ~ ¢, if so = to for some substitution o.

84

6.2. Preliminaries

A binary relation on terms that is closed under contexts and substitutions is called a
rewrite relation. Given a TRS R we write s — ¢ if there exists a rewrite rule £ — r in
R, a substitution o and a context C' such that s = C[lo] and t = C[ro]. We call the
subterm fo the redex. Given a TRS R a term t such that there is no step t = s for
any term s is called an R-normal form. A substitution o is R-normalized if o(z) is an
R-normal form for all variables z. An oriented conditional term rewrite system (CTRS)
R is a set of conditional rewrite rules of the shape ¢ — r < ¢ where ¢ and r are terms, ¢
is not a variable, and ¢ is a possibly empty sequence of pairs of terms (called conditions)
s$1 — t1, ..., S — tx. The extended TRS obtained from a CTRS R by dropping the
conditional parts of the rewrite rules is denoted by R, and called the underlying TRS
of R. Note that -g C —g,. For arule p: ¢ — r < ¢ of a CTRS R the set of extra
variables is defined as EV(p) = V(p) — V(¢). The rewrite relation induced by a CTRS R

is structured into levels. For each level ¢, a TRS R; is defined recursively by
Ro=o

Riy1 = {loc = ro |l =71 <ccRand sod —> to for all s = t € ¢}
where —5, denotes the rewrite relation of the (unconditional) TRS R;. We write s —x ; ¢
(or s —; t whenever R is clear from the context) if we have s —, t. The rewrite relation
of R is defined as —x = Ui20 —R,. Furthermore, we write 0,7 - ¢ whenever so =} to
for all s — t in ¢ and we say that o satisfies the set of conditions c¢. If the level i is
not important we also write ¢ F ¢. When there is no substitution ¢ such that ¢ - ¢
we say that the set of conditions c is infeasible. Note that a conditional rewrite step
s =g t employing £ — r < ¢ € R and substitution ¢ is only possible if ¢ satisfies c.
A conditional rule £ — r < ¢ is said to be of type 3 if Var(r) C Var(¢,c) and of type 4
otherwise. A rule of type 3 for which V(s;) C V({,t1,...,t;—1) holds for all 1 <i < k is
called deterministic. A term t is strongly R-irreducible if to is an R-normal form for all
R-normalized substitutions o. A deterministic rule for which the terms ¢; forall 1 <7 < k
are strongly R-irreducible is called strongly deterministic. If a CTRS only consists of
rules of type 3 it is called a 3-C'TRS, if it only consists of deterministic rules it is called a
DCTRS, and finally if it only consists of strongly deterministic rules it is called SDCTRS.
Two variable-disjoint variants of rules 1 — r; < ¢; and £o — r9 < ¢ in R such that
/1], is not a variable and (1|, = fop with most general unifier (mgu) p, constitute a
conditional overlap. A conditional overlap that does not result from overlapping two
variants of the same rule at the root gives rise to a conditional critical pair (CCP)
Cipfraply, = mip <= cip, cop. A (C)TRS R is orthogonal if it is left-linear and it has
no (conditional) critical pairs. The following famous result (known as the Critical
Pair Lemma [61]) shows why we can concentrate on critical peaks: A TRS is locally
confluent if and only if all its critical pairs are joinable. So for a terminating TRS by
Newman’s Lemma and the Critical Pair Lemma we immediately get the following result:
A terminating TRS is confluent if and only if all its critical pairs are joinable. Note that
this means that in the unconditional case confluence is decidable for terminating TRSs. A
CCP u — v <= cis said to be infeasible if its conditions are infeasible. Moreover, a CCP is
joinable if uo | » vo for all substitutions o that satisfy c. The topmost part of a term that

85

6. Certified Confluence of Conditional Rewriting

does not change under rewriting (sometimes called its “cap”) can be approximated for
example by the tcap function [43]. Informally, tcap(x) for a variable x results in a fresh
variable, while tcap(t) for a non-variable term t = f(t1,...,ty,) is obtained by recursively
computing u = f(tcap(t1),...,tcap(t,)) and then asserting tcap(t) = u in case u does
not unify with any left-hand side of rules in R, and a fresh variable, otherwise. It is well
known that tcap(s) ¢ ¢ implies non-reachability of ¢ from s. For two terms s and ¢ we
write s g tif s =t, s >r t,or s = f(s1,...,8n), t = f(t1,...,tn), and s; 45 t; for all
1 < ¢ < n. The relation 45 is called parallel rewriting. The well-known Parallel Moves
Lemma states that for every orthogonal TRS R its parallel rewrite relation 45 has the
diamond property. Together with the well-known fact, that — C +# C —*, we get that
orthogonal TRSs are confluent. A CTRS R over signature F is called level-commuting if
for all levels m,n and terms s,t € T(F, Var) whenever s '« - —* t also s =% - *« .
If n = m this property is called level-confluence of a CTRS. Level-commutation implies
level-confluence which in turn implies confluence. We denote the proper superterm
relation by > and define =g = (= U >)" for any order =. A DCTRS R over signature
F is quasi-reductive if there is an extension F’ of the signature (that is, F C F’) and
a well-founded partial order > on 7 (F',V) that is closed under contexts such that for
every substitution o: V — T(F',V) and every rule { —r < s1 —» 1, ..., S = ¢ in R
we have that sjo = t;o for 1 < j < implies fo > s;0 for all 1 <7 <k, and sjo = tjo
for 1 < j < k implies o = ro. A DCTRS R over signature F is quasi-decreasing if
there is a well-founded order > on 7 (F, Var) such that = = >, —-g C >, and for all
rules { — r < 81 — t1, ..., S — tx in R, all substitutions o: V — T (F, Var), and all
1 <i <k, if sjo =% tjo for all 1 < j < i then fo = s;0. Quasi-reductivity implies
quasi-decreasingness—a fact that is available in IsaFoR.

A bottom-up non-deterministic finite tree automaton (TA) A = (F,Q,Q¢,A) consists
of four parts: a signature F, a set of states @ disjoint from F, a set of final states
Qr C Q, and a set of transitions A of the shape f(q1,...,q,) — ¢ with f/n € F and
q1y--+,0n,q € Q or ¢ = p with ¢,p € Q). The language of a TA A is given by the set
L(A) = {t € T(F) | there is a ¢ € Qf such that ¢ =% ¢}. We say that a set of ground
terms E is reqular (or a regular language) if there is a TA A such that L(A) = E. To
represent a TA we usually only need to specify the transitions and mark the final states.
The signature and the set of states is clear from the transitions. A substitution from
variables to states is called a state substitution.

6.3. Roadmap of Formalized Methods

This section presents an overview of all confluence methods for CTRSs that are available
in CeTA. There are basically three ways to show confluence of a CTRS:

1. use a transformation to reduce the problem to the unconditional case,
2. exploit orthogonality, or

3. employ a critical pair criterion.

86

6.3. Roadmap of Formalized Methods

All of them are supported by CelA.

The second and third approaches among other things also analyze the critical pairs
of a CTRS. Being able to ignore certain critical pairs simplifies this analysis. Now, if
the conditions of a CCP are not satisfiable then the resulting equation can never be
utilized and hence is harmless for the confluence of the CTRS under consideration. CCPs
with unsatisfiable conditions are called infeasible and we can safely ignore them for the
purpose of confluence. Our certifier CeTA supports the following reachability analysis
based methods to show infeasibility of CCPs:

1. unification,
2. symbol transition graph analysis,
3. decomposition of reachability problems, and

4. tree automata completion.

When checking for confluence we are not only interested in positive answers. If a CTRS
is mot confluent we have to find a witness to prove it. This is also supported by CelA.

Sometimes the above methods for (non-)confluence are not directly applicable. CeTA
supports two sound methods that can “simplify” a given CTRS and make it amenable for
them. The first one removes rules with infeasible conditions (because they do not influence
the rewrite relation anyway), while the second one “reshapes” certain conditional rewrite
rules in such a way that other methods become more applicable, without changing the
induced rewrite relation.

Confluence Methods. Concerning the reduction to the unconditional case the following
theorem is based on work by Nishida et al. [105] and has been formalized by Winkler
and Thiemann [177, Theorem 20].

Theorem 6.3.1. For a DCTRS R and a source preserving unraveling U if the TRS
U(R) is left-linear and confluent then R is confluent. O

Since this result is not part of our formalization effort we refer the interested reader to
the work of Winkler and Thiemann [177] for further details.
The first orthogonality result for 3-CTRSs is due to Suzuki et al. [162, Corollary 4.7].

Theorem 6.3.2. Almost orthogonal, extended properly oriented, right-stable, and oriented
3-CTRSs are confluent. O

We slightly extend the original result and formalize it. This formalization is the topic
of Section 6.4.

A critical pair criterion for SDCTRSs was published by Avenhaus and Loria-Séenz [7,
Theorem 4.1].

Theorem 6.3.3. Let the SDCTRS R be quasi-decreasing. Then R is confluent iff all
CCPs are joinable. O

Again we slightly extend this result and formalize it. A textual description of this
formalization is given in Section 6.5.

87

6. Certified Confluence of Conditional Rewriting

Non-Confluence Methods. The following non-confluence result directly follows from
the definition of confluence:

Lemma 6.3.4. Given a CTRS R if we find a diverging situation t ;5% S —>74i u where t
and u are not joinable then R is non-confluent. O

Further details are presented in Section 6.6.
Infeasibility and Supporting Methods. Infeasibility of conditions can be exploited for
several subtasks when trying to decide confluence of a CTRS:

1. rules with infeasible conditions can be dropped from a CTRS,

2. CCPs with infeasible conditions are trivially joinable, and finally,

3. CCPs between infeasible rules can be ignored for the purpose of orthogonality.

The details on how exactly this works in CelA are given in Sections 6.7 and 6.8. Finally,
inlining of conditions (which is also explained in detail in Section 6.8) is inspired by
inlining of let-constructs and where-expressions in compilers. In practice, exhaustive
application of inlining increases the applicability of other methods like infeasibility via
unification and non-confluence via plain rewriting.

In the next section we start by showing how to extend the well-known orthogonality
criterion from the unconditional to the conditional case.

6.4. Orthogonality

Unlike orthogonal TRSs, orthogonal CTRSs are not confluent in general, as witnessed by
Cops #524 (which is similar to an example by Ida and Okui [63]):

Example 6.4.1 (Cops #524). Consider the 3-CTRS consisting of the three rules:
a—x<=f(r) >k f(b) — k f(c) = k

It is orthogonal but not confluent, since we have the peak b < a — c but the terms b
and c are both normal forms and thus not joinable.

We have to impose further restrictions on the distribution of variables in the rules such
that during matching the substitution for the rewrite step can be built in a deterministic
way. To this end we use the following notions due to Suzuki et al. [162].

Definition 6.4.2 (Right-stability @, proper orientedness). A conditional rewrite rule
{ — r < ¢ with k conditions ¢ = 81 —» t1, ..., S —» t}. 1s called

e right-stable whenever we have Var(t;) N Var({,ci—1,s;) = & and t; is either a linear
constructor term or a ground Ry-normal form, for all 1 < i < k; and

e properly oriented if whenever Var(r) € Var(f) then Var(s;) C Var({,t1,...,ti—1)
forall1 <11 < k.

88

http://cops.uibk.ac.at/?q=524
http://cops.uibk.ac.at/?q=524
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Conditional_Rewriting.html#def:right_stable
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Conditional_Rewriting.html#def:properly_oriented

6.4. Orthogonality

7N

a—>b*>c

Figure 6.2.: For CTRSs parallel rewriting does not have the diamond property.

A CTRS consisting solely of right-stable rules is called right-stable. Likewise, a CTRS
only containing properly oriented rules is called properly oriented.

Note that proper orientedness is really just a relaxation of determinism in that we only
demand determinism if there are extra variables in right-hand sides of rules and not for all
rules (see Section 6.2). Now the class of CTRSs we are targeting are orthogonal, properly
oriented, right-stable, and oriented 3-CTRSs. Remember that in the unconditional case
we employ the Parallel Moves Lemma to show confluence of orthogonal systems. So for a
CTRS R we write s 4>, t if t can be obtained from s by contracting a set of pairwise
disjoint redexes in s using R,,. Unfortunately, the Parallel Moves Lemma does not hold
for our class of CTRSs as witnessed by Cops #334 [162, Example 4.4].

Example 6.4.3 (Cops #334). Consider the orthogonal, properly oriented, right-stable,
and oriented 3-CTRS consisting of the three rules:

fle) s y<sa—>y a—b b—c

In the peak depicted in Figure 6.2 no parallel rewrite step from a to c is possible, but
we still can rewrite a to the normal form c with a sequence whose level is smaller than
the level of the step from f(a) to c. Incorporating these findings into parallel rewriting
for CTRSs we arrive at the notion of extended parallel rewriting:

Definition 6.4.4 (Extended parallel rewriting ®). First we adopt the convention that
the number of holes of a multi-hole context is denoted by the corresponding lower-case
letter, for example, c for C, d for D, e for E etc. Then we say that there is an extended
parallel rewrite step at level n from s to t, written s <, t, whenever we have a multi-hole
context C, and sequences of terms $1,...,Sc and t1,...,te, such that s = C|[s1,..., S,
t=Clt1,...,t], and for all 1 < i < k we hcwe either

1. (s4,ti) € Ry (that is, a root step at level n), or

2. 8 =5 ti.

7L

It is easy to see that —,, C <, C —). We are ready to state the following variation
of the Parallel Moves Lemma.

Theorem 6.4.5. For orthogonal, properly oriented, right-stable, and oriented 3-CTRSSs
extended parallel rewriting has the commuting diamond property. O

89

http://cops.uibk.ac.at/?q=334
http://cops.uibk.ac.at/?q=334
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Conditional_Rewriting.html#def:epar_n

6. Certified Confluence of Conditional Rewriting

Because the commuting diamond property obviously implies level-commutation the
above theorem yields the following confluence result.

Corollary 6.4.6. Orthogonal, properly oriented, right-stable, and oriented 3-CTRSs are
confluent. O

We can further improve upon this result by using a looser notion of proper orientedness.

Definition 6.4.7 (Extended proper orientedness ®). A conditional rule £ — r < ¢ with
k conditions c = s1 — t1,...,s — t is called extended properly oriented when either
Var(r) C Var(¢) or there is some 0 < m < k such that Var(s;) C Var({,t1,...,ti_1) for
all 1 <i<m and Var(r) N Var(sj — t;) C Var({,t1,...,ty) for allm < j <k. A CTRS
only containing extended properly oriented rules is called an extended properly oriented
CTRS.

There are CTRSs that are extended properly oriented but not properly oriented as
witnessed by Cops #548:

Example 6.4.8 (Cops #548). Consider the oriented 3-CTRS consisting of the single
rule

glz) »y<=z—>y,z—>a

It is orthogonal, right-stable, and extended properly oriented but not properly oriented,
because of the extra variable z in the second condition.

Observe the following property of a conditional rule £ — r < ¢ of type 3 with k
conditions

for some 0 < m < k. Var(r) C Var({, ¢p) U (Var(r) N Var(cmi1.k)) (%)

which we will use later and which directly follows from Var(r) C Var(¢, c). Moreover, we
additionally loosen the orthogonality restriction to allow overlaps that are harmless.

Definition 6.4.9 (Almost orthogonality modulo infeasibility &). A left-linear CTRS R
is almost orthogonal (modulo infeasibility) if each overlap between rules {1 — 11 < ¢1
and ly — 19 <= co with mgu p at position p either

1. results from overlapping two variants of the same rule at the root, or
2. is trivial (that is, p = € and rip = rou), or

3. is infeasible in the following sense: for arbitrary m and n, whenever levels m and n
commute, then it is impossible to satisfy the conditions stemming from the first rule
on level m and at the same time the conditions stemming from the second rule on
level n. More formally: Ymn. (i - =% C =% - *« = Po.o,mbciuho,nt
Cgu).

90

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Conditional_Rewriting.html#def:extended_properly_oriented
http://cops.uibk.ac.at/?q=548
http://cops.uibk.ac.at/?q=548
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Conditional_Critical_Pairs.html#def:almost_orthogonal

6.4. Orthogonality

Note that without 2 and 3, Definition 6.4.9 corresponds to plain orthogonality. Also
note that by dropping 3, Definition 6.4.9 reduces to the definition of almost orthogonality
given by Hanus [55]. In the following, whenever we talk about almost orthogonality
we mean Definition 6.4.9. Observe that the level-commutation assumption of the third
alternative in Definition 6.4.9 allows us to reduce non-meetability to non-joinability. That
this is useful in practice is shown by the following example featuring Cops #547 [135,
Example 3].

Example 6.4.10 (Non-meetability via tcap, Cops #547). Consider the CTRS consisting
of the two rules:

f(r) >a<z—>a f(r) > b<=2z—b
It has the critical pair
arb<z—»a,z—>b

Since tcap(cs(z,x)) = cs(y, z) ~ cs(a,b), where cs is a fresh auxiliary function symbol,
we cannot conclude infeasibility via non-reachability analysis using tcap. However,
tcap(a) = a ¢ b = tcap(b) shows non-joinability of a and b. By Definition 6.4.9.3
this shows non-meetability of a and b and thereby infeasibility of the critical pair.

In general it is beneficial to test for non-meetability via non-joinability of conditions
with identical left-hand sides (see also Lemma 6.7.41). Finally, we are ready to state this
new variation of the Parallel Moves Lemma for extended parallel rewriting.

Theorem 6.4.11. For almost orthogonal, extended properly oriented, right-stable, and
oriented 3-CTRSs extended parallel rewriting has the commuting diamond property. &

Proof. Let R be a CTRS satisfying all required properties. The commuting diamond
property for parallel rewriting states that ,, <t - <, C), - ¢ for all m and n. We
proceed by complete induction on m + n. By induction hypothesis (IH) we may assume
the result for all m’ +n’ < m + n. Now consider the peak ¢ ,, < s <, u. If any of m
and n equals 0, we are done (since < is the identity relation). Thus we may assume
m=m'~+1and n =n' 4+ 1 for some m’ and n’. By the definition of extended parallel

rewriting, we obtain multihole contexts C' and D, and sequences of terms si,..., S,
ti, .o ytey, ULy ...y ug, V1,...,0q, such that s = C[s1,...,s.] and t = C[t1,...,t.], as
well as s = Dfuy,...,uq) and u = D[vy,...,vq]; and (s4,t;) € Ry, or s; =7, t; for all

1 <i<ec, as well as (u;,v;) € Ry or u; —7, v; forall 1 <4< d.

It is relatively easy to define the greatest lower bound C M D of two contexts C' and D
by a recursive function (that simultaneously traverses the two contexts in a top-down
manner and replaces subcontexts that differ by a hole) and prove that we obtain a
lower semilattice. Now we identify the common part £ of C' and D, employing the
semilattice properties of multihole contexts, that is, £ = CT1D. Then C = E[CY,...,C]
and D = E[Dq,...,D,.] for some multihole contexts C1,...,C. and Dy,..., D, such
that for each 1 < i < e we have C; = O or D; = 0. This also means that there is a

91

http://cops.uibk.ac.at/?q=547
http://cops.uibk.ac.at/?q=547
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Level_Confluence.html#lem:comm_epar_n

6. Certified Confluence of Conditional Rewriting

/////

Figure 6.3.: Commuting diamond property of extended parallel rewriting.

sequence of terms s/, ..., s, such that s = E[s),...,s,] and for all 1 < i < e, we have

r e
s; = CilSk;, - - -+ Sk;+c;—1] for some subsequence sg,, ..., Sg,+¢;—1 Of 51,..., . (we denote
similar terms for ¢, u, and v by ¢}, u}, and v}, respectively). Moreover, note that by
construction s; = u; for all 1 < i < e. Since extended parallel rewriting is closed under
multihole contexts, it suffices to show that for each 1 < i < e there is a term v such that
th <, U ¢), in order to conclude the proof. This is depicted in Figure 6.3, where
w; denotes the respective v’s. We concentrate on the case C; = O (the case D; = O is
completely symmetric). Moreover, note that when we have s; —7 , t!, the proof concludes
by IH (together with some basic properties of the involved relations), and thus we remain

with (s,) € Ry,. At this point we distinguish the following cases:

177

1. (D; = 0). Also here, the non-root case u; —*, v} is covered by the IH. Thus, we may
restrict to (u},v}) € Ry, giving rise to a root overlap. Since R is almost orthogonal,
this means that either the resulting conditions are not satisfiable or the resulting
terms are the same (in both of these cases we are done), or two variable disjoint
variants of the same rule £ — r <= ¢ with conditions ¢ = s1 — t1,...,5; = t; were
involved, that is, u, = o1 = Loy for some substitutions o1 and o9 that both satisfy
all conditions in ¢. Without extra variables in r, this is the end of the story (since
then ro; = rog); but we also want to cover the case where Var(r) € Var(¢), and
thus have to reason why this does not cause any trouble. Together with the fact
that £ — r < ¢ is extended properly oriented we obtain a 0 < k < j such that

a) Var(s;) C Var(l,ty,...,ti—1) forall 1 <i < k and
b) Var(r) N Var(s; = t;) C Var(l,t1,...,t;) forall k <i < j

by Definition 6.4.7. Then we prove by an inner induction on ¢ < j that there is a
substitution ¢ such that

92

6.4. Orthogonality

c) o(z) = o1(z) = o9(x) for all z in Var(¢), and

d) o1(z) 4y, o(x) and oa(w) <, o(z) for all z in Var(l, cping ry) U (Var(r) N
Var(ckt1,4))-

In the base case o satisfies the requirements. So suppose ¢ > 0 and assume by
IH that both properties hold for ¢ — 1 and some substitution o. If i > k we are
done by 1b. Otherwise ¢ < k. Now consider the condition s; — t;. By la we
have Var(s;) C Var(¢,c;—1). Using the IH for 1d we obtain s;o1 <), s;o and
5i09 <>y, s;0. Moreover s;oq <y, t;01 and s;o9 <7, t;02 since o1 and o3 satisfy c,
and thus by the outer IH we obtain s” such that t;o1 <+, s’ and t;o0 <40, s’. Recall
that by right-stability t; is either a ground R,-normal form or a linear constructor
term. In the former case t;o1 = t;09 = s’ and hence o satisfies 1c and 1d. In the
latter case right-stability allows us to combine the restriction of 1 to Var(¢;) and
the restriction of o to Var(¢, c;—1) into a substitution satisfying 1c and 1d. This
concludes the inner induction. Since R is an extended properly oriented 3-CTRS,
using (x) together with 1d shows roy <7, ro and rog <7, ro. Since 45, C 9k,

and <), C <y, we can take v = ro to conclude this case.

. (D; # O). Then for some 1 < k < d, we have (uj,vj) € Ry, or uj —*, v; for
all k < j < k+d; — 1, that is, an extended parallel rewrite step of level n from
si = u, = Dj[uk,, ..., Up+d;—1] to Dj[vg,, ..., Vk+d,—1) = vj. Since R is almost
orthogonal and, by D; # [, root overlaps are excluded, the constituent parts of the
extended parallel step from s} to v] take place exclusively inside the substitution
of the root step to the left (which is somewhat obvious but surprisingly hard to
formalize, even more so when having to deal with infeasibility). We again close
this case by induction on the number of conditions making use of right-stability of

R. O

The same reasoning as before immediately yields the main result of this section—
Theorem 6.3.2. Clearly, applicability of Theorem 6.3.2 relies on having powerful techniques
for proving infeasibility at our disposal. Those are the topic of Section 6.7.

6.4.1. Certification

Since all the properties of our target CTRSs are syntactical it is straightforward to
implement the corresponding check functions. If there are no critical pairs the certificate
only contains one element that states that the almost orthogonal criterion was used.
The syntactic properties are checked by CeTA. More involved proofs contain subproofs of
infeasibility for all the CCPs (see Section 6.7).

The formalization of the methods described in this section can be found in the following
IsaFoR theory files:

thys/Conditional_Rewriting/ thys/Conditional_Rewriting/
Conditional_Rewriting.thy Level_Confluence.thy
Conditional _Critical_Pairs.thy Level_Confluence_Impl.thy

93

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Conditional_Rewriting.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Conditional_Critical_Pairs.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Level_Confluence.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Level_Confluence_Impl.html

6. Certified Confluence of Conditional Rewriting

The next section explores a method to show confluence of quasi-decreasing CTRSs
provided all of their conditional critical pairs are joinable.

6.5. A Ciritical Pair Criterion

In the previous section we have seen how to adapt the result that orthogonal TRSs
are confluent to the conditional case. Here we do the same for terminating and locally
confluent TRSs. Remember that for terminating TRSs confluence is decidable. We
just have to check if all CPs are joinable. This well-known result of unconditional
term rewriting directly follows from Newman’s Lemma and the Critical Pair Lemma
(see Section 6.2). Unfortunately, the same result does not hold in the conditional case.
To begin with, the Critical Pair Lemma does not hold for CTRSs as witnessed by the
following example featuring Cops #269, the oriented version of a join system due to
Bergstra and Klop [17, Example 3.6].

Example 6.5.1 (Cops #269). The CTRS R consisting of the two rules
c(z) 2 e<=z—c(x) b — c(b)

has no CCPs at all but is not (locally) confluent due to the peak c(e) < c(c(b)) — e,
where both steps employ the first rule—the one to the left at position 1 and the one to
the right at the root position—and the conditions are satisfied by the second rule. Since
c(e) and e are two different normal forms we have a non-joinable peak and hence a
non-confluent system.

The above system is not terminating. Maybe terminating CTRSs where all CCPs are
joinable are confluent? The next example featuring Cops #553, the oriented version of a
join system due to Dershowitz et al. [33, Example B], shows that this is not the case.

Example 6.5.2 (Cops #553). Consider the terminating CTRS R:

c—k(fa) (1) h(z) = k(z) (3) a—b (5)
c—k(g(b)) (2) h(f(a)) = c (4) f(z) = g(z) <= h(f(z)) - k(g(b)) (6)

There are four CCPs (modulo symmetry) that are all joinable as shown in the diagrams
below (where the number of the rule used in a step is attached to the corresponding arrow).
h(f(a)), h((@)),
1 € 2 S Sy
v N h(f(b)) c h(g(a)) c
k(f(@) kgb) HE@),) [F— |2

"4

g K@) e—c k(b)) ¢ k() hlglb)) 2 k(e(b)

1 5

We still have the diverging situation f(b) < f(a) — g(a) — g(b) where f(b) and g(b)
are two different normal forms. So R is not confluent.

94

http://cops.uibk.ac.at/?q=269
http://cops.uibk.ac.at/?q=269
http://cops.uibk.ac.at/?q=553
http://cops.uibk.ac.at/?q=553

6.5. A Critical Pair Criterion

Clearly termination is not enough. Thus, we employ the stronger notion of quasi-
decreasingness which in addition to termination also ensures that the rewrite relation
is effectively computable and that there are no infinite computations in the conditions.
Still, this is not yet sufficient. Because of the possibility of extra variables in conditional
rules there are problems for confluence that can arise from overlaps of a rule with itself
at the root position and even from variable-overlaps; two cases that are not dangerous
at all when considering unconditional term rewriting. This will become clearer after
looking at the following two examples featuring Cops #262 and #263 due to Avenhaus
and Loria-Saenz [7, Examples 4.1a,b].

Example 6.5.3 (Cops #262). Consider the quasi-decreasing CTRS R consisting of the
following three rules (where we write s + t instead of plus(s,t))

O+y—vy s(z)+y — z+s(y) f(z,y) >z <2 +y—>» 2+ 2[]

Now look at the (improper) overlap of the last rule with itself. This yields the (improper)
CCPz:~=w<=us+y—>z+uv,r+y—>» w+ u Remember that to show joinability of a
CCP we have to check whether it is joinable for all satisfying substitutions. Let us see
if we can find a satisfying substitution which makes the CCP non-joinable. Now, if we
apply the substitution o mapping =, z, and v to s(0) and all other variables to 0 to the
CCP, the result is

s(0) = 0«s(0)+0—s(0)+0,s(0)+0—0+5s(0)

The first condition is trivially satisfied. To satisfy the second one we use the second rule
of R. Clearly o satisfies the CCP. But s(0) and 0 are two different normal forms and so
the C'CP is not joinable. Which in turn means that R is not confluent.

Example 6.5.4 (Cops #263). The quasi-decreasing CTRS R consists of four rules
a—c g(a) — h(b) h(b) — g(c) f(r) = 2z <= g(z) - h(z)

From the variable-overlap between the first and the last rule we get the (improper) CCP
f(c) = z <= g(a) - h(z). With o(z) = b we have found a satisfying substitution that
makes the left- and right-hand sides non-joinable.

To counter these problems we have to restrict the placement of extra variables in the
conditions severely. To this end we focus our attention on strongly deterministic CTRSs
in this section.

The main result of Avenhaus and Lorfa-Sdenz [7, Theorem 4.1] is the basis for Theo-
rem 6.3.3.

Theorem 6.5.5. If all CCPs of a quasi-decreasing SDCTRS are joinable, then it is
confluent. 4

Proof. That all CCPs of a CTRS R (no need for strong determinism or quasi-decreasing-
ness) are joinable if R is confluent is straightforward. Thus, we concentrate on the other

95

http://cops.uibk.ac.at/?q=262
http://cops.uibk.ac.at/?q=263
http://cops.uibk.ac.at/?q=262
http://cops.uibk.ac.at/?q=263
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94.html#lem:quasi_decreasing_sdtrs_all_CPs_joinable_CR

6. Certified Confluence of Conditional Rewriting

direction: Assume that all critical pairs are joinable. We consider an arbitrary diverging
situation ¢ < s —% u and prove ¢t |z u by well-founded induction with respect to ;.
Here > is the order from the definition of quasi-decreasingness.

By the induction hypothesis (IH) we have that for all terms g, t1, %2 such that s =« g
and t1 p< tg —3 t2 there exists a join t; —% - g ta.

If s =tors = u then t and u are trivially joinable and we are done. So we
may assume that the diverging situation contains at least one step in each direction:
t gt pe—s—ru =% u.

Let us show that ¢ |z «' holds. Then t |z u follows by two applications of the
induction hypothesis, as shown in the following diagram:

5 A
é)ﬁ/ AN
4 u
s NN
¢t IH u

¥

o IH*

Assume that s = C[ly01], =g Clrioi1]p =t and s = D[ly03], —r D[r202]q = v’ for
rules p; : {1 = 11 <= ¢1 and pg : fy — ro < ¢ in R, contexts C' and D, positions
p and ¢, and substitutions o1 and o3 such that uoy —% voy for all u — v € ¢; and
uog —5 vog for all u — v € cz. There are three possibilities: either the positions are
parallel (p || ¢), or p is above g (p < ¢), or ¢ is above p (¢ < p). In the first case t’ |z v/
holds because the two redexes do not interfere. The other two cases are symmetric and
we only consider p < ¢ here. If s > s|, = {101 then s >¢ {101 (by definition of >g)
and there exists a position r such that ¢ = pr and so we have the diverging situation
rio1 g4 Li01 =% {101[r202], which is joinable by the induction hypothesis. But then
the diverging situation t' = s[rio1], g4 s[li01]p, =5 s[tio1[r202],]q = v’ is also joinable
(by closure under contexts) and we are done. So we may assume that p = € and thus
s = f101. Now, either ¢ is a function position in ¢; or there exists a variable position ¢’
in ¢1 such that ¢’ < ¢. In the first case we either have

1. a conditional critical pair which is joinable by assumption or we have

2. a root-overlap of variants of the same rule. Unlike in the unconditional case
this could lead to non-joinability of the ensuing critical pair because of the extra
variables in the right-hand sides of conditional rules. We have pym = py for some
permutation 7. Moreover, s = {101 = {2092 and we have

o1 = o3 [V(l2)] (6.1)

We prove w01 |g xog for all 2 in V(p2). Since t’ = rio1 = ron~ 01 and v’ = rqoy
this shows ¢ |z u/. Because R is terminating (by quasi-decreasingness) we may

96

6.5. A Critical Pair Criterion
define two normalized substitutions 02 such that

xm o1 %) ro| and woo % xohy for all variables z. (6.2)

We prove zo} = zol, for x € EV(p2) by an inner induction on the length k of the
conditions cg = s1 — t1, ..., S —» tr. If pa has no conditions this holds vacuously
because there are no extra variables. In the step case the inner induction hypothesis
is that zo] = o) for x € V(s1,t1,...,8,t;) — V(¢2) and we have to show that
J}UIl = .%'Ué forx € V(Sl,tl, ceey Si+1,ti+1) _V(£2) Ifx e V(Sl,tl, ey Syt 3i+1) we
are done by the inner induction hypothesis and strong determinism of R. So assume
x € V(tiy1). From strong determinism of R, (6.1), (6.2), and the inner induction
hypothesis we have that yo] = yo), for all y € V(s;4+1) and thus s;110] = siy105.

With this we can find a join between ¢;110] and t;+10% by applying the induction
hypothesis twice as shown in the diagram below:

Si+1T 01 Si4+102
N N
/ / !
tiyroy IH 50400 tir109
.

Since t;41 is strongly irreducible and o} and o), are normalized, this yields t;110] =
ti+104 and thus zo] = xo).

. We are left with the case that there is a variable position ¢’ in 1 such that ¢ = ¢'r’
for some position 7. Let = be the variable ¢4 |- Then xo|» = la09, which implies
xro1 =5 wo1[reoz],. Now let 7 be the substitution such that 7(z) = xzo1[r202),» and
7(y) = o1(y) for all y # x. Further, let 7/ be a normalized substitution where 7/(y)
is some normal form of 7(y) (which we know must exist) for all y, so yr =% y7’
for all y. Moreover, note that

eal %) y7 for all y. (6.3)

We have u' = l101[ro02]q = l101[2T]y =% {17, and thus v =%, 17, From (6.3) we
have rio1 —% 7 and thus ¢’ = rj01 =% r17’. Finally, we show that {;7" — 17/,
concluding the proof of t' |z «'. To this end, let s; — t; € ¢;. By (6.3) and
the definition of 7/ we obtain s;o1 —% tio1 —% t;7" and s;o1 —% s;7/. Then
s;7" I t;7’ by the induction hypothesis and also s;7" —% t;7, since t; is strongly
irreducible.]

97

6. Certified Confluence of Conditional Rewriting

6.5.1. Certification

There are some complications for employing Theorem 6.5.5 in practice. Quasi-decreas-
ingness, strong irreducibility, and joinability of CCPs are all undecidable in general.
For quasi-decreasingness we fall back to the sufficient criterion that a DCTRS is quasi-
decreasing if its unraveling is terminating. This result was formalized by Winkler and
Thiemann [177] and is already available in IsaFoR. A sufficient condition for strong
irreducibility is absolute irreducibility.

Definition 6.5.6 (Absolute irreducibility &, absolute determinism). We call a term
t absolutely R-irreducible if none of its non-variable subterms unify with any variable-
disjoint variant of left-hand sides of rules in the CTRS R. A DCTRS is called absolutely
deterministic (or ADCTRS for short) if for each rule all right-hand sides of conditions
are absolutely R-irreducible.

The proof of the following result [7, Lemma 4.1(a,b)] is immediate.

Lemma 6.5.7. For a termt and a CTRS R:
o [ft is absolutely R-irreducible, then t is also strongly R-irreducible. 4

o If R is absolutely deterministic, then R is also strongly deterministic. 4

We replace joinability of CCPs by infeasibility [135] (already part of IsaFoR) together
with two further criteria which rely on contextual rewriting.

Definition 6.5.8 (Contextual rewriting ®). Consider a set C of equations between
terms which we call a context.’ First we define a function = on terms such that t is
the term t where each variable x € V(C) is replaced by a fresh constant T. (Below we
sometimes call such constants Skolem constants.) Moreover, let C' denote the set C
where all variables have been replaced by fresh constants T. For a CTRS R we can make
a contextual rewrite step, denoted by s —x ¢ t, if we can make a conditional rewrite step
with respect to the CTRS RUC from '3 to L.

We formalize soundness of contextual rewriting [7, Lemma 4.2] as follows:
Lemma 6.5.9. If s _>>7k2,c t then so =% to for all substitutions o satisfying C. 4

Proof. Consider the auxiliary function [t], that replaces each Skolem constant T in ¢ by
o(x), that is, it works like applying a substitution to a term, but to Skolem constants
instead of variables. Note that [t], = to whenever V(t) C V(C). Now we show by
induction on n that

$ —ruc., t implies [s]o =%, [t]o (%)

for any o satisfying C. The base case is trivial. In the inductive step we have a
rule ¢ — r < c € RUC, a position p, and a substitution 7 such that s|, = ¢, t = s[r7],

5This has nothing to do with the usual use of the word contezt in rewriting which refers to a term
with a hole.

98

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94.html#def:absolutely_irreducible
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94.html#def:absolutely_deterministic
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94.html#lem:absolutely_irreducible_strongly_irreducible
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94.html#lem:absolutely_deterministic_strongly_deterministic
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94.html#ind:ctxt_step
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94.html#lem:ctxt_steps_csteps

6.5. A Critical Pair Criterion

and utT —Rue, v7 forallu v ec If £ — r < cis arule in R, then we obtain the
contextual rewriting sequence [ut], =%y e, [VT]s for all u ~ v € ¢ by the induction
hypothesis. Then we show s =% 7,41 t by induction on the context s[-],. Otherwise,
¢ — r < c € C and thus c is empty, {7 = ¢, and r7 = r, since C is an unconditional
ground TRS. Moreover, there is a rule ¢/ — 7’ € C (thus also V(¢',7") C V(C')) such that
¢ = { and 1" = r. Again, the final result follows by induction on s[-],.

Assume s —g ¢ t. Then 5 -y, t for some level n. Let t denote the extension of ¢
where all variables z in ¢ (not just those in V(C)) are replaced by corresponding fresh
constants Z. Note that t = t{z — T | # € Var} for every term t. But then we also have
5 =RUC,n t since conditional rewriting is closed under substitutions. Note that [?](, =to
for all t. Thus taking 3 and ¢ for s and ¢ in (x) we obtain so —R. to. Since we just
established the desired property for single contextual rewrite steps it is straightforward
to extend it to rewrite sequences. O

In the following example we illustrate contextual rewriting and how to apply the above
lemma.

Example 6.5.10. Consider the CTRS R consisting of the four rules

f(z,y) = f(g(s(z)),y) < c(g(z)) — c(a) g(s(z)) = =
f(z,y) = f(z,h(s(y))) < c(h(y)) = c(a) h(s(z)) — =

and the context C' containing the two equations

c(g(x)) = c(a) c(h(y)) = c(a)

We have the sequence

() — FlE6(2)), 1) = f(gls(e)),h(s())
The first step is justified by f(X,y) —ruc f(g(s(X)),y) using the first rule of R as well as the
first equation of C' to satisfy its condition. For the second step we use f(g(s(X)),y) =ruc
f(g(s(x)),h(s(y))) employing the second rule of R and the second equation of C to satisfy
its condition. From Lemma 6.5.9 we get that for all substitutions o that satisfy C we
have f(z,y)o —* f(g(s(z)),h(s(y)))o. In this example the only satisfying substitution is
o ={z—s(a),y > s(a)} employing rules three and four of R.

Lemma 6.5.9 is the key to overcome the undecidability issues of conditional rewriting.
For example, for joinability of CCPs the problem is that a single joining sequence (as is
usual in certificates for TRSs) does not prove joinability for all satisfying substitutions.
However, contextual rewriting has this property.

Now we are able to define the two promised criteria for CCPs that employ contextual
rewriting: context-joinability and unfeasibility.

Definition 6.5.11 (Unfeasibility ™, context-joinability). Let s ~ t < ¢ be a CCP
induced by an overlap between variable-disjoint variants {1 — r1 < ¢1 and o — r9 < o
of rules in R with mgu p. We say that the CCP is unfeasible if we can find terms u, v,
and w such that

99

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94.html#def:unfeasible
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94.html#def:context_joinable

6. Certified Confluence of Conditional Rewriting

1. for all o that satisfy ¢ we have €1po = uo,

2. u _>j/<€,c v,

3. u _>jl<€,c w, and

4. v and w are both strongly irreducible and v # w.

Moreover, we call the CCP context-joinable if there exists some term u such that s =% . u
and t =5 . u.

Example 6.5.12. Consider the CTRS Ry.st consisting of the two rules

last(z : y) — 2 <= y — nil last(z : y) = last(y) <y — 2z : v
Riast 1 quasi-decreasing with respect to some well-founded order »-. Moreover, the CTRS
has the CCP = ~ last(y) <= ¢ with ¢ = {y — nil, y - z : v}. This CCP is unfeasible
because for all satisfying substitutions o we have last(z : y)o = yo, y PR 25U
Y = Ruu.c Nl and both z : v and nil are strongly irreducible and not unifiable.

Now, look at the arbitrary CCP = ~ min(nil) <= ¢ with ¢ = {min(nil) — z}. Since
r =% o v and min(nil) =% . = it is context-joinable (regardless of the actual CTRS R).

Due to Lemma 6.5.9 above, context-joinability implies joinability of a CCP for arbitrary
satisfying substitutions. The rationale for the definition of unfeasibility is a little bit
more technical, since it only makes sense inside the proof (by induction) of the theorem
below. Basically, unfeasibility is defined in such a way that unfeasible CCPs contradict
the confluence of all >-smaller terms, which we obtain as induction hypothesis.

In the original paper the definition of quasi-reductivity requires its order to be closed
under substitutions. This property is used in the proof of [7, Theorem 4.2]. By a small
change to the definition of unfeasibility we avoid this requirement for our extension to
quasi-decreasingness.

We are finally ready to state a more applicable version of Theorem 6.5.5:

Theorem 6.5.13. Let the ADCTRS R be quasi-decreasing. Then R is confluent if all
CCPs are context-joinable, unfeasible, or infeasible. ~

Proof. We denote the well-founded order on terms that we get from quasi-decreasingness
by >. Unfortunately, we cannot directly reuse Theorem 6.5.5 and its proof, since we
need our sufficient criteria in the induction hypothesis. However, the new proof is quite
similar. It only differs in case (1), where we consider a CCP.

a. If the CCP is context-joinable, we obtain a join with respect to contextual rewriting

which we can easily transform into a join with respect to R by an application of
Lemma 6.5.9 because we have a substitution satisfying the conditions of the CCP.

b. If the CCP is unfeasible, we obtain two diverging contextual rewrite sequences. Again
since there is a substitution satisfying the conditions of the CCP we may employ
Lemma 6.5.9 to get two diverging conditional R-rewrite sequences. Because {10 = to

100

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94.html#lem:quasi_decreasing_order_adtrs_all_CPs_unfeasible_or_context_joinable_or_infeasible_CR

6.5. A Critical Pair Criterion

we can use the induction hypothesis to get a join between the two end terms. But from
the definition of unfeasibility we also know that the end points are not unifiable (and
hence are not the same) and cannot be rewritten (because of strong irreducibility),
leading to a contradiction.

c. Finally, if the CCP is infeasible, then there is no substitution that satisfies its
conditions, contradicting the fact that we already have such a substitution. O

Have a look at the following example to see Theorem 6.5.13 in action.

Example 6.5.14. Consider the quasi-decreasing ADCTRS R consisting of the following
six rules:

min(z : nil) = z (6.4) r <0 — false (6.7)
min(z : zs) = = < = < min(zs) — true (6.5) 0<s(y) — true (6.8)
min(z : zs) — min(zs) < x < min(zs) — false (6.6) s(z)<s(y) = z<y

(6.9)

R has 6 CCPs, 8 modulo symmetry:

r & z < rmin(nil) — true (6.1,6.2)
z & min(nil) < zmin(nil) — false (6.1,6.3)
z &~ min(zs) < zmin(zs) — true, z < min(zs) — false (6.2,6.3)

To conclude confluence of the system it remains to check its CCPs. The first one,
(6.1,6.2), is trivially context-joinable because the left- and right-hand sides coincide,
(6.1,6.3) is infeasible since tcap(z < min(nil)) = 2z < min(nil) and false are not unifiable,
and (6.2,6.3) is unfeasible because with contextual rewriting we can reach the two non-
unifiable normal forms true and false starting from = < min(zs). Hence, we conclude
confluence of R by Theorem 6.5.13.

6.5.2. Certification Challenges

One of the main challenges towards actual certification is typically disregarded on paper:
the definition of critical pairs may yield an infinite set of CCPs even for finite CTRSs.
This is because we have to consider arbitrary variable-disjoint variants of rules. However,
a hypothetical certificate would only contain those CCPs that were obtained from some
specific variable-disjoint variants of rules. Now the argument typically goes as follows:
modulo variable renaming there are only finitely many CCPs. Done.

However, this reasoning is valid only for properties that are either closed under
substitution or at least invariant under renaming of variables. For joinability of plain
critical pairs—arguably the most investigated case—this is indeed easy. But when it
comes to contextual rewriting we spent a considerable amount of work on some results
about permutations that were not available in IsaFoR.

To illustrate the issue, consider the abstract specification of the check function check-
CCPs, such that isOK (check-CCPs R) implies that each of the CCPs of R is either

101

6. Certified Confluence of Conditional Rewriting

unfeasible, context-joinable, or infeasible. To this end we work modulo the assumption
that we already have sound check functions for the latter three properties, which is nicely
supported by Isabelle’s locale mechanism:

locale al194-spec =

fixes v, and v,
and check-context-joinable
and check-infeasible
and check-unfeasible

assumes v, and v, are injective
and ran(v;) Nran(vy) = @
and is0K (check-context-joinable R s t C) = Ju.s = c u ANt =% o u)

For technical reasons, our formalization uses two locales (a194-ops, al94-spec) here. We
just list the required properties of the renaming functions v, and v, and the soundness
assumption for check-context-joinable.

Now what would a certificate contain and how would we have to check it? Amongst
other things, the certificate would contain a finite set of CCPs C’ that were computed
by some automated tool. Internally, our certifier computes its own finite set of CCPs C
where variable-disjoint variants of rules are created by fixed injective variable renaming
functions v, and vy, whose ranges are guaranteed to be disjoint. The former prefixes the
character “x” and the latter the character “y” to all variable names, hence the names.
At this point we have to check that for each CCP in C there is one in C’ that is its
variant, which is not too difficult. More importantly, we have to prove that whenever
some desired property P, say context-joinability, holds for any CCP, then P also holds
for all of its variants (including the one that is part of C).

To this end, assume that we have a CCP resulting from a critical overlap of the two
rules /1 — r1 <= ¢1 and fo — 19 < ¢o at position p with mgu pu. This means that
there exist permutations m; and my such that (¢ — r; < ¢1)m and (b — ro < c2)mo
are both in R. In our certifier, mgus are computed by the function mgu(s,t) which
either results in None, if s+ t, or in Some 1 such that p is an mgu of s and ¢, otherwise.
Moreover, variable-disjointness of rules is ensured by v, and vy, so that we actually
call mgu(4|pm1vy, amav,) for computing a concrete CCP corresponding to the one we
assumed above. Thus, we need to show that mgu(¢;|,,f2) = Some p also implies that
mgu(ly|pm Vg, bamayy) = Some p' for some mgu p’. Moreover, we are interested in the
relationship between p and p/ with respect to the variables in both rules. Previously—for
an earlier formalization of infeasibility [134]—IsaFoR only contained a result that related
both unifiers modulo some arbitrary substitution (that is, not necessarily a renaming).

Unfortunately, contextual rewriting is not closed under arbitrary substitutions. Never-
theless, contextual rewriting is closed under permutations, provided the permutation is
also applied to C.

Lemma 6.5.15. For every permutation m we have that sw —>}‘;{707r tm iff s —>*R7C t. &

102

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94_Impl.html#lem:ctxt_steps_perm

6.5. A Critical Pair Criterion

It remains to show that p and p/ differ basically only by a renaming (at least on the
variables of our two rules), which is covered by the following lemma.

Lemma 6.5.16. Let mgu(s,t) = Some pu and V(s,t) € SUT for two finite sets of
variables S and T with S N'T = @&. Then, there exist a substitution p' and a permutation w
such that for arbitrary permutations w1 and my: mgu(smivg,tmovy) = Some /', p =
mpvgm [S], and p = mop'vym [T). ¥

Proof. Let h(z) = zv,m if € S and h(z) = zvyma, otherwise. Then, since h is bijective
between S UT and h(S UT) we can obtain a permutation 7 for which # = h [S U T].
We define 1/ = 7~y and abbreviate smiv, and tmovy to s’ and t/, respectively. Note that
s’ = smand ' = twr. Since p is an mgu of s and ¢ we have sy = tu, which further implies
s’y =t'y/. But then p' is a unifier of s’ and ¢’ and thus there exists some p” for which
mgu(s’,t') = Some p’ and §'p” = t'p".

We now show that p/ is also most general. Assume s'7 = /7 for some 7. Then
smr = twt and thus there exists some such that 77 = pd (since p is most general). But
then 7~ 77 = 7~ ud and thus 7 = p’d. Hence, y/ is most general.

Since y” is most general too, it only differs by a renaming, say 7/, from y/, that is,
p" =a'y/. This yields p = mp"v,n'™ [S] and p = mop” vyn’~[T], and thus concludes the
proof. O

6.5.3. Check Functions

Before we can actually certify the output of CTRS confluence tools with CelA, we have
to provide an executable check function for each property that is required to apply
Theorem 6.5.13 and prove its soundness. For the check functions for infeasibility see
Section 6.7. The check functions for quasi-decreasigness are not described in this article
(see [177]). It remains to provide new check functions for absolute irreducibility, absolute
determinism, contextual rewrite sequences, context-joinability, and unfeasibility together
with their corresponding soundness proofs. For absolute irreducibility we provide the
check function check-airr, employing existing machinery from IsaFoR for renaming and
unification, and prove:

Lemma 6.5.17. If is0OK (check-airr R t), then the term t is absolutely R-irreducible. &

This, in turn, is used to define the check function check-adtrs and the accompanying
lemma for ADCTRSs.

Lemma 6.5.18. is0K (check-adtrs R) iff R is an ADCTRS. v

Concerning contextual rewriting, we provide the check function check-csteps for condi-
tional rewrite sequences together with the following lemma:

Lemma 6.5.19. Given a CTRS R, a set of conditions C, two terms s and t, and a list
of conditional rewrite proofs ps, we have that isOK (check-csteps (R U C) 5 t ps) implies
s 2pct 4

103

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Renaming_Interpretations.html#lem:mgu_imp_mgu_var_disjoint
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94_Impl.html#lem:check_airr
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94_Impl.html#lem:check_adtrs
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94_Impl.html#lem:check_csteps_imp_ctxt_step

6. Certified Confluence of Conditional Rewriting

Although conditional rewriting is decidable in our setting (strong determinism and
quasi-decreasingness), we require a conditional rewrite proof to provide all the necessary
information for checking a single conditional rewrite step (the employed rule, position,
and substitution; source and target terms; and recursively, a list of rewrite proofs for
each condition of the applied rule). That way, we avoid having to formalize a rewriting
engine for conditional rewriting in IsaFoR. With a check function for contextual rewrite
sequences in place, we can easily give the check function check-context-joinable with the
corresponding lemma:

Lemma 6.5.20. Given a CTRS R, three terms s, t, and u, conditions C, and two lists
of conditional rewrite proofs ps and qs, we have that

is0K (check-context-joinable (u,ps,qs) R st C)
implies that there exists some term u' such that s —>}k27c u’ R,C*v% t. 4

Here check-context-joinable is a concrete implementation of the homonymous function
from the a194-spec locale. We further give the check function check-unfeasible and the
accompanying soundness lemma:

Lemma 6.5.21. Given a quasi-decreasing CTRS R, two variable-disjoint variants of
rules p1: b1 — 11 <= c1 and pa: by — 19 <= cp in R, an mgu p of 41|, and ly for some
position p, a set of conditions C' such that C = cipu, cop, three terms t, u, and v, and
two lists of conditional rewrite proofs ps and qs, we have that

is0K (check-unfeasible (t,u,v,ps,qs, p1,p2) R €1 p C)

implies that there exist three terms t', u', and v' such that for all o we have lyuo = t'o,
whenever o satisfies C, u' p St =% V', u' and v are both strongly irreducible, and
u A (4
Again, check-unfeasible is a concrete implementation of the function of the same name
from the a194-spec locale and it additionally performs various sanity checks.
At this point, interpreting the a194-spec locale using the three check functions check-

context-joinable, check-infeasible, and check-unfeasible from above yields the concrete
function check-CCPs, which is used in the final check check-al94.

Lemma 6.5.22. Given a quasi-decreasing CTRS R, a list of context-joinability certifi-
cates ¢, a list of infeasibility certificates i, and a list of unfeasibility certificates u. Then,
is0K (check-al94 c¢ i uw R) implies confluence of R. 4

The formalization of the methods described in this section can be found in the following

IsaFoR theory files:

thys/Conditional_Rewriting/ thys/Rewriting/
AL94 .thy Renaming_Interpretations.thy
AL94_Impl.thy
Quasi_Decreasingness.thy

In the next section we turn our attention to non-confluence. More specifically, we
present simple methods for finding witnesses that establish non-confluence.

104

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94_Impl.html#lem:check_context_joinable
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94_Impl.html#lem:check_unfeasible
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94_Impl.html#lem:check_al94
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/AL94_Impl.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Quasi_Decreasingness.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Renaming_Interpretations.html

6.6. Finding Witnesses for Non-Confluence of CTRSs

6.6. Finding Witnesses for Non-Confluence of CTRSs

To prove non-confluence of a CTRS we have to find a witness, that is, two diverging
rewrite sequences starting at the same term whose end points are not joinable.

The first criterion only works for CTRSs that contain at least one unconditional rule
of type 4, that is, with extra-variables in the right-hand side.

Lemma 6.6.1. Given a 4-CTRS R and an unconditional rule p: £ — r in R where
Var(r) € Var(€) and r is a normal form with respect to Ry then R is non-confluent. &

Proof. Since Var(r) € Var({) we can always find two renamings p; and pg restricted to
Var(r) \ Var({) such that ruy < lp1 = lug —, o and rpg # rpg. As ris a normal
form with respect to R, also ruj and rug are (different) normal forms with respect to
Ry (and hence also with respect to R). Because we found a non-joinable peak R is
non-confluent. O

The following example features Cops #320 [105, Example 4.18]:
Example 6.6.2 (Cops #320). Consider the 4-CTRS R consisting of the two rules

e—~>f(z)<=l—d A — h(z,)

The right-hand side h(z,x) of the second (unconditional) rule is a normal form with
respect to the underlying TRS Ry and the only variable occurring in it does not appear
in its left-hand side A. So by Lemma 6.6.1 R is non-confluent.

A natural candidate for diverging situations are the critical peaks of a CTRS. We base
our next criterion on the analysis of unconditional critical pairs (CPs) of CTRSs. This
restriction is necessary to guarantee the existence of the actual peak. If we would also
allow conditional CPs, we first would have to check for infeasibility, since infeasibility is
undecidable in general these checks are potentially very costly (see for example [156]).

Lemma 6.6.3. Given a CTRS R and an unconditional CP s =t of it. If s and t are
not joinable with respect to R, then R is non-confluent. 4

Proof. The CP s &~ t originates from a critical overlap between two unconditional rules
p1: 41 — ry and pp: lp — 1o for some mgu p of 41|, and ¢5 such that s = 1pulrap], <
lip[lop), — rip = t. Since s and ¢ are not joinable with respect to Ry they are of course
also not joinable with respect to R and we have found a non-joinable peak. So R is
non-confluent. 0

The following example features Cops #271 [17]:
Example 6.6.4 (Cops #271). Consider the 3-CTRS R consisting of the four rules
p(q(z)) = p(r(z)) aq(h(z)) = r(z) r(z) = r(h(z)) <=s(z) >0 s(z) =1

First of all we can immediately drop the third rule because we can never satisfy its
condition and so it does not influence the rewrite relation of R. This results in the TRS

105

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Non_Confluence2.html#lem:urnf
http://cops.uibk.ac.at/?q=320
http://cops.uibk.ac.at/?q=320
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Non_Confluence2.html#lem:csteps_peak_non_rstep_Ru_join_non_CR
http://cops.uibk.ac.at/?q=271
http://cops.uibk.ac.at/?q=271

6. Certified Confluence of Conditional Rewriting

R'. Now the left- and right-hand sides of the unconditional CP p(r(z)) =~ p(r(h(z))) are
not joinable because they are two different normal forms with respect to the underlying
TRS R,. Hence R is not confluent by Lemma 6.6.3.

While the above lemmas are easy to check and we have fast methods to do so they
are also rather ad hoc. A more general but potentially very expensive way to search for
non-joinable forks is to use conditional narrowing [90].

Definition 6.6.5 (Conditional narrowing). Given a CTRS R we say that s (conditionally)
narrows to t, written s ~», t if there is a variant of a rule p: £ — r <= c € R, such that
Var(s) N Var(p) = @ and u ~% v for all u =~ v € ¢, a position p € Posz(s), a unifier®
o of slp and €, and t = s[r],o. For a narrowing sequence s1 ~>g, $2 ~>gy *** ~>g, ;| Sp
of length n we write sy ~>7 s, where 0 = o102+ 0p—1. If we are not interested in the
length we also write s ~~ t.

The following property of narrowing carries over from the unconditional case:

Property 6.6.6. If s ~», t then so — to with the same rule that was employed in
the narrowing step. Moreover, if 51 ~>g, S2 ~gy =+ ~g, | Sy then s1o102---0p—1 —
8909 Op_1 — -+ — Sp. Again employing the same rule for each rewrite step as in the
corresponding narrowing step.

Using conditional narrowing we can now formulate a more general non-confluence
criterion.

Lemma 6.6.7. Given a CTRS R, if we can find two narrowing sequences u ~5 s and
v ~X t such that uop = vt for some mgu p and sop and tTu are not Ry-joinable then
R is non-confluent.

Proof. Employing 6.6.6 we immediately get the two rewriting sequences uo —7% so and
vT —7 t7. Since rewriting is closed under substitutions we have sou g« uop = v —3,
tTu. As the two endpoints of these forking sequences sou and t7u are not joinable by R,
they are certainly also not joinable by R. This establishes non-confluence of the CTRS
R. O

Example 6.6.8. Remember the 3-CTRS from Example 6.5.3 consisting of the three rules
O+y—vy s(z) +y — z+s(y) flz,y) 2 z<os+y—>» 2+

Starting from a variant of the left-hand side of the third rule v = f(z',y") we have a
narrowing sequence f(z', y') ~» x; using the variant f(z;,12) — 15 < ©; + 10 — 25+ 1
of the third rule and the substitution o = {2’ — x;, 25 — x1,2;, — 22}. We also have
another narrowing sequence f(z',y") ~, 15 using the same variant of rule three and
substitution T = {x — 13 +x,, 2"+ 0,y — x5+ 1,21 — 0,20 > x5+ 1, } where for the
condition x; + 12 — 13 + 1, we have the narrowing sequence r; + Ty ~»r Ts +), using a
variant of the first rule 0+ = — . Finally, there is an mgu p = {x; +— 0,25 — 25 + 2, }
such that vop = f(0,25 + ;) = urp. Moreover, ziop = 0 and 137 = 5 are two
different normal forms. Hence R is non-confluent by Lemma 6.6.7.

5In our implementation we start from an mgu of s, and ¢ and extend it while trying to satisfy the
conditions.

106

6.6. Finding Witnesses for Non-Confluence of CTRSs

6.6.1. Implementation

Starting from its first participation in the confluence competition (CoCo)” in 2014
ConCon 1.2.0.3 came equipped with some non-confluence heuristics. Back then it only
used Lemmas 6.6.1 and 6.6.3 and had no support for certification of the output. In the next
two years (ConCon 1.3.0 and 1.3.2) we focused on other developments [134, 135, 156, 157]
and nothing changed for the non-confluence part. For CoCo 2017 we have added Lemma
6.6.7 employing conditional narrowing to ConCon 1.5.1 and the output of all of the
non-confluence methods is now certifiable by CeTA.

Our implementation of Lemma 6.6.1 takes an unconditional rule p: ¢ — r, a substitu-
tion o = {z — y} with x € Var(r) \ Var({) and y fresh with respect to p and builds the
non-joinable fork r ,< ¢ —, ro.

For Lemma 6.6.3 we have three concrete implementations that consider an overlap from
which an unconditional CP s & t arises: The first of which just takes this overlap and
then checks that s and t are two different normal forms with respect to R,. The second
employs the tcap-function to check for non-joinability, that is, it checks whether tcap(s)
and tcap(t) are not unifiable. The third makes a special call to the TRS confluence tool
CSI [184] providing the underlying TRS R, as well as the unconditional CP s ~ ¢ where
all variables in s and ¢ have been replaced by fresh constants. We issue the following
command:

csi -s ’(nonconfluence -nonjoinability -steps O -tree) [30]° -C RT

The strategy ‘(nonconfluence -nonjoinability -steps O -tree) [30]’ tells CSI to
check non-joinability of two terms using tree automata techniques. Here ‘-steps 0’
means that CSI does not rewrite the input terms further before checking non-joinability
(this would be unsound in our setting). The timeout is set to 30 seconds. To encode the
two terms for which we want to check non-joinability in the input we set CSI to read
relative-rewriting input (‘-C RT’). We provide R, in the usual Cops-format and add one
line for the CP s = t where its “grounded” left- and right-hand sides are related by ‘=>=’,
that is, we encode it as a relative-rule. This is necessary to distinguish the unconditional
CP from the rewrite rules.

Now, for an implementation of Lemma 6.6.7 we have to be careful to respect the
freshness requirement of the variables in the used rule for every narrowing step with
respect to all the previous terms and rules. The crucial point is to efficiently find the two
narrowing sequences, to this end we first restrict the set of terms from which to start
narrowing. As a heuristic we only consider the left-hand sides of rules of the CTRS under
consideration. Next we also prune the search space for narrowing. Here we restrict the
length of the narrowing sequences to at most three. In experiments on Cops allowing
sequences of length four or more did not yield additional non-confluence proofs but
slowed down the tool significantly to the point where we lost other proofs. Further, we
also limit the recursion depth of conditional narrowing by restricting the level (see the
definition of the conditional rewrite relation in the Preliminaries) to at most two. Again,
we set this limit as tradeoff after thorough experiments on Cops. Finally, we use 6.6.6 to

"http://project-coco.uibk.ac.at

107

http://project-coco.uibk.ac.at

6. Certified Confluence of Conditional Rewriting

translate the forking narrowing sequences into forking conditional rewriting sequences.
In this way we generate a lot of forking sequences so we only use fast methods, like
non-unifiability of the tcaps of the endpoints or that they are different normal forms, to
check for non-joinability of the endpoints. Calls to CSI are to expensive in this context.

6.6.2. Certification

Certification is quite similar for all of the described methods. We have to provide a
non-confluence witness, that is, a non-joinable fork. So besides the CTRS R under
investigation we also need to provide the starting term s, the two endpoints of the fork ¢
and u, as well as certificates for s —>7Jg t and s —>7J5 u, and a certificate that £ and u are
not joinable. For the forking rewrite sequences we reuse one of our recent formalization
[136] to build certificates. We also want to stress that because of 6.6.6 we did not have
to formalize conditional narrowing because going from narrowing to rewrite sequences is
already done in ConCon and in the certificate only the rewrite sequences show up. For
the non-joinability certificate of ¢ and u there are three options: either we state that ¢
and w are two different normal forms or that tcap(t) and tcap(u) are not unifiable; both
of these checks are performed within CeTA; or, when the witness was found by an external
call to CSI, we just include the generated non-joinability certificate.

The formalization of the methods described in this section can be found in the following
IsaFoR theory files:

thys/Conditional_Rewriting/Non_Confluence?2.thy

The next section discusses several methods to show infeasibility of conditional critical
pairs. Specifically the techniques described in Sections 6.4 and 6.5 benefit from these
infeasibility results.

6.7. Infeasibility of Conditional Critical Pairs
The confluence methods detailed in Sections 6.4 and 6.5 among other things also analyze

the conditional critical pairs of a CTRS. Being able to ignore so called infeasible critical
pairs simplifies this analysis. See for example Cops #326 [105, R in Example 6.7):

Example 6.7.1 (Cops #326). The single CCP (modulo symmetry)
tpa(nil, z) &~ tpa(z : y, z) <= isnoc(nil) — tpa(y, 2)
of the oriented 3-CTRS R consisting of the two rules
isnoc(y : nil) = tpa(nil, y) isnoc(z : ys) — tpa(z : zs,y) < isnoc(ys) — tpa(zs, y)

is infeasible since isnoc(nil) is in normal form. Hence R is orthogonal (modulo infeasibility)
and thus confluent.

108

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Non_Confluence2.html
http://cops.uibk.ac.at/?q=326
http://cops.uibk.ac.at/?q=326

6.7. Infeasibility of Conditional Critical Pairs

In this section we present infeasibility methods for oriented 3-CTRSs, one of the most
popular types of conditional rewriting. In such systems extra variables in conditions
and right-hand sides of rewrite rules are allowed to a certain extend. Moreover, for
oriented CTRSs satisfiability of the conditions amounts to reachability. As a consequence
of the latter, establishing infeasibility is similar to the problem of eliminating edges in
dependency graph approximations, a problem which has been investigated extensively in
the literature. The difference is that we deal with CTRSs and the terms we test may
share variables.

For brevity, we speak about non-reachability, non-meetability, and non-joinability of
two terms s and ¢, when we actually mean that the respective property holds for arbitrary
substitution instances so and tr.

In the sequel we summarize the methods that we have analyzed and adapted for
infeasibility.

6.7.1. Unification

A widely-used method to check for non-reachability is to try to unify the tcap of the
source term with the target term; which is the de facto standard for approximating
dependency graphs for termination proofs. Remember, the tcap-function approximates
the topmost part of a term, its “cap,” that does not change under rewriting (see Section
6.2). It is well known that tcap(s) «¢ ¢ implies non-reachability of ¢ from s. Typical
“pen and paper” definitions (like the one in the preliminaries) rely on replacing subterms
by “fresh variables” making them somewhat hard to formalize as already remarked by
Thiemann and Sternagel [165]. Instead of inventing fresh variables out of thin air, the
IsaFoR-version of tcap replaces every variable occurrence by the symbol [J. The resulting
terms behave like ground multihole contexts—we call them ground contexts—and they
are intended to represent the set of all terms resulting from replacing all “holes” by
arbitrary terms. This is made formal by the substitution instance class of a ground
context.

Definition 6.7.2 (Substitution instance class ®). The substitution instance class [t]
of a ground context t is defined recursively by.

] {T(]—', Var) ift =0
C S5 sa) [s € TGl ift = flty, .. tn)

Note that for variable-disjoint terms s and ¢, unifiability coincides with so = t7 for
some, not necessarily identical, substitutions ¢ and 7. Thus asking whether a term ¢
unifies with a variable-disjoint term represented by the ground context s is equivalent
to checking whether to € [s] for some substitution o. The latter is called ground
context matching and shown to be decidable by an efficient algorithm by Thiemann and
Sternagel [165]. Thus we can define an efficient executable version of tcap by:

109

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Ground_Context.html#def:equiv_class

6. Certified Confluence of Conditional Rewriting

Definition 6.7.3 (Efficient tcap).

O ift is a variable
tcapr(t) =<0 ift = f(t1,...,tn) and bo € [u] for some o and £ —r € R

u otherwise

where uw = f(tcapr (t1), ..., tcapr(tn)) and R is a TRS. We omit R if it is clear from
context.

This version of tcap is sound, that is, whenever we can reach a term ¢ from an instance
of a term s then t is in the substitution instance class of tcap(s).

Lemma 6.7.4. If so —%5 t then t € [tcap(s)]. ¥

Then checking non-reachability of ¢ from s amounts to deciding whether there does
not exist a substitution 7 such that ¢7 € Jtcap(s)], for which we use the more succinct
notation tcap(s) o t almost everywhere else in this article.

While the above definition of tcap and the corresponding soundness lemma were already
present in IsaFoR, the following easy extension also allows us to test for non-joinability.

Lemma 6.7.5. If so =% - 4 t7 then [tcap(s)] N [tcap(t)] # @. v

Proof. We have so =% u and t7 =, u for some u. By Lemma 6.7.4 we have u € tcap(s)
and u € tcap(t). O

Fortunately the same techniques that are used to obtain an algorithm for ground
context matching can be reused for ground context unifiability, that is, checking [tcap(s)]N
[tcap(t)] # @ (elsewhere in this article we use the notation tcap(s) 7 tcap(t)).

Now for checking infeasibility of a CCP we use the underlying TRS and if there is
more than one condition we collect the left- and right-hand sides separately under a fresh
function symbol as follows:

Corollary 6.7.6 (Infeasibility via tcap). Let R be an oriented 3-CTRS. A CCP

URVE=S, > t,..., 8 = Tk
is infeasible if tcapg (cs(s1,...,8%)) 7 cs(t,...,tx) (where cs is a fresh function symbol
of arity k). (Combination of @ and &)

Example 6.7.7. Consider Cops #326 from Fxample 6.7.1. The CCP
tpa(nil,) & tpa(z : y, 2) < isnoc(nil) — tpa(y, 2)

is infeasible by Corollary 6.7.6 because tcapp, (isnoc(nil)) = isnoc(nil) # tpa(z;,12) =
tcapr, (tp2(y; 2))-

110

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Tcap.html#def:tcap
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Tcap.html#lem:tcap_sound
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Tcap.html#lem:join_imp_unifiable_tcaps
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Nonreachability.html#lem:check_nonreachable
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Infeasibility.html#lem:check_infeasible'
http://cops.uibk.ac.at/?q=326

6.7. Infeasibility of Conditional Critical Pairs

6.7.2. Symbol Transition Graph

One shortcoming of the tcap method is that although later during unification we have
to consider the target term anyway it first only considers the starting term. Maybe we
could gain power if we use knowledge about the structure of the target from the start?
This consideration is the basis for the so called symbol transition graph [153]. The idea is
simple enough, we consider the root symbols of left- and right-hand sides of rewrite rules
of a TRS (for CTRSs we perform an overapproximation by using the underlying TRS)®
and collect the resulting dependencies in a graph.

Definition 6.7.8 (Symbol transition graph). Given a TRS R the edges of its symbol
transition graph are given by the relation

Tstg = {(root(¢),root(r)) | £ = r € R}
To clarify this concept let us first look at some examples.

Example 6.7.9. Below we give the symbol transition graphs of the following three TRSs
Ri1, Ro, and Rs, respectively.

Ri: Ro: Ry

f(z,y) — a
04y—y h(z) — gz, z)
f(z,z,2) = f(z,0,1) s(z) +y — s(z+) h(g(z,v)) = h(f(z, v)
f S f——a
-
U + - h——g
L U

Example 6.7.10. For the CTRS of Example 6.7.1 the symbol transition graph consists
of a single edge:

isnoc — tpo

Now we can use the following lemma for reachability analysis of TRSs.

Lemma 6.7.11. For two terms s = f(...) and t = g(...) if s =* t then either f = g,
f :;;g g, or f j;’{g 1. 4

Proof. We prove this by induction on the length of the rewrite sequence s —* t. In the
base case we have s =t and hence f = ¢g. Now in the step case we look at the sequence
s — u —* ¢t. If u is a variable then s — w is a root step with a collapsing rule and hence

8There is an inductive version of the symbol transition graph specifically for CTRSs due to Sternagel
and Yamada [153]. However, it is not yet formalized and thus we concentrate on the TRS version, which
we formalized in Isabelle/HOL.

111

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap.html#def:GT1
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap.html#lem:rsteps_GE

6. Certified Confluence of Conditional Rewriting

f Jstg L and thus also f j;';g L. Otherwise there is some function symbol h such that
u = h(...). If we have a non-root step then f = h and we are done. Otherwise we have
f Jstg h. From the induction hypothesis we know that one of h = g, h :I;ﬁg g,orh :I;*;g 1
holds. So either f Jgg h = g, f Tstg h j;{g g, or f Jsig h j:tg L, which finishes the
proof. O

From the previous lemma we immediately get the following non-reachability result:
Corollary 6.7.12. If f # g and neither f jjtg g nor f j;g 1 then f(...) A% g(...).

Example 6.7.13. Consider the TRS R3 from Example 6.7.9. Do we have a rewrite
sequence f(z,y)o —* g(x, y)T for some substitutions o and T2 Since tcap(f(z,y)) = 2z ~
g(z,y) we cannot conclude non-reachability using tcap. Then again f # g, f ﬂ;Eg g, and
f ﬂ;tg 1. So g(z,y) is not reachable from f(x,y) with respect to R3 by Corollary 6.7.12.

Example 6.7.14. For Cops #547 (see also Example 6.4.10) to get infeasibility of its
CCP we have to show that either ro /~* at, xo /A% br, or cs(z, z)o A* cs(a,b)T for a
fresh compound symbol cs and any two substitutions o and 7. Unfortunately, we cannot
employ Corollary 6.7.12 here. If we look at the two conditions separately the left-hand
sides are variables and looking at the combined conditions we have the same function
symbol cs on the left- and right-hand sides.

In the next section we will see a way to combine the best of both tcap and the symbol
transition graph.

6.7.3. Decomposing Reachability Problems

Both, the tcap method and the symbol transition graph do have their pros and cons. For
example, in contrast to the tcap method, the symbol transition graph takes information
about the target term into account, then again, it does not recursively look at the whole
term, like tcap, but only at the root symbols.

In this section we introduce a modular framework for reachability, that allows us to
decompose a given problem into several smaller ones. The binary relation 1 that we
employ to show non-reachability between two terms has to have certain properties to be
usable for decomposition. These properties are summarized in the following definition
(where Z$ denotes rewrite steps below the root position).

Definition 6.7.15 (Decomposition ™). A binary relation on terms 3 admits decompo-
sition if both

1. so Jtt implies s Ot for all substitutions o and T and
2. s At together with s —* t implies s Z$* ¢,

Using the binary relation J we can define a decomposition function that deconstructs
a single reachability problem into several (smaller) ones.

112

http://cops.uibk.ac.at/?q=547
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap.html#loc:reachability_decomposition

6.7. Infeasibility of Conditional Critical Pairs

Definition 6.7.16 (Abstract decomposition function). The abstract decomposition
function Dy takes a reachability problem (s,t) (meaning: “Is t reachable from s%”) as
input and recursively computes a set of (possibly easier) reachability problems with respect
to the relation 1.

{Dsl,tlU"'UDsn,tn if s=f(s1,...,8n),t = f(t1,...,tn), and s Ait

Dyt :=
{(s,1)} otherwise

With this function in place we can now formally define when decomposition is admissible
for a reachability problem.

Lemma 6.7.17. If O admits decomposition and so —* tT then also uoc —* vt for all
(u,v) € Dgy. 4

Of course in our setting we want to use decomposition of a reachability problem to
show non-reachability. To do that we first have to specify an abstract non-reachability
test that we later instantiate with concrete checks.

Definition 6.7.18 (Abstract non-reachability check). If two functional terms s = f(...)
and t = g(...) have different root symbols and s and t are not in the relation 1 then t
is not reachable from s. Otherwise it is. This is tested by the abstract non-reachability
check nonreach(s,t) defined as follows:

f#gnhnsht ifs=f(...) andt =g(...)

nonreach(s,t) := { .
false otherwise
Finally, we are ready to state a non-reachability lemma.
Lemma 6.7.19. If O admits decomposition and nonreach(s,t) holds then so /~*tr. &
Proof. Assume to the contrary that so —* t7. Because J admits decomposition we have
1. so Jtr= st

2. sﬂt:>s—>*t:>5—>—e—>*t

From 1 and nonreach(s, t) we have that so 7 ¢t7. From this, our starting assumption, and
2 we have so —=5* t7. But this implies root(s) = root(t) which contradicts nonreach(s, t).
O

Below we give two possible instances of 71 one using the tcap-function of Section 6.7.1

and the other using the symbol transition graph :I;;g of Section 6.7.2.

Definition 6.7.20 (Jcap, Jrs). We define
® 5 Jicap t iff there exists a rule ¢ — 1 in R such that tcap(s) ~ ¢, and v

e s s t iff at least one of the following properties holds: s is a variable, t is a
variable, root(s) T, root(t), or root(s) J&, L. 4

113

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap.html#def:reach_decomp
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap.html#lem:reach_decomp_sound
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap_Impl.html#def:nonreach
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap_Impl.html#lem:nonreach
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap.html#lem:rd_tcap
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap.html#lem:rd_root

6. Certified Confluence of Conditional Rewriting

Example 6.7.21. Consider the TRS R4 consisting of the four rules
f(z) = a p(s(z)) = b h(z) — g(z) h(f(b)) — h(f(p(a)))

and the two terms s = f(p(a)) and t = f(b). We have s TJtcap t since tcap(s) = z; unifies
with the left-hand side of every rule in Ry but s s t because s and t are neither variables,
nor f j;{g f, norf :I;tg L. Moreover, for the two terms s’ = p(a) and t' = b we have
s Dicap t' since tcap(s’) = p(a) does not unify with the left-hand side of any rule in R4

but s' s t' because the second rule of Ry yields p Jeg b.
Both of these relations admit decomposition of reachability problems.
Lemma 6.7.22. Both, Jsap and Jys admit decomposition. vV

Proof. We first consider Ticap. Assume so Ticap 7, so there exists a rule £ — r € R
such that tcap(so) ~ . Remember that the latter is just a shorthand for the existence
of a substitution p such that fu € [so]. By induction on u we have that [tcap(up)] C
[tcap(u)] for any substitution p. Hence also fu € [s] and thus tcap(s) ~ ¢. But then by
definition s Tcap t. Now assume s —* ¢ and s Zicap t. From the latter we have that
tcap(s) # £ for all £ — r € R. If there would be any root step in s —* ¢ then tcap(s) ~ ¢
for some rule £ — r € R. Hence s —=* t. So Ttcap admits decomposition.

Next consider ;5. Assume so Ty t7. So by definition either so € Var, tt € Var,
root(so) j;';g root(t7), or root(so) j;’;g 1. But then obviously s Oy ¢t because for any
term u and any substitution p if up € Var certainly also u € Var and if u ¢ Var then
root(up) = root(u). Now assume s —* ¢ and s Zs t. From the latter we have that
neither s nor ¢ are variables, as well as root(s) Zi&, root(t) and root(s) Zik, L. But that
means that there is no root step in s —* ¢t and hence s Z5* ¢. So also Ty admits
decomposition.]

Furthermore, if two relations admit decomposition then also their intersection does.
Lemma 6.7.23. If 71 and o admit decomposition then so does 11 N To. 4

So in our implementation we employ the intersection of the two relations defined earlier
and obtain the following result by combining Lemma 6.7.19, Lemma 6.7.22, and Lemma
6.7.23:

Corollary 6.7.24. If nonreach(s,t) holds for 3 = Jtcap N Jys, then so A% t1.

We call the above instance of nonreach generalized tcap.
This is stronger than relying on the two relations separately as shown in the following
example.

Example 6.7.25. Consider the TRS Ry from Example 6.7.21 above. Look at the two
terms s = f(p(a)) and t = f(b) and assume we want to know whether so —* tt for any
substitutions o and 7. We employ the abstract non-reachability check and the abstract
decomposition function. In our first attempt we instantiate J with J.s. Since the root
symbols of s and t are the same nonreach(s,t) does not hold. We try to decompose the

114

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap.html#lem:rd_tcap
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap.html#lem:rd_root
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap.html#lem:reachability_decomposition_Int

6.7. Infeasibility of Conditional Critical Pairs

problem and get Ds+ = {(p(a),b)} because s s t. Unfortunately, p(a) Jrs b which means
that nonreach(p(a),b) is not true. Clearly Jys does not work.

Let us try to instantiate 7 with Jtcap. Since s Jicap t neither nonreach(s,t) holds nor
can we decompose the problem and we immediately have to give up.

So let’s finally try to instantiate 3 with Dicap N Trs. The root symbols of s and t are
the same so nonreach(s,t) does not hold. Since s Zis t also s (Dtcap N Trs) t does not
hold and thus Dsy = {(p(a),b)}. We have p(a) Atcap b and thus nonreach(p(a),b), which
together with Lemma 6.7.19 yields p(a)o /4" br. From this we get non-reachability of t
from s by Lemma 6.7.17 and we are done.

6.7.4. Exact Tree Automata Completion

What is generally known as tree automata completion today was introduced by Genet in
1998 [41, 42]. Already in 1996 Jacquemard [64] used a similar concept to show decidability
of reachability for linear and growing TRSs. His proof was based on the construction
of a tree automaton that accepts the set of ground terms which are normalizable with
respect to a given linear and growing TRS R. If we replace the automaton recognizing
R-normal forms in Jacquemard’s construction by an arbitrary automaton A we arrive at
a tree automaton that accepts the R-ancestors of the language of A.

We need some basic definitions and auxiliary lemmas before we present the construction
of this ancestor automaton in detail.

Definition 6.7.26 (Ground-instances ™). The set of ground-instances of a term t, that
is, the set of terms s such that s = to for some ground substitution o is denoted by %(t).

Definition 6.7.27 (Growingness, linear growing approximation). A TRS R is called
growing if for all £ — r € R the variables in Var(£) N Var(r) occur at depth at most one
in L. Given a TRS R the linear growing approximation is defined as any linear growing
TRS obtained from R by linearizing the left-hand sides, renaming the variables in the
right-hand sides that occur at a depth greater than one in the corresponding left-hand
side, and finally also linearizing the right-hand sides.” The linear growing approzimation

of a TRS R is denoted by g(R).

Definition 6.7.28 (Ground-instance transitions A;). Let [t| denote a term t €
T (F,Var) where all variable-occurrences have been replaced by a fresh symbol O (similar
to Definitions 6.7.2 and 6.7.3). Using such terms as states we define the set Ay that
contains all transitions which are needed to recognize all ground-instances of a term
t € T(F,Var) in state [t].

A, = J Wl) = [UUicicn B it =t t0)
! {f(O,....0)=0| feF} otherwise

Note that if ¢ is not linear this actually gives an overapproximation. The next lemma
holds by definition of A;.

9Note that this definition of the linear growing approximation is ambiguous, because the second step
depends on the first step and we have a choice of how to linearize the variables (see also [89]).

115

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Exact_Tree_Automata_Completion.html#def:ground_instances
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Exact_Tree_Automata_Completion.html#def:ground_instances_rules

6. Certified Confluence of Conditional Rewriting

Lemma 6.7.29. For any subterm s of any term t if there is a sequence u —>Xt [s] then
u 18 a ground-instance of s, and vice versa if t is linear. 4

We now use A; to define an automaton for the ground-instances of t.

Definition 6.7.30 (Ground-instance automaton Ay &). Let Q; denote the set of
states occurring in Ay then we call the tree automaton Asyy = (F,Qr, {[t]}, Ar) the
ground-instance automaton for ¢.

Lemma 6.7.31. The language of Asyy) is an overapprozimation of the set of ground-
instances of t in general and an exact characterization if t is linear. 4

Using the concept of ground-instance automaton we are now able to define a tree
automaton which accepts all R-ancestors of a given regular set of ground terms using
exact tree automata completion.

Definition 6.7.32 (Ancestor automaton ancg(A) ®). Given a tree automaton A =
(F,Qa,Qf, A) whose states are all accessible, and a linear and growing TRS R the
construction proceeds as follows.

First we extend the set of transitions of A in such a way that we can match left-
hand sides of rules in R. This yields the set of transitions Ao = AUJ,_,,cr D¢ Let
Ao = (F,Q,Qf, Ao) where Q denotes the set of states in Ng. We have to ensure (for
example by using the disjoint union of states) that for any state q which is used in both A
and some Ay, the terms which can reach it are the same ({t |t =X q} = {t | t —>XZ q}).
Then the language does not change, that is, L(Ag) = L(A).

Finally, we saturate Ao by inference rule (f) in order to extend the language by R-
ancestors, that is, if we can reach a state q from an instance of a right-hand side of a
rule in R we add a transition which ensures that q is reachable from the corresponding
left-hand side:'”

fll, ... ly) = €R 18 =4, g

fla, - qn) = q € A

()

Here 0: Var(r) — Q is a state substitution and q; = ;0 if £; is a variable in r and q; = [{;]
otherwise. Note that this inductive definition possibly adds many new transitions from
Ag to Apgq.

Since R is finite, the number of states is finite, and we do not introduce new states using
(1), this process terminates after finitely many steps resulting in the set of transitions
A,,. Also note that Ay is monotone with respect to k, that is, A € Agyq for all k > 0.
We call ancr(A) = (F,Q,Qf, Ap) the R-ancestors automaton for A. It is easy to show
that L(Ap) C L(ancr(A)).

Theorem 6.7.33. Given a tree automaton A as well as a linear and growing TRS R
the language of ancr(A) is exactly the set of R-ancestors of L(A). 4

9This is symmetric to resolving compatibility violations in the tree automata completion by Genet [41,
42].

116

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Exact_Tree_Automata_Completion.html#lem:cr_ta_ta_states_accept_ground_instances
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Exact_Tree_Automata_Completion.html#def:ground_instances_ta
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Exact_Tree_Automata_Completion.html#lem:ground_instances_subseteq_lang_ground_instances_ta
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Exact_Tree_Automata_Completion.html#def:C_R
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Exact_Tree_Automata_Completion.html#lem:etac_ancestors

6.7. Infeasibility of Conditional Critical Pairs

Proof. First we prove that (—=%)[L(A)] C L(ancr(A)). Pick a term s € (—=%)[L(A)].
That means that there is a rewrite sequence s —>]7‘32 t of length £ > 0 for some ¢ € L(A). We
proceed by induction on k. If £ = 0 then s = ¢ and hence s € L(ancg(A)). Now assume
k = k' + 1 for some k' > 0 then there is a rewrite sequence s = C[f(¢1,...,¢,)0] =R
Clro] =k t for some context C, rewrite rule f(fy,...,£,) — r € R, and substitution
o. By induction hypothesis C[ro] € L(ancg(A)). But that means that there is a
state substitution 6: Var(r) — Q, a state ¢ € Q, and a final state ¢ € Q¢ such that
Clro] =4, Clro] =4, Clal —A,, qr- From the construction using rule () we know
that there is a transition f(q1,...,q,) — ¢ € A,, such that ¢; = ¢;0 if ¢; € Var(r)
and ¢; = [¢;] otherwise. If ¢; € Var(r) then ¢;o —>Xm £;0 and otherwise ¢;o —>Xm [¢:]
for all 1 < 7 < n. Hence in both cases ¢;o _>Zm q;- But then we can construct the
sequence s = C[f(lyo,...,l,0)] =X Clf(q1,...,q)] =4, Clg] =4, g¢r and hence
s € L(ancr(A)).

For the other direction we prove the following two properties for all sequences s —>Xm q:

1. If ¢ = [t] for some subterm of a left-hand side of a rule in R then s € (—=%)[X(?)].
2. If ¢ € Qy then s € (—%)[L(A)].

The proof for both properties works along the same lines. We sketch the one for the
first property here. From the construction using rule (f) we know that s —>Xk [t] for
some k > 0. We proceed by induction on k. If £ = 0 then s —>ZO [t]. By construction
of Ag and Lemma 6.7.29 we have s € X(t) and hence also s € (—=%)[X(t)]. Now
assume that k = k' + 1 for some k¥’ > 0. By induction hypothesis s %Xk/ [t] implies
s € (—=%)[2(t)] for all terms s and t. Consider the set Ay i1 \ Ay of transitions
which were newly added in Ag/, 1. We continue by a second induction on the size of
Agriq \ Agr. If it is empty we have a Ay-sequence and may simply close the proof with an
application of the first induction hypothesis. Otherwise we have some set A and transition
p: f(q1,---,qn) — ¢ that was created from some rule £ — r € R with £ = f(¢1,...,4,)
and the sequence rd —>*A;€ ¢’ by an application of rule (1) such that {p} WA C Ap11 \ Apr.

The second induction hypothesis is if s %ZUAM [t] then s € (=%)[X(t)]. Let m denote
the number of steps that use p. We continue by a third induction on m. If m = 0 the
sequence from s to [t] only used transitions in A U Ay and using the second induction
hypothesis we are done. Otherwise there is some m’ > 0 such that m = m’ + 1 and
the induction hypothesis is that for all terms s,t if s —>ZU Ay [t] using p only m/ times
then s € (=%)[2(t)]. Now we look at the first step using p in the sequence, that is,
s = D[f(s1,---sn)] Zaua, Clf(@, - an)] = Cld] —>*Ak,+l [t]. Note that from this
we get D[u] =4, A, © [u] for all terms w.
Next we define a substitution 7 such that

s =g DUt] = Dr7] =Aua,, Clrrl 2aua,, Cld]

This allows us to bypass the p-step and so we arrive at a Ayy1-sequence from D[r7] to
[t] containing one less p-step as shown in Figure 6.4. The construction of 7 proceeds as
follows: We fix 1 < ¢ < n. If ¢; is a variable in r define 7; to be {{; — s;}. Otherwise we

117

6. Certified Confluence of Conditional Rewriting

J— X X * / -
5= DIf (st sn A DU (@0 F O ans - an)] > Cla) 2 1]
R % R RAYY)

* *

> D[r7]

» Clrr]
R AUAk/

» Cré]
AUAk/

Figure 6.4.: Bypassing p to close the induction step.

know from the definition of inference rule (1) that ¢; = [¢;] and s; — 3, A [¢;]. From that
we have that s; € (—=%)[2X(¢;)] but that means that there is some substitution 7; such that
s; =7 liTi. Moreover let 7/ = {x — u, | € Var(r) \ Var({)} where u, is an arbitrary
but fixed ground term such that u, —7 6. Since all states in Ap are accessible we
can always find such a term u,. Now let 7 be the disjoint union of 71,...,7,,7". This
substitution is well-defined because ¢ is linear. By construction of 7 we get s =% D[/7].

Consider a variable z occurring in r. If x also occurs in ¢ we have © = {; for
some unique 1 < ¢ < n because R is growing. But then by construction of 7; we
get T = £;7; = s;. Moreover from the definition of ¢; in inference rule () we have
q; = £;0 = z6. But then x7 _&FUA,C, 6 from s; _>JAFUA,C/ q;- On the other hand, if x does
not occur in £ then z7 = 27’ and 7" —} 2 by construction of 7'. So in both cases
T —Aua,, 0. Together with ro —7 ¢ and C[{] Ay [t] we may construct the

sequence D[r7] —>Xk/+l q¢ which uses p only m’ times. Using the induction hypothesis

we arrive at D[r7] € (—%)[3(t)]. Together with s =% D[] =% D[r7] this means that
s € (=%)[2(t)] and we are done. O

Lemma 6.7.34 (Non-reachability via anc). Let R be a linear and growing TRS over
signature F. We may conclude non-reachability of t from s if

L(Ass)) N L(ancr (Asy))) = @ 4

To see this in action look at the following example featuring Cops #494 [135, Exam-
ple 16]:

Example 6.7.35 (Infeasibility via anc, Cops #494). Consider the CTRS R consisting
of the following five rules:

gla,z) » c<=f(r,a) » a f(a,z) — a c—c
g(z,a) »>d < f(z,b) » b f(b,z) = b

It has two critical pairs
c~d<«<f(a,b) » b,f(a,a) =a

and the symmetric one. Since tcap(f(a,b)) = 2 ~ b and tcap(f(a,a)) = = ~ a as well as
f :I;'Tcg b and f :I;tg a neither unification nor the symbol transition graph are sufficient to
show infeasibility of these critical pairs. On the other hand, since the underlying TRS

118

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Exact_Tree_Automata_Completion.html#lem:etac_nonreachable
http://cops.uibk.ac.at/?q=494
http://cops.uibk.ac.at/?q=494

6.7. Infeasibility of Conditional Critical Pairs

Ry is linear and growing, we may construct the tree automaton As (b)) consisting of
the three transitions

a— [a] b — [b] f({al, [b]) = [f(a, b)]

where [f(a,b)] is the final state, as well as the tree automaton ancr, (Asy)) consisting of
20 transitions

a—0O a— [gO,0 -0 f(b,0) -0 gOIl) — [g(da)]
b— 0O b—[b] g@d]) =0 f(a,0) —[a] f(ja,0) — [f(a,0)]
c—U c— [g([a,0) -0 f(b,0) — b g(a,0)—[glaD)]
d—0 f(0O0 -0 f(a,0 —=0 g(a,0) — f([b],0) — [f(b,0)]

with final state [b]. Because the language of the intersection automaton is empty we have
shown infeasibility of the condition f(a,b) — b by Lemma 6.7.34. So both critical pairs
are infeasible.

In the setting of Section 6.4 the right-hand sides of conditions are always linear terms
(because of right-stability; see Definition 6.4.2). Hence it is beneficial to start with the
ground-instance automaton for the right-hand side of a condition (which in this case
is exact) and compute the set of ancestors rather than taking the possibly non-linear
left-hand side of a condition, overapproximating the ground-instances and only then
computing the descendants of this set. Although this is not necessarily true in the setting
of Section 6.5 (there we have no linearity-restriction on the right-hand sides of conditions)
we employ the same setup for the sake of convenience.

For one of our main use cases, Theorem 6.4.11, we are restricted to left-linear CTRSs
(via almost orthogonality) and linear right-hand sides of conditions (via right-stability).
The latter also holds for right-hand sides that are combined by a compound symbol
(again by right-stability). We show that in this setting anc subsumes tcap (at least in
theory and for the forward direction).

Lemma 6.7.36. Let R be a left-linear CTRS and t a linear term. If tcap can show
non-reachability of t from s, then so can anc.

Proof. Below we write ren(t) for a linearization of the term t using fresh variables. We
proof the contrapositive and assume that anc cannot show non-reachability. Moreover,
let R’ denote the result of applying the linear growing approximation to R,. Then there
is some term u such that u € L(Ayys)) and u € L(ancr:(Axy))). Since ¢ is linear and R’
is linear and growing the latter implies that u € (—%,)[>(t)] by Theorem 6.7.33 and thus
u —%, t7 for some substitution 7. By Lemma 6.7.4, this means that t7 € [tcapg, (u)].
Since u € L(Asxys)), it is clearly the case that u € ¥(ren(s)) and thus u = ren(s)o for
some substitution o. Moreover [tcapg/(u)] C [tcapg(ren(s))] = [tcapg/(s)]. Together
with ¢7 € [tcapgr/(u)] from above, we obtain ¢t7 € [tcapgr/(s)]. However, tcap does
only consider the left-hand sides of rules, which are the same in R’ and R, thus also
ttT € [tcapg, (s)] which implies tcapg (s) ~ t. O

119

6. Certified Confluence of Conditional Rewriting

If we also consider the reverse direction, that is, checking if the term s is reachable
from t by R, ! for some condition s — ¢ in Theorem 6.4.11, then tcap may well succeed
where anc fails, as shown by the next example featuring Cops #546 [135, Example 23].

Example 6.7.37 (anc vs. tcap, Cops #546). The oriented 3-CTRS R consisting of the
two rules

g(z) — g(z) < g(z) — f(a,b) g(z) — f(z,)
is right-stable and extended properly oriented. It has two symmetric CCPs of the form
f(r,2) =~ g(r) < g(r) - f(a,b).

The underlying TRS R, is not linear and growing, so if we want to apply anc we have to
apply a linear growing approximation, resulting for example in R’

g(z) = f(z,y) g(z) — g(x)

But then anc is not able to show infeasibility since the language accepted by the tree
automaton Asyg(,)) N ancg: (Az(f(a’b)) is mot empty and also for the reverse direction
As(f(a,b)) N ancri—1 (As(g(2))) we get a non-empty language. On the other hand, using the
reversed underlying system R,

f(z,z) — g(r) g(z) — g(r)

we have that tcapp-1(f(a, b)) = f(a,b) % g(x). So in this case tcap succeeds where anc
fails.

6.7.5. Exploiting Equalities

Finally, there are four cases where the equality between some terms in the conditions
can be exploited to check a CCP for infeasibility. These four situations are depicted in
Figure 6.5 and explained below.

Assume we have a CCP ¢ =~ r < ¢ where ¢ contains at least two different conditions
s — t and u — v. Now s = v implies that for ¢ to be satisfiable ¢ has to be reachable from
u (see 6.5a). So if we can show that ¢ is not reachable from u we know that the conditions
c are infeasible. Similarly for ¢ = u to have any chance to satisfy the conditions v has to
be reachable from s otherwise c is infeasible (see 6.5b). On the other hand if ¢t = v then
to satisfy the conditions s and w have to be joinable and so from non-joinability of s and
u we can conclude infeasibility of ¢ (see 6.5¢). Finally, if we are in the setting described
in Section 6.4 then if s = w to satisfy the conditions there would have to exist a diverging
situation (see 6.5d) but by the assumption of Definition 6.4.9.3 this implies that there is
a join between t and v so to proof infeasibility of ¢ it suffices to show non-joinability of ¢
and v.

120

http://cops.uibk.ac.at/?q=546
http://cops.uibk.ac.at/?q=546

6.7. Infeasibility of Conditional Critical Pairs

S="v t=u t=wv S=Uu
AN N N N
t U S v S U t v
(a) u—"t (b) s =™ v (c) slu (d)tdwv

Figure 6.5.: Requirements for the conditions ¢ containing s — ¢t and © — v to be
satisfiable.

6.7.6. Certification

In this section we give an overview of all infeasibility and non-reachability techniques
that are supported by our certifier CeTA and what kind of information it requires from
a certificate in CPF [144] (short for certification problem format). Before we come to
the special infeasibility condition of Definition 6.4.9, we handle the common case where,
given a list of conditions ¢, we are interested in proving o,n I/ ¢ for every substitution o
and level n.

Lemma 6.7.38 (Infeasibility certificates). Given (R,c) consisting of a CTRS R and
a list of conditions ¢ = s1 — t1,...,s, — tg, infeasibility of ¢ with respect to R can be
certified in one of the following ways: 4

1. Provide a fresh function symbol cs of arity n together with a non-reachability
certificate for (Ry,cs(s1,...,5k),cs(t1,...,tx)).

2. Provide two terms s and t with s - t € ¢, and a non-reachability certificate for
(Ru, s,t).

3. For an arbitrary subset ¢ of ¢, provide an infeasibility certificate for (R,c).

4. Provide three terms s, t, and u such that s - u and t — u are equations in c
together with a non-joinability certificate for (R, s,t).

5. Provide three terms s, t, and u such that s — t and t — w are equations in c
together with a non-reachability certificate for (R, s, u).

Proof. Note that 3 is obvious and (1) only exists for tool-author convenience but is
subsumed by the combination of (2) and 3. Moreover, (2) follows from the fact that
cs(s1,...,8K)0 /R, cs(ti,...,t)7 for all o and 7, implies the existence of at least one
1 < ¢ < k such that sio /A% ;7 for all o and 7. Finally, for 4, whenever so and ¢7 are
not joinable for arbitrary ¢ and 7, the existence of u and n such that y,ntF s —» u, t - u
is impossible.]

Note that in (2) we check for non-reachability between left-hand sides and their
corresponding right-hand sides, while in 4 we check for non-joinability between two
left-hand sides. Thus, while in general non-joinability is more difficult to show than
non-reachability, 4 is not directly subsumed by (2).

121

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Infeasibility.html#lem:check_infeasible'

6. Certified Confluence of Conditional Rewriting

Lemma 6.7.39 (Non-reachability certificates). Given (R, s,t) consisting of a TRS R
and two terms s and t, R-non-reachability of t from s can be certified in one of the
following ways: v

1. Indicate that tcap(s) does not unify with t.
2. Indicate that generalized tcap shows non-reachability of s from t.

3. Provide a TRS R’ such that for each £ — r € R there is I’ — 1" € R’ and a
substitution o with £ = {'c and r = r'o, together with a non-reachability certificate
for (R, s,t).

4. Provide a non-reachability certificate for (R™1,t,s).
5. Use ordered completion to conclude non-reachability [152].

6. Make sure that R is linear and growing and provide a finite signature F and two
constants a and O such that a € F but O ¢ F, together with a tree automaton A
that is an overapprozimation of ancr (Asxy)) and that satisfies L(Asys)) N L(A) = @.

Proof. If tcapg(s) 7 t, then 1 holds by Lemma 6.7.4. The same holds for 2 using
Corollary 6.7.24. Further note that - C —xs and thus 3 is immediate. Moreover, 4
is obvious and 5 is shown by Sternagel and Winkler [152], leaving us with 6. From a
certification perspective this is the most interesting case. To begin with, there are two
reasons why we do not want to repeat the full construction of anc inside CelA. Firstly, we
would unnecessarily repeat an operation with at least exponential worst-case complexity.
Secondly, a fully-verified executable algorithm is not even part of our formalization,
instead we heavily rely on inductive definitions. While turning the existing inductive
definitions into executable recursive functions would definitely be possible, we stress that
this is not necessary. In CeTA we check that A is an overapproximation of ancg (Asx) as
follows: firstly, we ensure that .4 does not contain epsilon transitions, that [t] is included
in the final states of A, and that A; as well as the matching rules with respect to the
signature F are part of the transitions of A; secondly, we check that A is closed with
respect to inference rule (f). Since Ay) is an overapproximation of X(s) and by the
required conditions together with Theorem 6.7.33, L(A) overapproximates [—%](2(t)),
we can conclude X(s) N [—=%](2X(t)) = @. Thus there are no ground substitutions o and
7 such that so,tT € T(F) and so =% t7. In order to conclude that the same holds true
for arbitrary substitutions (not necessarily restricted to F), we rely on an earlier result
[137] that implies that whenever so —} t7 for arbitrary ¢ and 7 and s,t € T(F, Var)
then there are o’ and 7’ such that so’,t7" € T(F) and so’ —% t7'. O

Note that 3 allows us to certify the linear growing approximation of a TRS without
actually having to formalize it in Isabelle/HOL. More specifically, whenever R’ is the result
of applying the linear growing approximation to R, then the corresponding certificate
will pass 3 and R’ will be linear and growing in the check for 6; otherwise 6 will fail.

122

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Nonreachability.html#lem:check_nonreachable

6.8. Supporting Methods

Lemma 6.7.40 (Non-joinability certificates). Given (R, s,t) consisting of a TRS R and
two term s and t, R-non-joinability of s and t can be certified in one of the following
ways: v

1. Indicate that tcap(s) does not unify with tcap(t).

2. 1If at least one of the terms, say t, is a ground R-normal form provide a non-
reachability certificate for (R,s,t).

Proof. We prove (1) by Lemma 6.7.5 and (2) by Lemma 6.7.4 since non-joinability reduces
to non-reachability when one of the terms is an R-normal form.]

Lemma 6.7.41 (Ao-infeasibility certificates). Given the triple (R, c1,c2) consisting of a
CTRS R fulfilling all syntactic requirements of Theorem 6.4.11 and two lists of conditions
c1 and cg, infeasibility with respect to almost orthogonality can be certified in one of the
following ways: 4

1. Provide an infeasibility certificate for (R,c) where c is the concatenation of ¢1 and
Cy.

2. Provide three terms s, t and u such that s — t is an equation in ¢y and s - u an
equation in ca, together with a non-joinability certificate for (Ry,t,u).

Proof. While 1 follows from Lemma 6.7.38, in 2 we make use of the level-commutation
assumption of Definition 6.4.9 to deduce non-meetability of the terms ¢ and u from
non-joinability of £ and u. O

The formalization of the methods described in this section can be found in the following
IsaFoR theory files:

thys/Rewriting/ thys/Tree_Automata/
Tcap.thy Exact_Tree_Automata_Completion.thy
Ground_Context.thy Exact_Tree_Automata_Completion_Impl.thy

thys/Nonreachability/ thys/Conditional_Rewriting/
Gtcap.thy Infeasibility.thy
Gtcap_Impl.thy Level_Confluence_Impl.thy
Nonreachability.thy

In the next section we will look at two supporting methods that facilitate the techniques
described in this and the previous sections.

6.8. Supporting Methods

Sometimes directly using the methods for (non-)confluence that are described in earlier
sections is not possible. But there are sound methods that can “simplify” a given CTRS
and make it amenable for them. In this section we will see two such methods.

123

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Nonreachability.html#lem:check_nonjoinable
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Level_Confluence_Impl.html#lem:check_ao_infeasible'
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Tcap.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Ground_Context.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Gtcap_Impl.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Nonreachability.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Exact_Tree_Automata_Completion.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Exact_Tree_Automata_Completion_Impl.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Infeasibility.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Level_Confluence_Impl.html

6. Certified Confluence of Conditional Rewriting

The first one is about infeasibility. Already in Section 6.7 we have seen that infeasibility
of CCPs can be expedient in analyzing confluence of CTRSs. Here we show that also
infeasibility of conditions of rewrite rules can be beneficial for confluence analysis.

The second method can “reshape” certain conditional rewrite rules in such a way that
other methods become more applicable.

6.8.1. Infeasible Rule Removal

If the conditions of a conditional rewrite rule are infeasible we can just remove this rule
from the CTRS without changing the rewrite relation because the rule could never be
fired anyway.

Definition 6.8.1 (Infeasible rule). A conditional rewrite rule { — r < c is called
infeasible if ¢ is infeasible.

You might ask, why anyone would add an infeasible rule to a CTRS in the first place?
On the one hand, it might be a bug by a programmer. On the other hand, there are
transformations from programs to CTRSs that occasionally result in infeasible rules. In
fact, when looking into the Cops database, we find that from 111 DCTRSs a stunning 11
systems contain rules that we can show infeasible. And that is just using fast and easy
checks so there might be more where infeasibility of the conditions is not so obvious. All
11 DCTRSs with infeasible rules are from the literature. For instance the example below
is due to Bergstra and Klop.

Example 6.8.2. Remember the DCTRS R from Example 6.6.4 consisting of the following
four rules

p(a(z)) = p(r(z)) q(h(z)) = r(z) r(z) = r(h(z)) <s(z) >0 s(z) =1

The right-hand side 0 of the single condition of the only conditional rule of R is an
R-normal form. The left-hand side s(z) does only rewrite to the different R-normal form
1. Hence the condition is infeasible and we can just remove the rule, because it does not
affect the rewrite relation of R in any way.

In principle we can use all the methods from Section 6.7 to remove infeasible rules
before we employ any of the actual (non-)confluence checks. In the following example we
utilize anc (see Section 6.7.4).

Example 6.8.3. Consider the CTRS R consisting of the two rules
h(z) — a g(z) >a<h(z) »b

The condition of the only conditional rewrite rule is infeasible because h(x) only rewrites
to a and not to b. Unification fails to show that because tcap(h(z)) = y ~ b = tcap(b).
Fortunately we have h A b and hence the condition h(z) — b is infeasible by Lemma
6.7.19. Or we can use exact tree automata completion. The underlying TRS R, is linear
and growing and hence we can construct the tree automata Az(h(m)) and ancr, (Az(b)).
The language of the intersection automaton is empty and the condition h(z) — b is
infeasible by Lemma 6.7.34.

124

6.8. Supporting Methods

Another useful result, due to Sternagel and Yamada [153, Theorem 3], that we
formalized, is that we may ignore those rules of a CTRS that we are trying to show
infeasible during our investigation:'!

Theorem 6.8.4. A set of rules S is infeasible with respect to a CTRS R iff it is infeasible
with respect to R\ S. v

6.8.2. Inlining of Conditions

In this section we look at another simple method that is inspired by inlining of let-
constructs and where-expressions in compilers. We give a transformation on CTRSs
which is often helpful in practice.

Definition 6.8.5 (Inlining of Conditions ®). Given a conditional rewrite rule
p:€—>7’<281—»t1, ey S = Tk

and an index 1 < i < k such that t; = x for some variable x, let inl;(p) denote the rule
resulting from inlining the i-th condition of p, that is,

E—)T‘O’@Slo'ﬂétl, ey Siflo'ﬂ-)tifl,sidHO'%tidH, ceoy SpO =t
with 0 = {x + s;}.

Lemma 6.8.6. Let p € R and s — x be the i-th condition of p. Whenever we have
x @Vl s, t1,. .., tic1,tiy1, ..., tg), then for R" = (R\ {p}) U {inl;(p)} the relations —%
and —%, coincide. ¥

Proof. We show —gr, € =%/, and =g/, € —r, by induction on the level n. For
n = 0 the result is immediate. Consider a step s = C[(o] —Rrn+1 C[ro] =t employing
rule p (for the other rules of R the result is trivial). Thus, uo =%, vo for allu — v € c.
In particular so =%, xo. Thus, using the IH, for each condition u — v of inl;(p)
we have uo = s;{x s $}o —%i, 8j0 =i, tjo = vo for some 1 < j < k. Hence,
lo =R 1 m{x > sto =%, ro and thus s =%, ¢

Now, consider a step s = C[¢o] =g’ i1 Clr{z — s}o] employing rule inl;(p). Together
with the IH this implies that uo —% , vo for all conditions u — v in inl;(p). Let 7 be a
substitution such that 7(z) = so and T(y) = o(y) for all y # x. We have s;7 = s7 = a7 =
t;7 and s;7 = s;{x — s}o =%, tjo =t;7 for all 1 < j < k with ¢ # j, since x occurs
neither in s nor in the right-hahd sides of conditions in inl;(p). Therefore, u =% , v for
all w — v € c. In summary, we have s = C[lo| = C[l1] =g ni1 Clrr] = C[r{z — s}ol,
concluding the proof. O

We are not aware of any mention of this simple method in the literature, but found
that in practice, exhaustive application of inlining increases the applicability of other
methods like infeasibility via tcap and non-confluence via plain rewriting: for the former

YThis result is applied implicitly by CETA whenever checking a certificate that claims to remove
infeasible rules.

125

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Infeasibility.html#lem:infeasible_rules
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Inline_Conditions.html#def:inline
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Inline_Conditions.html#lem:inline_cond

6. Certified Confluence of Conditional Rewriting

inlining yields more term structure, which may prevent tcap from replacing a subterm by
a fresh variable and thus makes non-unifiability more likely; while for the latter inlining
may yield CCPs without conditions and thereby make them amenable to non-joinability
techniques for plain term rewriting [184] as witnessed by Cops #551.

Example 6.8.7 (Cops #551). Consider the quasi-decreasing ADCTRS R consisting of
the following siz rules:

min(z : nil) — = (6.1 r<0— false (6.4)
min(z : zs) = z < min(zs) — y, © < y — true (6.2) 0<s(y) — true (6.5)
min(z : zs) = y < min(zs) - y, v <y — false (6.3) s(z) <s(y) > z<vy (6.6)

R has 6 CCPs, 8 modulo symmetry:

z &z < min(nil) —» y, z <y — true (6.1,6.2)
z &~y < min(nil) - y, z <y —» false (6.1,6.3)
z &y < min(zs) - z, © < z — true, min(zs) — y, © < y — false (6.2,6.3)

To conclude confluence of the system it remains to check its CCPs. The first one, (6.1,6.2),
is trivially context-joinable because the left- and right-hand sides coincide. Unfortunately,
the methods of ConCon are not able to handle either of the CCPs (6.1,6.3) and (6.2,6.3).
So we are not able to conclude confluence of R just yet. But Rules (6.2) and (6.3) of R
are both susceptible to inlining of conditions. For each of them, we may remove the first
condition and replace y by min(zs) resulting in

min(z : xs) = z < = < min(zs) & true (2"
min(z : zs) = min(zs) < = < min(zs) = false (3)

Now we actually arrive at the CTRS from Ezample 6.5.14 which is shown to be confluent
in Section 6.5.

6.8.3. Certification and Implementation

Infeasible rule removal and inlining of conditions are both implemented in ConCon as a
preprocessing step and are certifiable by CeTA.

For the certification of infeasible rule removal we can reuse machinery in ConCon and
CelA that is also used to show infeasibility of CCPs. The certificate just has to provide
the infeasible rules together with the infeasibility proofs for their conditions. Most of the
time CTRSs do not contain infeasible rules (see Section 6.9) and some of the available
infeasibility checks are rather expensive (especially tree automata techniques). So in our
implementation we only employ the symbol transition graph (see Section 6.7.2) method
in this case because it is fast and lightweight.

To certify inlining CETA requires ConCon to output the inlined CTRS R’ together
with a list of pairs that in the first component contain all modified rules and in the
second component the corresponding list of conditions that have been inlined in this rule.

126

http://cops.uibk.ac.at/?q=551
http://cops.uibk.ac.at/?q=551

6.9. Experiments

Internally CeTA employs this information to reverse the inlining and finally checks if the
result corresponds to the original input CTRS R.

The formalization of the methods described in this section can be found in the following
IsaFoR theory files:

thys/Conditional_Rewriting/ thys/Conditional_Rewriting/
Infeasibility.thy Inline_Conditions_Impl.thy
Inline_Conditions.thy

In the next section we present the results of our extensive experiments comparing the
different (non-)confluence and infeasibility methods on the confluence problems database.

6.9. Experiments

In the previous sections we have established the theory underlying several confluence
and infeasibility methods and gave an overview of our corresponding Isabelle/HOL
formalization as part of IsaFoR.

In the following, we compare these methods experimentally in order to get empirical
evidence on their strengths and weaknesses. To this end we implemented the methods
supported by CeTA in the CTRS confluence tool ConCon.'? The tool is implemented in
Scala, an object-functional programming language that runs on the Java virtual machine.

ConCon also implements two methods that are not certifiable by CeTA, specifically a
variant of Theorem 6.3.1 (see [48]) relying on the notion of weak left-linearity of a DCTRS
[47] and the inductive symbol transition graph due to Sternagel and Yamada [153]. For
more details on ConCon see [155].

All experiments have been carried out on a 64bit GNU/Linux machine with 12 Intel®
Core™ i7-5930K processors clocked at 3.50GHz and 32GB of RAM. The kernel version is
4.9.0-9-amd64. The version of Java on this machine is 1.8.0.222. We had to increase
the stack size used by ConCon to 20MB using the JVM flag ‘~Xss20M’ to prevent stack
overflows caused by parsing deep terms like in Cops #313.

6.9.1. Comparing ConCon’s Confluence Methods

In this first part of our experiments we take a closer look at ConCon’s confluence methods
in comparison to each other. We use the 149 oriented CTRSs from Cops'3 version 1137,
and set the timeout to one minute. The subfigures of Figure 6.6 compare the three
confluence methods Theorem 6.5.5 (A), Theorem 6.3.2 (B), and Theorem 6.3.1 (C) for
various settings of ConCon.

If we look at ConCon’s absolute power, employing the supporting methods from Section
6.8, infeasibility of CCPs from Section 6.7, and also uncertified methods (which are not
part of this article) we get the numbers in the Venn diagram depicted in 6.6a.

http://cl-informatik.uibk.ac.at/software/concon
Bhttp://cops.uibk.ac.at?q=1..1137+oriented+ctrs

127

http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Infeasibility.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Inline_Conditions.html
http://cl-informatik.uibk.ac.at/isafor/v2.37/JAR2019/Inline_Conditions_Impl.html
http://cops.uibk.ac.at/?q=313
http://cl-informatik.uibk.ac.at/software/concon
http://cops.uibk.ac.at?q=1..1137+oriented+ctrs

6. Certified Confluence of Conditional Rewriting

&
&P

B C C
(a) Absolute (69). (b) Certified (67).
A A
(c) No infeasibility of CCPs (59). (d) No inlining (67).
A A

(e) No infeasible rule removal (63). (f) No supporting methods (63).

Figure 6.6.: Comparison of ConCon’s confluence methods.

There is a total of 69 systems that are shown to be confluent. On its own method A is
the strongest, succeeding on 58 CTRSs, closely followed by method B, which succeeds on
54 CTRSs, and finally method C, which can show confluence of 51 systems. Moreover,
there are 9 CTRSs where only method A succeeds, 4 where only method B succeeds, and
1 where only method C succeeds.

The results for restricting to the methods that can be certified by CeTA can be found in
6.6b. In this case, the total is reduced by two systems (#286 and #793) to 67 confluent
systems when compared to 6.6a. More specifically, methods A (57 total) and B (53
total) lose one system each, and method C six systems (45 total). The system lost by
methods A and B is Cops #793. In both cases, it is lost because the certified infeasibility
methods are not able to conclude that the first rule is infeasible. Concerning method C,
Cops #286, #326, #319, #362, #793, and #806 are all weakly-left linear (and a variant

128

http://cops.uibk.ac.at/?q=286
http://cops.uibk.ac.at/?q=793
http://cops.uibk.ac.at/?q=793
http://cops.uibk.ac.at/?q=286
http://cops.uibk.ac.at/?q=326
http://cops.uibk.ac.at/?q=319
http://cops.uibk.ac.at/?q=362
http://cops.uibk.ac.at/?q=793
http://cops.uibk.ac.at/?q=806

6.9. Experiments

of Theorem 6.3.1 for weakly-left linear CTRSs succeeds if we use uncertified methods)
but their unravelings are not left-linear. Hence our formalization of Theorem 6.3.1 is not
applicable. Of these six Cops #286 is the system where in 6.6a only method C succeeds.

Next, in 6.6¢, we see the confluence results when switching off all infeasibility checks
for conditional critical pairs. The total number of systems that can be shown to be
confluent is reduced by eight (#288, #292, #326, #340, #361, #494, #551, and #552) to
59 when compared to 6.6b. As expected—because it does not profit from infeasible
CCPs—method C is not effected by this change. Method A loses six systems: #288,
#292, #326, #340, #551, and #552. (While it does rely on infeasibility of CCPs, it also
employs context-joinability and unfeasibility of CCPs (see Definition 6.5.11).) Method B
is affected the most, losing 17 systems, because without infeasibility of CCPs method B is
reduced to a purely syntactic check that relies on the absence of non-trivial critical pairs.

Switching off inlining (but still using infeasible rule removal) does not change the
overall number of confluent systems (see 6.6d) compared to 6.6b. However, when looking
at the specific systems that could be shown to be confluent, we observe that we actually
gained #529 (which times out without inlining) but lost #551. Recall that inlining can
give terms more structure, which is good to show non-reachability using tcap. On the
one hand, for Cops #551 without inlining ConCon’s infeasibility methods are not able
to handle all of the CCPs (as explained in Example 6.8.7). On the other hand, if we
need tree automata completion to show infeasibility of a conditional critical pair more
structure may lead to a larger tree automaton that we have to compute and hence to a
timeout. Apparently this is what happens for Cops #529: while ConCon times out when
inlining is used it succeeds when we switch it off. We also want to remark that although
without inlining ConCon is able to produce a certificate for Cops #529, CelA is actually
not able to certify it because to do so it would have to compute 21! state substitutions
to check the given tree automaton and consequently we run out of memory. Besides,
Cops #493 is now only proven confluent by method C because without inlining ConCon’s
infeasibility checks do not succeed on two of its CCPs.

Now, if we switch off infeasible rule removal (but keep inlining) the overall number of
confluent systems is reduced by four to 63 when compared to 6.6b (see 6.6e). The lost
systems are #317, #792, #794, and #806. Here methods A (49 total) and B (37 total)
lose eight systems each, while method B (48 total) loses five systems.

For sake of completeness we also include 6.6f which shows the results when switching
off both inlining and infeasible rule removal. As expected the results are basically a
combination of the previous two diagrams.

6.9.2. Comparing ConCon’s Non-Confluence Methods

In this section we take a closer look at ConCon’s non-confluence methods in comparison
to each other. We use the same 149 oriented CTRSs as in the previous section and the
same timeout of one minute. Results for the three non-confluence methods Lemma 6.6.7
(N1), Lemma 6.6.3 (N2), and Lemma 6.6.1 (N3) of ConCon are summarized in Figure 6.7.

When it comes to non-confluence ConCon is able to handle 44 systems when employing
the supporting methods from Section 6.8. 6.7a compares the three non-confluence methods

129

http://cops.uibk.ac.at/?q=286
http://cops.uibk.ac.at/?q=288
http://cops.uibk.ac.at/?q=292
http://cops.uibk.ac.at/?q=326
http://cops.uibk.ac.at/?q=340
http://cops.uibk.ac.at/?q=361
http://cops.uibk.ac.at/?q=494
http://cops.uibk.ac.at/?q=551
http://cops.uibk.ac.at/?q=552
http://cops.uibk.ac.at/?q=288
http://cops.uibk.ac.at/?q=292
http://cops.uibk.ac.at/?q=326
http://cops.uibk.ac.at/?q=340
http://cops.uibk.ac.at/?q=551
http://cops.uibk.ac.at/?q=552
http://cops.uibk.ac.at/?q=529
http://cops.uibk.ac.at/?q=551
http://cops.uibk.ac.at/?q=551
http://cops.uibk.ac.at/?q=529
http://cops.uibk.ac.at/?q=529
http://cops.uibk.ac.at/?q=493
http://cops.uibk.ac.at/?q=317
http://cops.uibk.ac.at/?q=792
http://cops.uibk.ac.at/?q=794
http://cops.uibk.ac.at/?q=806

6. Certified Confluence of Conditional Rewriting

N2 3 N N3
(a) Absolute (44). (b) No inlining (42).
N1 N1

(c) No infeasible rule removal (42). (d) No supporting methods (40).

Figure 6.7.: Comparison of ConCon’s non-confluence methods.

of ConCon. On its own method N1 is the strongest succeeding on 39 systems, followed
by method N2 succeeding on 34 systems, and finally method N3 which is specifically
targeted at 4-CTRSs and hence can only handle the 4 systems of this kind.

As shown in 6.7b when we switch off inlining method N2 loses 2 systems. Inlining
transforms Cops #351 to an unconditional system and cannot be handled by ConCon
without this method. Cops #353 can only be handled by method N1 without inlining.
The total number of non-confluent systems is reduced to 41.

Similarly, as shown in 6.7c¢ when switching off infeasible rule removal method N2 loses
one system. This system, Cops #271, is reduced to a TRS when employing infeasible
rule removal and cannot be handled by ConCon without this method.

Finally, the results for switching off both supporting methods are depicted in 6.7d. The
total number of non-confluent systems is reduced to 40 because as explained earlier we lose
Cops #351 and #271. Unlike in the case of the confluence methods, where inlining also
causes ConCon to lose one system, in the non-confluence case it is exclusively beneficial.

6.9.3. Comparing ConCon'’s Infeasibility Methods

In this last section regarding our experiments we compare the five infeasibility methods of
ConCon, that is, the tcap check (tcap; see Section 6.7.1, the generalized tcap check with
symbol transition graph and decomposition of reachability problems (gtcap; see Section
6.7.2 and and Section 6.7.3), exploiting equalities in conditions (exeq; see Section 6.7.5),
equational reasoning using MaedMax [152] (oc; not part of this article), and finally, exact

130

http://cops.uibk.ac.at/?q=351
http://cops.uibk.ac.at/?q=353
http://cops.uibk.ac.at/?q=271
http://cops.uibk.ac.at/?q=351
http://cops.uibk.ac.at/?q=271

6.10. Conclusion

tcap gtcap exeq oc etac total
infeasible 19 (114) 22(111) 4(129) 20(113) 35(98) 40(93)
timeout 0 0 0 18 40 40

Table 6.1.: Infeasibility results on 133 oriented infeasibility problems from Cops.

tree automata completion (etac; see Section 6.7.4).

To this end we take the 133 oriented infeasibility problems from Cops'* and apply
ConCon’s infeasibility methods separately with a timeout of 60 seconds. (As an aside:
infeasibility problems are a part of Cops since the International Confluence Competition
in 2019.) The results of this experiments are listed in Table 6.1 on page 131. The first row,
labeled “infeasible,” lists the number of problems which could be shown to be infeasible
for each method (the numbers in parentheses indicate how many problems are still open
for that column). The row labeled “timeout” gives the number of problems for which a
timeout occurred. On its own method etac is the strongest showing infeasibility of 35
problems. However, it also is very computation intensive and causes the most timeouts
(40). There are seven problems where only method etac is able to show infeasibility.
Next, method gtcap shows 22 problems infeasible and has no timeouts. Unsurprisingly, it
subsumes method tcap. Method oc shows 20 problems infeasible and causes 18 timeouts.
There are 4 problems where only method oc is able to show infeasibility. Method exeq
shows four problems infeasible and does not cause any timeouts.

In summary, all methods together succeed on 40 problems and time out on 40.

While, at least on this benchmark, oc and etac together subsume all other methods,
in practice it is still important to first employ fast methods like exeq and gtcap, and
only then expensive methods like oc and etac in order to avoid timeouts. For removal
of infeasible rules during confluence proofs (Section 6.8.1), fast methods are even more
important, since only a small fraction of the overall time can be spared on checking
infeasibility of rules.

This brings us to the final section of this article where we reflect on the findings of all
previous sections and lay out some possible future work.

6.10. Conclusion

In the last few sections we presented an overview of the confluence and infeasibility
results for CTRSs that we have formalized in IsaFoR. Through code generation these are
now available in the certifier CelA.

We first presented two of the three main confluence methods available in CeTA: the result
that almost orthogonal (modulo infeasibility), right-stable, and extended properly oriented
CTRSs are confluent in Section 6.4 and that quasi-decreasing, strongly deterministic
CTRSs are confluent if all their conditional critical pairs are joinable in Section 6.5. Section

“http://cops.uibk.ac.at?q=1..1137+infeasibility but without #1137 and #1136 which are both
semi-equational and not oriented.

131

http://cops.uibk.ac.at?q=1..1137+infeasibility
http://cops.uibk.ac.at/?q=1137
http://cops.uibk.ac.at/?q=1136

6. Certified Confluence of Conditional Rewriting

6.6 presented some checks, most notably a method employing conditional narrowing,
to find witnesses for non-confluence of CTRSs. The topic of Section 6.7 were several
methods to check for non-reachability between terms. In our context these are used
to get infeasibility of conditional critical pairs as well as conditional rules in order to
make the methods of Sections 6.4 and 6.5, that both rely on critical pair analysis, more
applicable. In detail the non-reachability checks are by unification, the symbol transition
graph employing decomposition of reachability problems, exact tree automata completion,
and the exploitation of certain equalities in the conditions. After that we touched on
two supporting methods in Section 6.8. One that employs some of the results of Section
6.7 to get rid of infeasible rules and another that inlines certain conditions of rules.
Finally, Section 6.9 presented our experiments on the confluence problems database.
We first compared ConCon’s three confluence methods to each other. Following that,
we presented experimental results on ConCon’s non-confluence methods. Finally, we
investigated ConCon’s infeasibility methods in some detail.

6.10.1. Formalization and Implementation

A lot of work went into the formalization of the presented results. Here is a rough
impression of the involved effort: our formalization comprises 92 definitions, 37 recursive
functions, and 518 lemmas with proofs, on approximately 10,000 lines of Isabelle code
(in addition to everything that we could reuse from the IsaFoR library).

To give some additional measure on how much work went into the formalization we take
a look at the de Bruijn factor of some of its parts. The de Bruijn factor has been defined
by Freek Wiedijk!'® to be the quotient of the size of a formalization of a mathematical
text and the size of its informal original. Because our formalization depends on a lot
of prior results from IsaFoR the scope of a specific result is not so easy to define and
hence somewhat arbitrary. Nevertheless, when comparing the textual description in this
article to our formalization in IsaFoR (without the additional setup for code generation
and CelA’s parser) we get the following (approximate) numbers: the results of Section
6.7.4 have a de Bruijn factor of 9.8, Theorem 6.4.11 has a de Bruijn factor of 4.2, and
finally the de Bruijn factor of the results in Section 6.5 is 4.5.

There are some points of notice: the textual description of all of the above mentioned
proofs to some extend contain diagrams to convince the reader of certain steps. Such
diagrams are notoriously hard to formalize. Further, the results in Section 6.7.4 have
been the second author’s first larger IsaFoR-development and he was still trying to get
to grips with Isabelle/HOL. So he probably did not exploit Isabelle/HOL’s automatic
methods to their full potential, for that reason these proofs are quite verbose, which
explains the much higher de Bruijn factor (in comparison to the later developments).

But also the work put in the automatic tool ConCon, although somewhat paling in
comparison to the formalization, was significant. ConCon 1.9.1 consists of approximately
14,000 lines of Scala code and has been very successful in the confluence competition. At
the time of writing it won the CPF-CTRS category for confluence of CTRSs with proof

Yhttp://www.cs.ru.nl/~freek/factor

132

http://www.cs.ru.nl/~freek/factor

6.10. Conclusion

certificates four times in a row and is (after four years) still the only tool for CTRSs to
provide certifiable output. Moreover, ConCon can decide confluence of roughly 75% of
the oriented CTRSs in Cops and certify approximately 98% of these with the help of
CeTA.

6.10.2. Future Work

In our opinion the presented work satisfactorily discharges the goal to produce a reliable
and automatic tool to check confluence of conditional term rewrite systems. Nevertheless,
there are some open issues:

Infeasibility. Currently 36 out of the 149 oriented CTRSs in Cops cannot be solved by
ConCon 1.9.1. One of those is Cops #327 for computing the greatest common divisor of
two natural numbers:

ged(z,z) — r <0 — false 0—s(y)—0
ged(s(z),0) — s(0 <s(y) — true r—0—uz
—s(y s(z)<s(y) = z<y s(z)—s(y) = z—y

)
)

— ged(z — y,s(y)) <y <ax — true
(s(z),y —z) <=z <y—»true

Because the system is not left-linear Theorem 6.4.11 is not applicable. Its unraveling
is not left-linear, so Theorem 6.3.1 is also not applicable. But Cops #327 is a quasi-
decreasing ADCTRS, making Theorem 6.5.13 applicable in principle. It only remains
to show joinability (or infeasibility for that matter) of its CCPs. The CTRS has three
CCPs (modulo symmetry) of which we show two (because the conditions of the third are
similar):

ged(s(z), y — 2) ~ ged(z — y,s(y)) <= y <z — true, © < y —» true
ged(z — z,s(2)) = s(z) < z <z — true

7

Under (the reasonable assumption) that < is supposed to encode “strictly less than,
these CCPs are obviously infeasible (y cannot be strictly smaller and strictly greater
than z at the same time for the first CCP and x cannot be strictly smaller than itself
for the second one). Unfortunately, this cannot be shown by the methods presented in
Section 6.7. By using R, (for example when approximating non-reachability) we open
the door for inconsistencies:

5(0) < ged(s(0),5(0)) < ged(s(s(0)),5(0)) = ged(0,5(s(0))) = s(s(0))

(
and thus ged(s(s(0)),s(0)) < ged(s(s(0)),s(0)) —* s(0) <s(s(0)) —* true. Consequently,
we may substitute ged(s(s(0)),s(0)) for both = and y to satisfy the conditions of the
CCPs.
It seems that there is still a lot of room for improvement with regard to infeasibility
checking. So far all of the infeasibility methods employed by ConCon are unconditional

133

http://cops.uibk.ac.at/?q=327
http://cops.uibk.ac.at/?q=327

6. Certified Confluence of Conditional Rewriting

and only approximate the conditional rewrite relation. Maybe we could overcome this
problem by employing some external tool that takes conditions into account. Since our
tree automata techniques are quite successful in showing infeasibility, the tree automata
completion tool Timbuk [37, 42], which implements conditional tree automata completion,
would be a natural candidate.

Another method that could be extended to allow conditions is the symbol transition
graph. This was investigated further by Sternagel and Yamada [153], but was not yet
formalized as part of IsaFoR.

In general, it would make sense to design, implement and (hopefully) verify a dedicated
reachability tool for (conditional) term rewriting. The decomposition of reachability
problems from Section 6.7.3 gives a nice modular framework for that. Not only ConCon
would benefit from such a tool.

Other Flavors. For the time being CeTA only supports oriented CTRSs. In principle it
should be possible to extend most of the presented methods for join CTRSs. Moreover,
when employing conditional linearization [30] in order to show the unique normal form
property with respect to conversions for non-left-linear TRSs, methods for semi-equational
CTRSs are needed and could be formalized in future releases.

Certification. The main reason for the gap of two systems between the problems that
ConCon can show confluent and the ones that CelA can certify is due to the inductive
symbol transition graph by Sternagel and Yamada [153].

6.10.3. Related Work

With the sole exception of the formalized unraveling result due to Winkler and Thie-
mann [177], we are not aware of any other attempt to formally verify techniques for
proving confluence of conditional term rewrite systems.

Concerning automated tools for proving CTRS confluence, ConCon is in good company:
ACP [4], CO3'¢ [104], CoScart!” [46]. Among these tools ConCon is the only one that
produces proof certificates.

Yhttps://www.trs.css.i.nagoya-u.ac.jp/co3/
"https://github.com/searles/RewriteTool/

134

https://www.trs.css.i.nagoya-u.ac.jp/co3/
https://github.com/searles/RewriteTool/

7. Abstract Completion, Formalized

Publication Details

Nao Hirokawa, Aart Middeldorp, Christian Sternagel, and Sarah Winkler. Abstract
Completion, Formalized. Logical Methods in Computer Science, 15(3):19:1-19:42, 2019
doi:10.23638/LMCS-15(3:19)2019

Nao Hirokawa, Aart Middeldorp, Christian Sternagel, and Sarah Winkler. Infinite Runs
in Abstract Completion. In Proceedings of the 2nd International Conference on Formal
Structures in Computation and Deduction, volume 84 of Leibniz International Proceedings
in Informatics, pages 19:1-19:16, Schloss Dagstuhl, 2017
d0i:10.4230/LIPIcs.FSCD.2017.19

Nao Hirokawa, Aart Middeldorp, Christian Sternagel. A New and Formalized Proof of
Abstract Completion. In Proceedings of the 5th International Conference on Interactive
Theorem Proving, volume 8558 of Lecture Notes in Computer Science, pages 292-307,
Springer, 2014

do0i:10.1007/978-3-319-08970-6_19

Abstract

Completion is one of the most studied techniques in term rewriting and fundamental to
automated reasoning with equalities. In this paper we present new correctness proofs
of abstract completion, both for finite and infinite runs. For the special case of ground
completion we present a new proof based on random descent. We moreover extend the
results to ordered completion, an important extension of completion that aims to produce
ground-complete presentations of the initial equations. We present new proofs concerning
the completeness of ordered completion for two settings. Moreover, we revisit and extend
results of Métivier concerning canonicity of rewrite systems. All proofs presented in the
paper have been formalized in Isabelle/HOL.

7.1. Introduction

Reasoning with equalities is pervasive in computer science and mathematics, and has
consequently been one of the main research areas of automated deduction. Indeed
completion as introduced by Knuth and Bendix [71] has evolved into a fundamental
technique whose ideas appear throughout automated reasoning whenever equalities are
present. Many variants of the original calculus have since been proposed.

Bachmair, Dershowitz, and Hsiang [13] recast completion procedures as inference
systems. This style of presentation, abstract completion, has become the standard to

135

http://dx.doi.org/10.23638/LMCS-15(3:19)2019
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.19
http://dx.doi.org/10.1007/978-3-319-08970-6_19

7. Abstract Completion, Formalized

describe completion procedures and proof orders the accompanying tool to establish
correctness [10, 13, 14], that is, that under certain conditions, exhaustive application of
the inference rules results in a terminating and confluent rewrite system whose equational
theory is equivalent to the initial set of equations.

In this paper we present new, modular correctness proofs, not relying on proof orders,
for five abstract completion systems presented in the literature. Here, we use modular in
the following sense: Proof orders have to be powerful (and thus complex) enough to cover
all intermediate results (that is, proof orders are a global method), while for our new
proofs, we locally apply well-founded induction with an order that is just strong enough
for the current intermediate result. All proofs are fully formalized in Isabelle/HOL. First,
we consider finite (KBf) and infinite (KB;) runs of classical Knuth-Bendix completion [71].
These two settings demand different proofs since in the latter case the inference system
exhibits a stronger side condition. While our correctness proof for KB¢ relies on a new
notion we dub peak decreasingness, for the case of KB; we employ a simpler version of
this criterion called source decreasingness. To enhance applicability by covering efficient
implementations, our proofs support the critical pair criterion known as primality [67].

The relevance of infinite runs is illustrated by the following example.

Example 7.1.1. Consider the set of equations & = {aba ~ bab} of the three-strand
positive braid monoid. Kapur and Narendran [66] proved that £ admits no finite complete
presentation. However, taking the Knuth-Bendix order [71] with a and b of weight 1 and
a > b in the precedence, completion produces in the limit the following infinite complete
presentation of £

{aba — bab} U {ab™ab — babba™"! | n. > 2}

which can be used to decide the validity problem for £.1

Completion procedures, when successful, produce a complete system. Natural questions
include whether such systems are unique and whether all complete systems for a given set
of equations can be obtained by completion. For canonical systems, which are complete
systems that satisfy an additional normalization requirement, Métivier [87] obtained
interesting results. In this paper we revisit and extend his work.

A special case of KBs that is known to be decidable is the completion of ground
systems [128]. We present new correctness and completeness proofs for the corresponding
inference system KBy, based on the recent notion of random descent [109].

On a given set of input equalities, Knuth-Bendix completion can behave in three different
ways: it may (1) succeed to compute a complete system in finitely many steps, (2) fail
due to unorientable equalities, or (3) continuously compute approximations of a complete
system without ever terminating. As a remedy to problem (2), ordered completion was
developed by Bachmair, Dershowitz, and Plaisted [14]. Ordered completion never fails
and can produce a ground-complete system in the limit. Although the price to be paid is
that the resulting system is in general only complete on ground terms, this is actually

'Burckel [24] constructed a complete rewrite system consisting of four rules with an additional symbol,
which is no longer a complete presentation of £ but can be also used to decide the validity problem for £.

136

7.1. Introduction

Table 7.1.: Roadmap.

KBf KBy KB KBo KB,

inference system 7.3.1 7.5.1 7.6.2 772 7.8.13

fairness 7.3.5 — 76.3 7.7.14 7.8.16

correctness 7.3.8 7.5.5 7.6.12 7.7.17 7.8.17
7.7.16

completeness — 7.5.12 - 7.8.10 7.8.23

sufficient for many applications in theorem proving. Refutational theorem proving [14]
owes its semi-decidability to the unfailing nature of ordered completion. Again employing
peak decreasingness, we obtain a new correctness proof of ordered completion (KB,).
Next, we turn to completeness results for ordered completion, that is, to sufficient criteria
for an ordered completion procedure to produce a complete system. We first reprove the
case of a total reduction order, which assumes a slightly stronger notion of simplifiedness
than the original result [14] though. Then we consider the completeness result for linear
completion (KBy) due to Devie [34].

For easy reference, Table 7.1 provides pointers to the main definitions and results we
present in this paper.

The remainder of this paper is organized as follows. We present required preliminaries in
Section 7.2, followed by the abstract confluence criteria of peak and source decreasingness,
as well as a fairly detailed analysis of critical pairs. In Section 7.3 we recall the inference
rules for (abstract) Knuth-Bendix completion and present our formalized correctness
proof for finite runs. In Section 7.4 we present our results on canonical systems and
normalization equivalence. We discuss ground completion in Section 7.5. Infinite runs
are the subject of Section 7.6 and in Section 7.7 we extend our correctness results to
ordered completion. Completeness of ordered completion is the topic of Section 7.8. We
conclude in Section 7.9 with a few suggestions for future research.

Our formalizations are part of the Isabelle Formalization of Rewriting lsaFoR [165]?
version 2.37. Below we list the relevant Isabelle theory files grouped by their subdirectories
inside IsaFoR:

thys/Abstract_Completion/ thys/Confluence_and_Completion/
Abstract_Completion.thy Ordered_Completion.thy
Completion_Fairness.thy
CP.thy thys/Normalization_Equivalence/
Ground_Completion.thy Encompassment.thy
Peak_Decreasingness.thy Normalization_Equivalence.thy

Prime_Critical_Pairs.thy

2http://cl-informatik.uibk.ac.at/isafor

137

http://cl-informatik.uibk.ac.at/isafor

7. Abstract Completion, Formalized

In the remainder we provide hyperlinks (marked by ®) to an HTML rendering of our
formalization. Moreover, whenever we say that a proof is “formalized,” what we mean is
that it is“formalized in Isabelle/HOL.” And when we “present a formalized proof,” we
give a textual representation of a formalized proof.

This paper and the accompanying formalization are substantially extended and revised
versions of some of our previous work we published in the ITP [58] and FSCD [59]
conferences. The former presented a new correctness proof for finite runs of Knuth-
Bendix completion. Its modular design separates concerns rather than relying on a single
proof order, thus rendering it more formalization friendly. In revised form, these results
are included in Section 7.3. The FSCD contribution extended this novel proof approach
to both infinite runs and ordered completion (see Sections 7.6 and 7.7). It moreover
incorporated canonicity results (Section 7.4). In addition to these results we present new
and formalized proofs of correctness and completeness of ground completion (Section
7.5), as well as completeness of ordered completion for two different cases (Section 7.8).
At the end of each section, we remark on the novelty of the respective results and their
proofs.

7.2. Preliminaries

We assume familiarity with the basic notions of abstract rewrite systems, term rewrite
systems, and completion [9, 10], but nevertheless shortly recapitulate terminology and
notation that we use in the remainder.

7.2.1. Rewrite Systems

For an arbitrary binary relation —, we write o<, = as —+ and —* to denote its
inverse, its symmetric closure, its reflexive closure, its transitive closure, and its reflexive
transitive closure, respectively. The reflexive, transitive, and symmetric closure % of
—« 1s called conversion, and a sequence of the form c¢g rcip s onls referred
to as a conversion between ¢y and ¢, (of length n). For a binary relation R without
arrow notation, we also write R™! for its inverse and R* for its symmetric closure
RUR™!. We further use |, as abbreviation for the joinability relation —7, - *<, where
from here on - denotes relation composition. If a —, b for no b then we say that a is
a (—q-)normal form. The set of all normal forms of a given relation —,, is denoted
by NF(—4). By a —. b we abbreviate a —* b A b € NF(—,) and we call b a normal
form of a. Given two binary relations —, and —3, we use —, / —3 as shorthand for
the relative rewrite relation —% - —q - —j. An abstract rewrite system (ARS for short)
A is a set A, the carrier, equipped with a binary relation —. Sometimes we partition
the binary relation into parts according to a set I of indices (or labels). Then we write
A = (A, {—a}acr) where we denote the part of the relation with label a by —, that is,
—-=U {—alael}.

We assume a given signature F and a set of variables V. The set of terms built up from
F and V is denoted by T (F,V), while T (F) denotes the set of ground terms. Positions
are strings of positive integers which are used to address subterms. The set of positions

138

7.2. Preliminaries

in a term t is denoted by Pos(t). The subset consisting of the positions addressing
function symbols in ¢ is denoted by Posz(t) whereas Posy(t) = Pos(t) — Posz(t) is the
set of variable positions in t. We write p < ¢ if p is a prefix of ¢ and p || ¢ if neither
p < gnor g < p. If p < q then the unique position r such that pr = ¢ is denoted
by ¢\p. A substitution is a mapping o from variables to terms such that its domain
{z € V| o(x) # z} is finite. Applying a substitution o to a term ¢ is written to. A
variable substitution is a substitution from V to V and a renaming is a bijective variable
substitution. A term s is a variant of a term t if s = to for some renaming o. A pair of
terms (s,t) is sometimes considered an equation, then we write s ~ t, and sometimes a
(rewrite) rule, then we write s — t. In the latter case we assume the variable condition,
that is, that the left-hand side s is not a variable and that variables of the right-hand
side ¢ are all contained in t. A set £ of equations is called an equational system (ES
for short) and a set R of rules a term rewrite system (TRS for short). Sets of pairs of
terms & induce a rewrite relation —¢ by closing their components under contexts and
substitutions. A rewrite step s —¢ t at a position p € Pos(s) is called innermost and
denoted by s —»¢ t if no proper subterm of s|p is reducible in €. The equational theory
induced by £ consists of all pairs of terms s and ¢ such that s <=3 ¢. If £ — r is a rewrite
rule and o is a renaming then the rewrite rule o — ro is a variant of £ — r. A TRS is
said to be variant-free if it does not contain rewrite rules that are variants of each other.

Two terms s and t are called literally similar, written s = ¢, if so =t and s = t7 for
some substitutions o and 7. Two TRSs R; and R are called literally similar, denoted
by R1 = Rag, if every rewrite rule in Rq has a variant in Ro and vice versa. The following
result is folklore; we formalized the non-trivial proof.

Lemma 7.2.1. Two terms s and t are variants of each other if and only if s =t. &

We say that s encompasses t, written s B> ¢, whenever s = C[to] for some context C'
and substitution o. Proper encompassment is defined by > = B> \ < and known to be
well-founded. The identity B> = > U = is well-known. For a well-founded order >, we
write >, to denote its multiset extension and >ex to denote its lexicographic extension
as defined by Baader and Nipkow [9].

A TRS R is terminating if —x is well-founded, and weakly normalizing if every term
has a normal form. It is (ground-)confluent if s j<— - =% t implies s =% - p< t for
all (ground) terms s and ¢. It is (ground-)complete if it is terminating and (ground)
confluent. We say that R is a complete presentation of an ES £ if R is complete and
5 =<5 A TRS R is left-reduced if £ € NF(R\ {¢ — r}) for every rewrite rule £ — r
in R, and right-reduced if r € NF(R) for every rewrite rule £ — r in R. A reduced TRS
is left- and right-reduced. A reduced complete TRS is called canonical.

We make use of the following result due to Bachmair and Dershowitz [11], where
quasi-commutation of R over S means that the inclusion S- R C R-(RUS)* holds.

Lemma 7.2.2. Let R and S be binary relations.
1. If R quasi-commutes over S then well-foundedness of R / S and R coincide. &

2. If R/ S and S are well-founded then RU S is well-founded. 4

139

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Term_More.html#lem:variants_imp_renaming
https://www.isa-afp.org/browser_info/Isabelle2019/AFP/Abstract-Rewriting/Abstract_Rewriting.html#qc_SN_relto_iff
https://www.isa-afp.org/browser_info/Isabelle2019/AFP/Abstract-Rewriting/Relative_Rewriting.html#SN_relto_split

7. Abstract Completion, Formalized

Lemma 7.2.3. If R is a well-founded rewrite relation then (RU) / B is well-founded.
«

Proof. First we show the inclusion & - R C R - B>. Suppose s &>t R u. So s = Clto] for
some context C' and substitution o. Because R is closed under contexts and substitutions,
s R C[uo]. Moreover, C[uo] B u. This establishes the inclusion, and we conclude that
R (quasi-)commutes over B>. Because R is well-founded, it follows from Lemma 7.2.2(1)
that the relation R / B is well-founded too. Then R / > is well-founded since it is
contained in R / B>. As b is well-founded, it follows from Lemma 7.2.2(2) that R U &>
is well-founded. We have B> - > C > and thus R U > quasi-commutes over &>. Another
application of Lemma 7.2.2(1) yields the well-foundedness of (RUB) / B>. O

7.2.2. Abstract Confluence Criteria

We use the following simple confluence criterion for ARSs to replace Newman’s Lemma in
the correctness proof of abstract completion. In the sequel, we will refer to a conversion
of the form 44 - — 4 as a peak.

Definition 7.2.4 (Peak Decreasingness ®). An ARS A = (A, {—a}acs) is peak de-
creasing if there exists a well-founded order > on I such that for all o, 8 € I the inclusion
at =g C ——
Vafs

holds. Here Vaf denotes the set {y € I | >~ or >~} and if J C I then <7*> denotes
a conversion consisting of =5 =J {—~ |7 € J} steps.

Peak decreasingness is a special case of decreasing diagrams [106], which is known as
a very powerful confluence criterion. For the sake of completeness, we present an easy
direct (and formalized) proof of the sufficiency of peak decreasingness for confluence. We
denote by M(J) the set of all multisets over a set J.

Lemma 7.2.5. Every peak decreasing ARS is confluent. 4
Proof. Let > be a well-founded order on I which shows that the ARS A = (A, {—=a}acr)

is peak decreasing. With every conversion C' in A we associate the multiset Mo consisting
of the labels of its steps. These multisets are compared by the multiset extension >
of >, which is a well-founded order on M(I). We prove <=* C | by well-founded
induction on >,. Consider a conversion C' between a and b. We either have a | b or
a * -+ - — - " b. In the former case we are done. In the latter case there exist
labels a, 8 € I and multisets I'1,T's € M(A) such that M¢c =T'1 W{«, 5} W 2. By the
peak decreasingness assumption there exists a conversion C’ between a and b such that
Mer =T W'y with I' € M(Vaf). We obviously have {a, 8} >mu I' and hence
Me >mu Mer. Finally, we obtain a | b from the induction hypothesis.]

A similar criterion to show the Church-Rosser modulo property will be used in Section
7.8. Here an ARS A is called Church-Rosser modulo an ARS B if the inclusion

* * * *
—— C =
AUB A B A

140

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:SN_encomp_Un_less_relto_encompeq
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Peak_Decreasingness.html#asm:peak_decreasing
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Peak_Decreasingness.html#lem:CR

7.2. Preliminaries

holds.

Definition 7.2.6 (Peak Decreasingness Modulo ™). Consider the two ARSs A =
(A, {=atacr) and B = (B,{—=s}secs). Then A is peak decreasing modulo B if there
exists a well-founded order > on I U J such that for all « € I and v € I U J the inclusion

o, C ot
@ ’Y_\/a'y

holds. Here Vary denotes the set {6 € IUJ |a>d ory > d}.
Lemma 7.2.7. If A is peak decreasing modulo B then A is Church-Rosser modulo B. &

Proof. Let 1 <>, -+ <a, Tn+1 and M = {aq,...,a,}. We use induction on M
with respect to >m to show z1 =% - <=5 - 1< xp41. If the given conversion is not
of the desired shape, there is an index 1 < ¢ < m such that x; o< xj41 —, @42 or
T n4 Tiy1l —ra Tiyo for some o € I and v € T U J. As the reasoning is similar, we
only consider the former case. By peak decreasingness there are labels 31, ..., 8, with
Ti <+, -+ g, Tit2 such that B; € Vary for all 1 < j < m. Writing N for the multiset
{B1,...,Bm}, we obtain M > (M — {a,7}) W N from a,y € M and {a,y} >mu N.
Therefore, the claim follows from the induction hypothesis. O

For the correctness proof in Section 7.6 we use a simpler notion than peak decreasing-
ness.

Definition 7.2.8 (Source Decreasingness). Let A = (A, —) be an ARS equipped with
a well-founded relation > on A, and we write b= ¢ if b — ¢ and a =b. We say that A
1s source decreasing if the inclusion

a— C oy
holds for all a € A. Here +— a — denotes the binary relation consisting of all pairs (b, c)
such that a — b and a — c¢. Moreover, 2% denotes the binary relation consisting of all
pairs of elements that are connected by a conversion in which all steps are labeled with
an element smaller than a.

Source decreasingness is the specialization of peak decreasingness to source labeling [108,
Example 6]. It is closely related to the connectedness-below criterion of Winkler and
Buchberger [173]. Unlike the latter, source decreasingness does not entail termination.
For instance, for a > b and a > c the non-terminating ARS

b a C
~_ 7 e —

is source decreasing but the connectedness-below criterion does not apply.

Lemma 7.2.9. Fvery source decreasing ARS is peak decreasing. 4

Peak decreasingness as a special case of decreasing diagrams was first considered
in our ITP publication [58] (the modulo version in Definition 7.2.6 is new). Source
decreasingness originates from our later FSCD contribution [59].

141

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Peak_Decreasingness.html#asm:peak_decreasing_mod
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Peak_Decreasingness.html#lem:CRm
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Peak_Decreasingness.html#asm:source_decreasing
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Peak_Decreasingness.html#sub:ars_source_decreasing

7. Abstract Completion, Formalized

7.2.3. Critical Peaks

Completion is based on critical pair analysis. In this subsection we present a version of
the critical pair lemma that incorporates primality (cf. Definition 7.2.13 below).

Definition 7.2.10 (Overlaps ®). An overlap of a TRSR is a triple ({1 — 11, p, la — r2),
consisting of two rewrite rules and a position, satisfying the following properties:

e there are renamings w1 and mo such that m(€; — r1),m2(ly — 12) € R (that is, the
rules are variants of rules in R),

e Var({y — r1)NVar(ly — r2) = @ (that is, the rules have no common variables),
e p € Posg(la),
e (1 and 3], are unifiable,

e if p=c then {1 — r1 and 5 — 79 are not variants of each other.

In general this definition may lead to an infinite set of overlaps, since there are infinitely
many possibilities of taking variable disjoint variants of rules. Fortunately it can be
shown that overlaps that originate from the same two rules are variants of each other.
Overlaps give rise to critical peaks and pairs.

Definition 7.2.11 (Critical Peaks @ and Pairs ™). Suppose ({1 — r1,p,ly — 13) is
an overlap of a TRS R. Let o be a most general unifier of {1 and l3|,. The term
lyo[lio], = lao can be reduced in two different ways:

lyollo), = lao

61 *)% &4}7’2

KQJ[T’lU]p o0

We call the quadruple (¢20(r10]p, p, 20, m20) a critical peak and the equation lyo(rio], ~
roo a critical pair of R, obtained from the overlap. The set of all critical pairs of R is
denoted by CP(R).

In our formalization of the above definition, instead of an arbitrary most general unifier,
we use the most general unifier computed by the formalized unification algorithm that is
part of IsaFoR(thereby removing one degree of freedom and making it easier to show that
only finitely many critical pairs have to be considered for finite TRSs).

A critical peak (¢,p,s,u) is usually denoted by ¢ &£ s 5 w. It can be shown that
different critical peaks and pairs obtained from two variants of the same overlap are
variants of each other. Since rewriting is equivariant under permutations, it is enough to
consult finitely many critical pairs or peaks for finite TRSs (one for each pair of rules
and each appropriate position) in order to conclude rewriting related properties (like
joinability or fairness, see below) for all of them.

We present a variation of the well-known critical pair lemma for critical peaks and its
formalized proof. The slightly cumbersome statement is essential to avoid gaps in the
proof of Lemma 7.2.15 below.

142

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/CP.html#def:overlap
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/CP.html#def:cpeaks2
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/CP.html#def:CP2

7.2. Preliminaries

Lemma 7.2.12. Let R be a TRS. Ift REE s Byru then one of the following holds: &

1. t\LR u,

p1\p2 : , iy
2. pa < p1 and tlp, <—— s|p, — ulp, is an instance of a critical peak, or

p2\p1 , . .
3. p1 < p2 and ulp, Py 8|py, = tlp, is an instance of a critical peak.

Proof. Consider an arbitrary peak t ,, g1 1 o1 4= 8 —py 157y .00 U I p1 || p2 then

_ ror
t =y la—ra,0n Hr202]py = ulrio]p, p1, =)ol U

If the positions of the contracted redexes are not parallel then one of them is above the
other. Without loss of generality we assume that p; > p2. Let p = p1\p2. Moreover, let
7 be a permutation such that ¢, — r = (¢} — r}) and 2 — r9 have no variables in
common. Such a permutation exists since we only have to avoid the finitely many variables
of ¢35 — 79 and assume an infinite set of variables. Furthermore, let o3 = 71! - oj. We
have t = s[rio1]p, = s[laoa[rio1]plp, and u = s[raoa]p,. We consider two cases depending
on whether p € Posz(¢2) in conjunction with the fact that whenever p = € then ¢; —
and /o — ro are not variants, is true or not.

e Suppose p € Posr(l3) and p = € implies that /1 — r; and fo — 79 are not
variants. Let o/(x) = o1(z) for x € Var(¢; — r1) and o'(z) = oa(z), otherwise.
The substitution ¢’ is a unifier of 45|, and £1: (f2|p)0’ = (f202)|, = lio1 = l10".
Then (¢; — 71,p,l — r2) is an overlap. Let o be a most general unifier of ¢3|, and

¢1. Hence Ega[rla]p L U0 < roo is a critical peak and there exists a substitution
7 such that o/ = o7. Therefore

6202[7“101}13 = (620[7"10]29>T <£ (520’)7‘ i) (7’20)7‘ = T909
and thus (2) is obtained.

e Otherwise, either p = € and ¢; — 71, o — ry are variants, or p ¢ Posx({2). In the
former case it is easy to show that 7101 = reo9 and hence ¢t = u. In the latter case,
there exist positions g1, g2 such that p = gi1q2 and ¢; € Posy({2). Let f2|, be the
variable z. We have 03(x)|q, = £101. Define the substitution o/ as follows:

/ _ 02(y)[T101]q2 ify==x
2(y) = {ag(y) ity 2o

Clearly oa(x) =g oh(x), and thus roo9 —* r90%. We also have
lyoa[rio]p = laoa|oh(z)]g, = laoh — rooy

Consequently, t —* s[rao)],, *<— u. Hence, (1) is concluded. O

143

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/CP.html#lem:peak_imp_join_or_S3_cpeaks

7. Abstract Completion, Formalized

An easy consequence of the above lemma is that for every peak t g+ s —r u we have
t lg uort<>cpwr) u. It might be interesting to note that in our formalization of the
above proof we do actually not need the fact that left-hand sides of rules are not variables.

Definition 7.2.13 (Prime Critical Peaks and Pairs &). A critical peak t & s < u is
prime if all proper subterms of s|, are normal forms. A critical pair is called prime if it

is derived from a prime critical peak. We write PCP(R) to denote the set of all prime
critical pairs of a TRS R.

Definition 7.2.14. Given a TRS R and terms s, t, and u, we write t Vs u if s —>7Jg t,
s —hu, and t L u ort $FPCP(R) U- 4

Lemma 7.2.15. Let R be a TRS. Ift &£ s S uis a critical peak then t V2 u. 4

Proof. First suppose that all proper subterms of s/, are normal forms. Then ¢t ~ u €
PCP(R) and thus t Vs u. Since also u Vs u, we obtain the desired ¢ V2 u. This leaves
us with the case that there is a proper subterm of s|, that is not a normal form. By
considering an innermost redex in s|, we obtain a position ¢ > p and a term v such that
s % v and all proper subterms of s|, are normal forms. Now, if v & 55y is an instance
of a critical peak then v —pcp(r) u. Otherwise, v | u by Lemma 7.2.12, since q £ e.
In both cases we obtain v Vs u. Finally, we analyze the peak ¢ £y by another
application of Lemma 7.2.12.

1. If t |5 v, we obtain ¢t Vs v and thus t V2 u, since also v Vs u.

2. Since p < ¢, only the case that v|, Ap— s|, = t|p is an instance of a critical peak
remains. Moreover, all proper subterms of s|, are normal forms and thus we have
an instance of a prime critical peak. Hence ¢ <>pcp(r) v and together with v V, u
we conclude t V2 u. 0

Lemma 7.2.16. Let R be a TRS. Ift R s —g u then t V2 u. v

Proof. From Lemma 7.2.12, either ¢t |r v and we are done, or ¢ g s =g u contains a
(possibly reversed) instance of a critical peak. By Lemma 7.2.15 we conclude the proof,
since rewriting is closed under substitutions and contexts. O

The following result is due to Kapur et al. [67, Corollary 4].

Corollary 7.2.17. A terminating TRS is confluent if and only if all its prime critical
pairs are joinable. 4

Proof. Let R be a terminating TRS such that PCP(R) C |p. We claim that R is
source decreasing. As well-founded order we take > = —>7JE. Consider an arbitrary
peak t g s - u. Lemma 7.2.16 yields a term v such that t Vs v Vs u. From the
assumption PCP(R) C | we obtain ¢ |p v lg u. Since s —% v, all steps in the
conversion t | v | u are labeled with a term that is smaller than s. Since the two
steps in the peak receive the same label s, source decreasingness is established and hence

we obtain the confluence of R from Lemma 7.2.5. The reverse direction is trivial. O

144

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Prime_Critical_Pairs.html#def:PCP
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Prime_Critical_Pairs.html#def:nabla
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Prime_Critical_Pairs.html#lem:cpeaks_imp_nabla2
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Prime_Critical_Pairs.html#lem:peak_imp_nabla2
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Prime_Critical_Pairs.html#lem:SN_imp_CR_iff_PCP_join

7.3. Correctness for Finite Runs

Note that unlike for ordinary critical pairs, joinability of prime critical pairs does not
imply local confluence.

Example 7.2.18. Consider the TRS R given by the three rules:
f(a) = b f(a) —» ¢ a—a

The set PCP(R) consists of the two pairs f(a) ~ b and f(a) ~ c, which are trivially
joinable. But R is not locally confluent because the peak b < f(a) —r c is not joinable.

The critical pair lemma (Lemma 7.2.12) in this section is due to Knuth and Bendix [71]
and Huet [61]. The primality critical pair criterion was first presented by Kapur, Musser,
and Narendran [67]. Our presentation is based on the simpler correctness arguments
from our earlier work [58, 59].

7.3. Correctness for Finite Runs

The original completion procedure by Knuth and Bendix [71] was presented as a concrete
algorithm. Later on, Bachmair, Dershowitz, and Hsiang [13] presented an inference
system for completion and showed that all fair implementations thereof (in particular the
original procedure) are correct. Abstracting from a concrete strategy, their approach thus
has the advantage to cover a variety of implementations. Below, we recall the inference
system, which constitutes the basis of the results presented in this section.

Definition 7.3.1 (Knuth-Bendix Completion). The inference system KBs of abstract
(Knuth-Bendiz) completion operates on pairs (£, R) of sets of equations € and rules R
over a common signature F. It consists of the following inference rules, where we write
E,R for a pair (E,R) and ¥ denotes disjoint set union:

deduce &R if s R —p t compose ERW{s > 1) ift —wr u
u o :

EU{s~thLR R R PO € RU{s - ul R
EW{s~t}, R | EW{s~=t}, R .
E,RU{s —t} ifs>1 EU{u=t}h R ifs oru

orient simplify
EW{s~t},R ift> s EW{s~t}R it
ERU{t— s} EU{s~u},R R
~ t
delete W collapse m ift >R u

Here > is a fized reduction order on T (F,V).

Definition 7.3.1 differs from most of the inference systems in the literature (like those
devised by Bachmair and Dershowitz [10, 12]) in that we do not impose an encompassment

145

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#ind:KB

7. Abstract Completion, Formalized

condition on collapse. As long as we only consider finite runs (see Definition 7.3.5 below)—
like in Sections 7.3 to 7.5—this change is valid (as shown by me and Thiemann [142]).

Concerning notation, we write (£, R) ¢ (£’, R’) whenever we can obtain (£, R’) from
(€, R) by applying one of the inference rules of Definition 7.3.1. While it is well-known
that applying the inference rules of KBs does not affect the equational theory induced by
EUR, our formulation is new and paves the way for a simple correctness proof.

Lemma 7.3.2. Suppose (£,R) F¢ (€', R"). Then, the following two inclusions hold:

1. If s —— t then s — - ——— - +— t. 4
EUR R/ E'UR! R/

2. If s —— t then s «—— t. 4
ETUR! EUR

Proof. By inspecting the inference rules of KBs we easily obtain the following inclusions:

deduce
EUR C &UR E'UR'QSURU?-?
orient
EUR C &UR' URN! EUR C EURUET
delete
EUR C fUR U= EUR C EUR
compose
EUR C fURU— EUR C EURU— - —
R R R R
simplify
EUR C URU— -U— - +— EUR C EURU+— - —-U— - —
RO & R R & €& R
collapse
EUR C fURU— - — EUR C EURU— - —
R & R R

Consider for instance the collapse rule and suppose that s~t € EUR. If s=t € £ then
s~tec & because E CE If s~tc Rtheneithers~teR ors spuwithu~tecg
and thus s —g/ - —¢/ t. This proves the inclusion on the left. For the inclusion on the
right the reasoning is similar. Suppose that s~ t€ E'UR’. If s~t € R thens~teR
because R C R. If s =t € £ then either s ~ t € £ or there exists arule u -t € R
with © —x s and thus s g+ - > t.

146

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_subset
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_subset'

7.3. Correctness for Finite Runs

Since rewrite relations are closed under contexts and substitutions, the inclusions in
the right column prove statement (2). Moreover note that each inclusion in the left
column is a special case of

EUR C — ——— - ¢+—

R’ EUR' R
and thus also statement (1) follows from closure under contexts and substitutions of
rewrite relations. O

Corollary 7.3.3. If (§,R) Ff (€', R') then the relations <?*R> and <7:7—z7> coincide. @

The next lemma states that termination of R is preserved by applications of the
inference rules of KBs. It is the final result in this section whose proof refers to the
inference rules.

Lemma 7.3.4. If (§,R) F{ (§,R') and R C > then R’ C >. 4

Proof. We consider a single step (£,R) F¢ (€', R’). The statement of the lemma follows
by a straightforward induction proof. Observe that deduce, delete, and simplify do not
change the set of rewrite rules and hence R’ = R C >. For collapse we have R’ C R C >.
In the case of orient we have R’ = R U {s — t} with s > ¢ and hence R’ C > follows from
the assumption R C >. Finally, consider an application of compose. So R = R"W{s — t}
and R’ = R" U {s — u} with t - u. We obtain s > ¢ from the assumption R C >.
Since > is a reduction order, t > u follows from ¢ —x w. Transitivity of > yields s > u
and hence R’ C > as desired. O

To guarantee that the result of a finite KB¢ derivation is a complete TRS equivalent to
the initial £, KBs derivations must satisfy the fairness condition that prime critical pairs
of the final TRS R,, which were not considered during the derivation are joinable in R,.

Definition 7.3.5 (Finite Runs and Fairness). A finite run for a given ES & is a finite
sequence

E,Ro Ff E1,R1 ¢ -+ ¢ &Ry

such that & = € and Ro = @. The run is fair if £, = I and

n

PCP(R,) C Ul J«=

(Rn) € g, iL:J() :

The reason for writing <—¢, instead of & in the definition of fairness is that critical

pairs are ordered, so in a fair run a (prime) critical pair s &~ t of R,, may be ignored by

deduce if t ~ s was generated, or more generally, if s <=+¢, ¢ holds at some point in the

run. Non-prime critical pairs can always be ignored. Note that our fairness condition

differs from earlier notions by permitting that (prime) critical pairs may be joinable in

Ry. This was done to allow for more flexibility in implementations. Our proofs smoothly
extend to the relaxed condition.

147

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_conversion
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_rtrancl_rules_subset_less

7. Abstract Completion, Formalized

According to the main result of this section (Theorem 7.3.8), a completion procedure
that produces fair runs is correct. The challenge is the confluence proof of R,,. We show
that R,, is peak decreasing by labeling rewrite steps (not only in R,) with multisets of
terms. As well-founded order on these multisets we take the multiset extension >, of
the given reduction order >.

Definition 7.3.6 (Labeled Rewriting ®). Let — be a rewrite relation and M a finite
multiset of terms. We write s Moy if s — t and there exist terms s',t' € M such that
s’ > s andt' >t. Here > denotes the reflexive closure of the given reduction order >.

Since both — and > are closed under contexts and substitutions, C|[to] M o [uo]
whenever ¢t 2% u and M’ = {C|so] | s € M}, for all contexts C' and substitutions o.
Lemma 7.3.7. Let (€,R) ¢ (', R). If t TMH wand R' C > then t % u. &

u TUR!
Proof. We consider a single (EUR)-step from ¢ to u. The lemma follows then by induction
on the length of the conversion between ¢ and u. According to Lemma 7.3.2(1) there
exist terms v and w such that

We claim that the (non-empty) steps can be labeled by M. There exist terms ', v’ € M
with ¢ >t and v/ > u. Since R’ C >, we have t > v and u > w and thus also ¢ > v and
u' > w. Hence

M = M = = M
t— vV—— w —u

R E'UR! R
M«
and thus also t +——" u. O
E'UR!
Theorem 7.3.8. For every fair run I’ 4
&0, Ro b &1,R1 B¢ -o0 b &Ry

the TRS R, is a complete presentation of £.

Proof. We have &£, = &. From Corollary 7.3.3 we know that <=t = <»% . Lemma 7.3.4
yields R,, C > and hence R,, is terminating. It remains to prove that R, is confluent.
Let

My Mo
t+—s—u
Rn Rn

be a labeled local peak in R,,. From Lemma 7.2.16 we obtain ¢ V2 u. Let v Vs w appear
in this sequence (so t = v or w = u). We obtain

n
, S U —
(v, w) Iz, ZLJO P

148

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#def:mstep
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:msteps_subset
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Completion_Fairness.html#lem:finite_fair_new_run

7.3. Correctness for Finite Runs

from the definition of Vs and fairness of I'. We label all steps between v and w with the
multiset {v,w}. Because s > v and s > w we have M1 >nu {v,w} and My >y {v, w}.
Hence by repeated applications of Lemma 7.3.7 we obtain a conversion in R,, between v
and w in which each step is labeled with a multiset that is smaller than both M; and
Mos. Tt follows that R, is peak decreasing and thus confluent by Lemma 7.2.5. O

A completion procedure is a program that generates KB runs. In order to ensure that
the final outcome R, is a complete presentation of the initial ES, fair runs should be
produced. Fairness requires that prime critical pairs of R,, are considered during the run.
Of course, R, is not known during the run, so to be on the safe side, prime critical pairs
of any R that appears during the run should be generated by deduce. In particular, there
is no need to deduce equations that are not prime critical pairs. So we may strengthen
the condition s g4 - —x t of deduce to s = ¢t € PCP(R) without affecting Theorem 7.3.8.

The following example shows that the success of a run may depend on the order in
which inference rules are applied [14].

Example 7.3.9. Consider the ES £ consisting of the four equations
arb axc f(b) = b f(a)~d

and the reduction order >|po with the partial precedence a > b >d and a > ¢ > d but
where b and c are incomparable. One possible run is

{a
{b~c, f(b)~d},{a—b,f(b) = bl)
% ({b ~ c,b ~d}, {a — b,f(b) — b})

(5, @) I_?rient“l‘ (
(
(

Fgert ({b~c},{a — b,f(b) = b,b — d})
(
(
(

22

c,f(a) = d},{a — b,f(b) — b})

22

simplify+
|_f

l_}:ollapse {b ~C f() ~ b}7 {a — b7 b — d})
l_;fmp/if:v'i' {d ~C f() ~ d} {a — b b — d})

Iﬁ;m’ent"l‘ g,{a_>b b—d C_>df()—>d})

which derives a complete presentation of £. However, the run

(&,2) Fget ({a=b,f(b) ~b,f(a) ~d},{a —c})
= ({c & b, f(b) ~ b, f(c) ~ d}, {a = c})
Fee ({c & b}, {a — ¢, f(b) = b, f(c) — d})
cannot be extended to a successful one because the equation c = b cannot be oriented.

The following example shows that even after a KBf run derived a complete system,
exponentially many steps might be performed to obtain a canonical TRS.

Example 7.3.10. Consider the ESs &, = {f(g'(c)) ~ g(f'(c)) | 0 < i < n} forn > 1.
By taking the Knuth-Bendiz order >p, with precedence f > g and where w(f) = w(g), all

149

7. Abstract Completion, Formalized

equations can be oriented from left to right. Since there are no critical pairs, the resulting
TRSs R, = {f(g'(c)) — g(f'(c)) | 0 < i < n} are complete by Theorem 7.3.8. However, it
18 not canonical since right-hand sides are not normal forms. When applying compose
steps in a naive way by simplifying the rules in descending order, exponentially many
steps are required to obtain a canonical system [118]. However, when processing the rules
i reverse order only a polynomial number of steps is necessary.

This section resumes our results on finite runs [58]. The presented correctness proof
differs substantially from all earlier proofs in that it does not rely on a proof order [13]
but is instead based on peak decreasingness. It supports a relaxed side condition of
the collapse rule as first used in [142], but in contrast to the latter demands only prime
critical pairs to be considered.

7.4. Canonicity and Normalization Equivalence

A natural question arising in the context of completion concerns uniqueness of resulting
systems: Is there a single complete presentation of a given equational theory conforming
to a certain reduction order? Métivier [87] showed that for reduced and hence canonical
systems this is indeed the case, up to renaming variables. In this section we revisit his
work, aiming at generalizing his uniqueness result for canonical TRSs and at establishing
a transformation to simplify ground-complete TRSs. A key notion to that end is
normalization equivalence.

Definition 7.4.1 (Conversion/Normalization Equivalence). Two ARSs A and B are said
to be (conversion) equivalent if <% = «=% and normalization equivalent if —>!A = —>!B.

The following example shows that these two equivalence notions do not coincide.

Example 7.4.2. Consider the four ARSs:

./41: a——b Bll a«—»b

As: a——b By: a b
While A1 and By are conversion equivalent but not normalization equivalent, the ARSs
Ao and By are normalization equivalent but not conversion equivalent.

The easy proof (by induction on the length of conversions) of the following result is
omitted.

Lemma 7.4.3. Normalization equivalent terminating ARSs are equivalent. 4

Note that the termination assumption can be weakened to weak normalization. However,
the present version suffices to prove the following lemma that we employ in our proof of
Métivier’s transformation result [87] (Theorem 7.4.7 below).

150

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:WN_NE_imp_conv_eq

7.4. Canonicity and Normalization Equivalence

Lemma 7.4.4. Let A and B be ARSs such that NF(B) C NF(A) and either

1. -5 C —>j‘ or 4
2. —=p C =% and B is terminating. 4

If A is complete then B is complete and normalization equivalent to A.

Proof. We first show —>!B C —>!A. In case (1), from the inclusion —p C —>j we infer that
B is terminating. Moreover, —% C —% and, since NF(B) C NF(A), also —}; C —',. For
case (2), —4 € —', holds because —} C <%, so by confluence of A and NF(B) C NF(A)
we obtain —>!B C —>!A. Next we show that the reverse inclusion —>!A - —>!B holds in both
cases. Let a —'4 b. Because B is terminating, a — ¢ for some ¢ € NF(B). So a —', ¢
and thus b = ¢ from the confluence of A. It follows that A and B are normalization
equivalent. It remains to show that B is locally confluent. This follows from the sequence
of inclusions

B =5 C = C = Ae C© o Ao

where we obtain the inclusions from —5 C =%, confluence of A, termination of A, and
normalization equivalence of A and B, respectively. O

In the above lemma, completeness can be weakened to semi-completeness (that is, the
combination of confluence and weak normalization), which is not true for Theorem 7.4.7
as shown by Gramlich [51]. Again, the present version suffices for our purposes. Condition
(2) of the lemma can be regarded as a specialization of an abstract result of Toyama [167,
Corollary 3.2] to complete systems and will be used in Section 7.7.

Theorem 7.4.7 below shows that we can always eliminate redundancy in a complete
TRS. This is achieved by the following two-stage transformation, where, given a TRS
R, we write R for a set of representatives of the equivalence classes of rules in R with
respect to = (that is, R is a variant-free version of R).

Definition 7.4.5. Given a terminating TRS R, the TRSs R and R are defined as
follows:

R={{—>rlg|l—reR}- 4
R={{—=reR|LENFR\{{—r})} 4

Here tlgr stands for an arbitrary but fized normal form of t.

The TRS R is obtained from R by first normalizing the right-hand sides and then
taking representatives of variants of the resulting rules, thereby making sure that the
result does not contain several variants of the same rule. To obtain R we remove the
rules of R whose left-hand sides are reducible with another rule of R. (This is the only
place in the paper where variant-freeness of TRSs is important.)

The following example shows why the result of R has to be variant-free.

151

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:complete_NE_intro
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:complete_NE_intro1
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#def:dot
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#def:ddot

7. Abstract Completion, Formalized

Example 7.4.6. Consider the TRS R consisting of the four rules
f(r) — a f(y) = b a—c b—c

Then the first transformation without taking representatives of rules would yield R
f(z) = c f(y) —c a—c b—c

and the second one R

a—c b—c

Note that R is not equivalent to R. This is caused by the fact that the result of the first
transformation was no longer variant-free.

The following result, due to Métivier [87, Theorem 7], allows us to obtain a canonical
representation of any complete TRS.? Our proof below proceeds by induction on the
well-founded encompassment order [>.

Theorem 7.4.7. If R is a complete TRS then R is a normalization and conversion
equivalent canonical TRS. v

Proof. Let R be a complete TRS. The inclusions R C R C —>7J5 are obvious from the
definitions. Since R and R have the same left-hand sides, their normal forms coincide.
We show that NF(R) € NF(R). To this end we show that £ ¢ NF(R) whenever £ — r € R
by induction on £ with respect to the well-founded order »>. If £ — 7 € R then £ ¢ NF(R)
holds. So suppose £ — 1 ¢ R. By definition of R, £ ¢ NF(R\ {£ — r}). So there exists a

rewrite rule ¢ — r’ € R different from ¢ — r such that ¢ &> ¢. We distinguish two cases.

o If £ > ' then we obtain ¢ ¢ NF(R) from the induction hypothesis and hence
¢ ¢ NF(R) as desired.

e If / = ¢ then by Lemma 7.2.1 there exists a renaming o such that ¢ = (0.
Since R is right-reduced by construction, » and r’ are normal forms of R. The
same holds for o because normal forms are closed under renaming. We have
rp L ="Lc—p r'o. Since R is confluent as a consequence of Lemma 7.4.4(1),

r = 1'oc. Hence ¢ — 1’ is a variant of ¢ — r, contradicting the fact that R is

variant-free (by construction).

From Lemma 7.4.4(1) we infer that the TRSs R and R are complete and normalization
equivalent to R. The TRS R is right-reduced because R C R and R is right-reduced.
From NF(R) = NF(R) we easily infer that R is left-reduced. It follows that 7R is canonical.
It remains to show that R is not only normalization equivalent but also (conversion)

equivalent to R. This is an immediate consequence of Lemma 7.4.3. 0

3We were not able to reconstruct enough detail for an Isabelle/HOL formalization from its original
proof. Another textbook proof [163, Exercise 7.4.7] involves 13 steps with lots of redundancy.

152

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:canonical_NE_conv_eq

7.4. Canonicity and Normalization Equivalence

Before we proceed to show uniqueness of normalization equivalent TRSs, we need the
following technical lemma.

Lemma 7.4.8. Let R be a right-reduced TRS and let s be a reducible term which is
minimal with respect to >. If s —>7§ t then s — t is a variant of a rule in R. 4

Proof. Let £ — r be the rewrite rule that is used in the first step from s to t. So s B> /.
By assumption, s > ¢ does not hold and thus s = ¢ because &> = > U =. According
to Lemma 7.2.1 there exists a renaming o such that s = fo. We have s = ro =3, t.
Because R is right-reduced, » € NF(R). Since normal forms are closed under renaming,
also ro € NF(R) and thus ro = t. It follows that s — ¢ is a variant of £ — r. O

In our formalization, the above proof is the first spot of this section where we actually
need that R satisfies the variable condition (more precisely, only the part of it that
right-hand sides of rules do not introduce fresh variables). We are now in a position to
present the main result of this section.

Theorem 7.4.9. Normalization equivalent reduced TRSs are unique up to literal simi-
larity. 4

Proof. Let R and S be normalization equivalent reduced TRSs. Suppose £ — r € R.
Because R is right-reduced, r € NF(R) and thus ¢ # r. Hence ¢ —>§ r by normalization
equivalence. Because R is left-reduced, ¢ is a minimal (with respect to) R-reducible
term. Another application of normalization equivalence yields that ¢ is minimal S-
reducible. Hence ¢ — r is a variant of a rule in § by Lemma 7.4.8. O

Example 7.4.10. Consider the rewrite system R of combinatory logic with equality test,
studied by Klop [70]:

Q(@(Q(s,z),y),z) = Q(z,Q(z,Q(y, 2))) Q(Q(K,z),y) =z
Q(l,z) =z @(@(D,z),z) - E

The rewrite system R is reduced, but neither terminating nor confluent. One might ask
whether there is another reduced rewrite system that computes the same normal forms
for every starting term. Theorem 7.4.9 shows that R is unique up to variable renaming.

As the final result of this section, we prove this result of Métivier [87, Theorem 8] to
be an easy consequence of Theorem 7.4.9. Here a TRS R is said to be compatible with a
reduction order > if ¢ > r for every rewrite rule £ — r of R.

Theorem 7.4.11. Let R and S be equivalent canonical TRSs. If R and S are compatible
with the same reduction order then R = S. 4

Proof. Suppose R and S are compatible with the reduction order >. We show that
—4 C k. Let s —}% t. We show that t € NF(S). Let u be the unique S-normal form of
t. We have t —>£9 w and thus ¢ <=7 u because R and S are equivalent. Since ¢t € NF(R),
we have u —% t. If t # u then both t > u (as t —% u) and u > t (as u —%, t), which

153

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:right_reduced_min_step_rule
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:reduced_NE_imp_unique
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Normalization_Equivalence.html#lem:EQ_imp_litsim

7. Abstract Completion, Formalized

is impossible. Hence ¢ = u and thus ¢t € NF(S). Together with s <=% ¢, which follows
from the equivalence of R and S, we conclude that s —>IS t. We obtain —)15 - —)'R by
symmetry. Hence R and S are normalization equivalent and the result follows from
Theorem 7.4.9. U

This section resumes our results on canonicity [59]. While the results of Theorem 7.4.7
and Theorem 7.4.11 are due to Métivier[87], we present novel and simpler proofs based
on the (new) auxiliary results Lemma 7.4.4 and Theorem 7.4.9.

7.5. Ground Completion

In this section we focus on the special case of ground equations, that is, equations where
both sides are ground terms.

Definition 7.5.1 (Ground Completion). The inference system KBg consists of the
inference rules of KBs except for deduce.

Snyder [128] proved that sets of ground equations can always be completed by KBy,
provided a ground-total reduction order > is used, that is, for all ground terms s, ¢ € T (F)
either s > t,t > s, or s = t. He further proved that every reduced ground rewrite system is
canonical and can be obtained by completion from any equivalent set of ground equations.
Below, we present the proofs of these results that we formalized in Isabelle/HOL.

The following example illustrates the inference system KBg on a set of ground equations.

Example 7.5.2. Consider the ES £ consisting of the ground equations
f(f(f(a))) = f(b) f(f(b)) =~ c f(c)~a f(a) = f(f(b))

As reduction order we take LPO induced by the total precedence a > b > c > f. We start
by applying orient to the last two equations:

f(f(f(a))) = f(b) f(f(b)) =~ c f(c) «+ a f(a) = f(f(b))
An application of collapse produces

f(f(f(a))) = f(b) f(f(b)) =~ c f(c) < a f(f(c)) = f(f(b))
Next we orient the second equation:

f(f(f(a))) =~ f(b) f(f(b)) — ¢ f(c) < a f(f(c)) = f(f(b))
Two applications of simplify produce

f(f(f(f(c)))) =~ f(b) f(f(b)) — ¢ f(c) < a f(f(c)) =~ c

We continue by orienting the last equation:

f(f(f(f(c)))) ~ f(b) f(f(b)) — ¢ f(c) < a f(f(c)) = ¢

154

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#ind:gkb

7.5. Ground Completion

Two applications of simplify produce

c =~ f(b) f(f(b)) — ¢ f(c) < a f(f(c)) = ¢
Orienting the remaining equation followed by a collapse step produces

c « f(b) fc)=c f(c) < a f(f(c)) = ¢

Finally, we orient the only remaining equation and collapse, compose, simplify, and delete
exhaustively, thereby obtaining the TRS R

c « f(b) f(c) —c c<+a
which constitutes a canonical presentation of &.

The absence of deduce from KBg does not hurt for ground systems. If s < - — ¢ and
the two contracted redexes are at parallel positions then trivially s — - < t. If the steps
are identical then s = t. In the remaining case one of the contracted redexes is a subterm
of the other contracted redex, and the effect of deduce is achieved by the collapse inference
rule. On the contrary, the absence of deduce is crucial to conclude that KBg derivations
are always finite, as illustrated by the following simple example.

Example 7.5.3. Consider the ground ES &£ consisting of the single equation a ~ b and
LPO induced by the precedence a > b. Using KB (that is, KBg with deduce) the following
infinite run is possible:

(&,2) Fge (,{a — b})
H< ({b = b}, {a — b})
l_?elete (@’ {a - b})
l_?educs o

Lemma 7.5.4. There are no infinite runs £y, @ Fg £1,R1 bg --- for finite ground ES
&o.- 4

Proof. Let - denote the lexicographic combination of the multiset extension >, of the
reduction order > with the standard order on natural numbers >y. Furthermore let
M(&E,R) denote the (finite) multiset of left-hand sides and right-hand sides occurring in
Eand R

MER) = J{{sth (s, e u [JUs 1} | (s.8) € R}

and consider the function P that maps the pair (£,R) to (M(E,R),|€]). Now it is
straightforward to verify that any infinite Fg-sequence would give rise to an infinite
sequence P (&, @) = P(&€1,R1) = - -+, contradicting the well-foundedness of >. O

Theorem 7.5.5. If > is total on E-equivalent ground terms then every maximal KBg
run produces an equivalent canonical presentation for every ground ES £. 4

155

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:SN_on_GKB
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:ground_max_run_canonical

7. Abstract Completion, Formalized

Proof. Consider a maximal KBg run &, @ Fg &,R1 g -+ g &4, Ry wWhere & = €
is a ground ES. Because the run is maximal, no inference rule of KB is applicable to
the final pair (&,,Ry). In particular, compose and collapse are not applicable and hence
the final TRS R,, is reduced. Since R, is ground, this means in particular that there
are no critical pairs. Moreover, termination of R,, follows from Lemma 7.3.4 (since any
KBg run is also a KBf run), so R, is canonical. From Corollary 7.3.3 and the inclusion
KBg C KBf we infer that £ and &, UR,, are equivalent. It follows that > is total on
&En-equivalent ground terms and thus &, = &, for otherwise the run could be extended
with an application of delete or orient. Hence R, and £ are equivalent. O

The restriction on the reduction order > in the above correctness theorem is easy to
satisfy. In particular, it holds for any LPO or KBO based on a total precedence.

Next we consider completeness of ground completion. Our proof makes use of the
following concept.

Definition 7.5.6 (Random Descent ®). An ARS A has random descent if for every
conversion a <=* b with normal form b we have a =™ b with n+1 =1r. Herel (r) denotes
the number of <— (—) steps in the conversion a <=* b.

Random descent is useful in the analysis of rewrite strategies [109]. It generalizes a
number of earlier concepts, including the property <— - — C (— - <) U= which is known
as WCR1 and holds for left-reduced ground TRSs. We formalized a new, short and direct
proof of the following result due to van Oostrom [107]. Here an element a is said to be
complete if it is both terminating (there are no infinite rewrite sequences starting at a)
and confluent (if b *<— a —* ¢ then b | ¢).

Theorem 7.5.7. Let A be an ARS with random descent. If a <=* b with normal form b
then a is complete and all rewrite sequences from a to b have the same length. 4

Proof. Let I (r) be the number of <— (—) steps in the conversion from a to b. We have
I < rsince n+ [= r for some n by random descent. First we prove termination of a. For
a proof by contradiction, suppose the existence of an infinite rewrite sequence

a=ay—ay —az — -

Clearly, a ="' a,_; and thus there exists a conversion a,_; *— a <»* b with r backwards
and r forwards steps. Hence a,_; = b by another application of random descent and
therefore b — a,_;41, contradicting the fact that b is a normal form. Next we prove
confluence of a. Suppose ¢ *< a —* d. We obtain the two conversions ¢ <»* b and
d <=* b, which are transformed into ¢ | d by two applications of random descent. Finally,
assume there are two rewrite sequences a —" b and a =" b from a to b of length m and
n. Reversing the first sequence and appending the second one yields a conversion b <—* b
with m backwards and n forwards steps. A final application of random descent yields
b —F b for some k with k + m = n. Since b is a normal form, k = 0 and thus m = n as
desired. O

156

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#def:RD
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:RD_NF

7.5. Ground Completion

In the series of lemmas below, we establish that reduced ground TRSs are canonical
and have random descent.

Lemma 7.5.8. Left-reduced TRSs enjoy the WCR1 property. 4

Proof. This follows from a straightforward case analysis on the relative positions of the
two redexes that are part of a peak together with the fact that for left-reduced TRSs the
left-hand side alone uniquely determines the employed rewrite rule. O

Lemma 7.5.9. Left-reduced ground TRSs have random descent. 4

Proof. Let R be a left-reduced TRS and s <—+* ¢ a conversion between two arbitrary but
fixed terms s and ¢ such that ¢ is a normal form. We proceed by induction on the length
of this conversion. If it is empty or the first step is to the right, we are done. Otherwise,
we have s <— u <=* t where the conversion between v and ¢ has [(r) < (—) steps and
obtain u —* ¢ with k 4+ [= r by the induction hypothesis. The remainder of the proof
proceeds by induction on k together with Lemma 7.5.8. O

Lemma 7.5.10. Right-reduced ground TRSs are terminating. v

Proof. Let R be a right-reduced ground TRS. For the sake of a contradiction, assume
that R is non-terminating. Then there is a minimal non-terminating term ¢ (that is, all
its proper subterms are terminating). This means that after a finite number of non-root
steps ¢ —* u there will be a root step u — v such that v is non-terminating. But
since R is right-reduced and ground, v is a ground normal form, deriving the desired
contradiction. O

Corollary 7.5.11. Reduced ground TRSs are canonical and have random descent. &

Proof. Let R be a reduced ground TRS. Then, by Lemma 7.5.9, R has random descent.
Moreover, by Lemma 7.5.10, R is terminating. Finally, since all terms are R-terminating,
confluence of R is an immediate consequence of the definition of random descent. O

Theorem 7.5.12. For every ground ES £ and every equivalent reduced ground TRS R
there exist a reduction order > and a derivation £,0 kg -+ Fg O, R. 4

Proof. Let > be a reduction order that contains R and is total on £-equivalent ground
terms. Consider a maximal KBy run starting from £ and using >. According to
Theorem 7.5.5, the run produces an equivalent reduced TRS R’. Since R C > and
R’ C >, we obtain R = R’ from Theorem 7.4.11. It remains to show that > exists. Let
T be a total precedence and define s > ¢ if and only if s <% ¢ and either dg(s) > dr(t)
or both dg(s) = dg(t) and s Jjpo t.* Here dg(u) is the number of rewrite steps in
R to normalize the term w, which is well-defined since all normalizing sequences in a
reduced ground TRS have the same length as a consequence of Corollary 7.5.11 and
Theorem 7.5.7. It is easy to show that > has the required properties. The only interesting

“In the formalization we actually use Jkyo with all weights set to 1, since in contrast to LPO, for
KBO ground-totality for total precedences has already been formalized before.

157

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:left_reduced_WCR1
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:left_reduced_ground_RD
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:right_reduced_ground_SN
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:reduced_ground_RD_and_canonical
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ground_Completion.html#lem:gkb_complete

7. Abstract Completion, Formalized

cases are closure under contexts and substitutions. Both are basically handled by the
following observation: dg(C|[to]) = dr(C[tlo]) + dr(t) for any term ¢ (which holds due
to random descent together with termination). This allows us to lift dg(s) = dg(t) and
dr(s) > dr(t) into arbitrary contexts and substitutions. O

The above result cannot be generalized to left-linear right-ground systems, as shown
in the following example due to Dominik Klein (personal communication).

Example 7.5.13. Consider the ES £ consisting of the two equations f(z) ~ f(a) and
f(b) = b. Let > be a reduction order. If f(b) > b does not hold, no inference rule of KBg
is applicable to (€,@). If f(b) > b then the second equation can be oriented

(€,2) F¢ ({f(2) = f(a)}, {f(b) = b})

but no further inference steps of KBy are possible. Hence completion will fail on &.
Nevertheless, the TRS R consisting of the rewrite rule f(2) — b constitutes a canonical
presentation of £.

The correctness result of ground completion (Theorem 7.5.5) is due to Snyder [128],
and our formalized proof basically follows his approach. In addition, we present a new
completeness proof based on random descent (Theorem 7.5.12).

7.6. Correctness for Infinite Runs

Completion as presented in the preceding sections does not always succeed in producing a
finite complete presentation. It may fail because an unorientable equation is encountered
or it may run forever. In the latter case it is possible that in the limit a possibly infinite
complete presentation is obtained. In this case, completion can serve as a semi-decision
procedure for the validity problem of the initial equations [62]. In this section we give a
new proof that fair infinite runs produce complete presentations of the initial equations,
provided the collapse rule is restored to its original formulation (cf. Definition 7.6.2 below).

The reason why this restriction is necessary is provided by the following example (due
to Baader and Nipkow [9]), which shows that the correctness result (Theorem 7.3.8) of
Section 7.3 does not extend to infinite runs without further ado.

Example 7.6.1. Consider the ES £ consisting of the equations

aba =~ ab bbb

and LPO with precedence a > b as reduction order. After two orient steps, we apply deduce
to generate the two critical pairs:

aba — ab bb — b abab =~ abba bb =~ bb
The second one is immediately deleted and the first one is simplified:

aba — ab bb — b abb ~ aba

158

7.6. Correctness for Infinite Runs

and subsequently oriented:
aba — ab bb — b aba — abb
At this point we use the third rule to collapse the first rule:
abb =~ ab bb — b aba — abb
An application of simplify followed by delete results in:
bb — b aba — abb
Repeating the above process produces
bb — b aba — abbb
and then
bb — b aba — abbbb

ad infinitum. Since none of the rules aba — ab™ survives, in the limit we obtain the TRS
consisting of the single rule bb — b. This TRS is complete but not equivalent to £ as
witnessed by non-joinability of aba and ab.

Definition 7.6.2 (Knuth-Bendix Completion). The inference system KB; consists of
the inference rules deduce, orient, delete, compose, and simplify of KBs together with the
following modified collapse rule:

E,RY{t — s}

‘tD
EU{u= s} R it =

collapse.

Here the condition t > u is defined as t — u using some rule £ — r € R such that
t> L.

Note that the collapse step in Example 7.6.1 does not satisfy the encompassment
condition from the previous definition.

We write (€, R) ki (£, R') if (', R’) can be reached from (£, R) by employing one of
the inference rules of Definition 7.6.2.

Definition 7.6.3. An infinite run is a maximal sequence of the form
[: (€0, Ro) Fi (€1, R1) i (E2,R2) Fi
with Ro = @. We define

£ =& Roo = | JRi &=UNE Ro=J[R
205> >0 j>i

120 120

Equations in £, and rules in R, are called persistent. The run I' is called fair if £, = &
and the inclusion PCP(Ry,) C Lz U <=¢, holds.

159

7. Abstract Completion, Formalized

Bachmair et al. [13] proved that for every fair run satisfying &, = @ the TRS R,
constitutes a complete presentation of £&. The remainder of this section is dedicated to
establish the same result, but on a different route without encountering proof orders.

Compared to our proofs for finite runs from Section 7.3, in the following we will
disentangle our reasoning about rules from our reasoning about equations and furthermore
replace peak decreasingness by the slightly simpler concept of source decreasingness.
So why not use this more modular and simpler approach also in our earlier proofs
for finite runs? The main difference between the two situations is the encompassment
condition of deduce. Unfortunately, without the encompassment condition the equivalent
of Lemma 7.6.10 below for finite runs breaks down and we are forced to reason about rules
and equations simultaneously (Lemma 7.3.7). Nevertheless, it seems useful to also have
a correctness proof for KB (lacking the encompassment condition), since out of the four
completion tools we are aware of (CiME3 [26], KBCV [159], mkbTT [178], Slothrop [170]),
only CiME3 actually implements the encompassment condition.

Lemma 7.6.4. If (£,R) F; (E',R') then the following inclusions hold:

1. & UR C «+* 4
EUR

Q.E\E’Q(ﬁ-é”)U(E’-?)UR’UR’_lU: 4

3.R\R'g(%-5')u(nh?) 4

Together these properties reveal that inference steps do not change the conversion
relation.

Corollary 7.6.5. If (§,R) F (£, R') then the relations <—— and +—— coincide. &
EUR EUR!

Below, we consider an infinite run I': (£, Ro) Fi (1, R1) i (€2, R2) Fi - -+ such that
&, = @. First we show that all rewrite rules are compatible with the reduction order >.

Lemma 7.6.6. The inclusions R, C Roo C > hold. v

Next, we verify that every equality in & can be turned into a valley in R,. Note that
in contrast to the proof order approach [13] and to the correctness proof for finite runs
given in Section 7.3 we reason separately about equations and rules. This more local
rationale simplifies the analysis as we can use different well-founded induction arguments
for the two cases, rather than synthesizing an order that covers both.

Lemma 7.6.7. The inclusion Eo C lg_ holds. v

Proof. Let s =t € &; for some i > 0. By induction on {s, ¢t} with respect to >, we show
s lr, t. Because &, = @, s~ t e &1\ ¢&; for some j > i. Following Lemma 7.6.4(2),
we distinguish three cases.

e lf s=teR;U 72;1 U = then the claim trivially holds.

160

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_subset'
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_E_subset
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_R_subset
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:KB_conversion
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:R_per_subset_R_inf
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:run_R_less
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:E_i_subset_join_R_inf

7.6. Correctness for Infinite Runs

o If s =g, wand u~t € &; for some term u then {s,t} >mnu {u,t} and thus u |z _ ¢
by the induction hypothesis. Hence also s |z __ t.

e Similarly, if s ~ u € £ and u g, < t for some term u then {s,t} >mnyu {s,u} and

we obtain s |z _ t as in the preceding case.]
Corollary 7.6.8. The inclusion — C %) holds. 4

In order to show confluence of R, we use source decreasingness as defined in Section
7.2, employing the following extension of the reduction order >.

Definition 7.6.9. We define = = ((>U) /)7,

According to Lemma 7.2.3, > is a well-founded order. The next lemma allows us to
transform every non-persistent rule £ — r into an R,-conversion below £.

Lemma 7.6.10. The inclusion RL> C %)* holds for all terms s. 4

Proof. Let s > __ t by employing the rewrite rule £ — r. We prove s Mﬁ% t by
induction on (¢,7) with respect to >jex. If £ — r € R, then the claim trivially holds.
Otherwise, £ — r € R;—1 \ R; for some ¢ > 0. Using Lemma 7.6.4(3), we distinguish two
cases.

e Suppose /¢ z)gfﬁw u and u ~ r € &; for some term u and rule ¢ — ' € R;. We
obtain ¢ 56,_W, u lp_ 7 from Lemma 7.6.7. We have £ > ¢’ and both ¢ > u and
¢ > r. It follows that all rewrite rules ¢/ — " employed in ¢ =5 u lr.. 7 satisfy
(€,1) =1ex (£",7"). Moreover, all steps in ¢ |5_ are labeled with a term < /.
Hence we obtain ¢ &}‘zw r from the induction hypothesis.

e Suppose £ — u € R; and u < _,,» 7 for some term u and rewrite rule ¢/ — v’ € R;.
We have (¢,7) >jex ({,u) and (€,7) =jex (¢',7") because r > u and £ > r B> E; > rl.
Moreover, both steps are labeled with a term < ¢ and thus we obtain /¢ &)’7"% r

from the induction hypothesis.

So in both cases we have ¢ &%w r and thus also s &%w t. O
Corollary 7.6.11. The relations <RL> and % coincide. 4

We arrive at the main theorem of this section. Note that Bachmair’s correctness
proof [10] uses induction with respect to a well-founded order on conversions to directly
show that any conversion of £, U R can be transformed into a joining sequence of R,,.
In contrast, we prove confluence via source decreasingness. This allows us to concentrate
on local peaks.

Theorem 7.6.12. If I' is fair then R, is a complete presentation of &;. 4

161

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:rstep_E_i_subset
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:slab_R_inf_subset
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Abstract_Completion.html#lem:rstep_R_inf_conv_iff
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Completion_Fairness.html#lem:infinite_fair_run

7. Abstract Completion, Formalized

Proof. We have &, = @ because I' is non-failing. The TRS R, is terminating by
Lemma 7.6.6. We show source decreasingness of labeled R, reduction with respect to
the reduction order >. So let ¢ Rufi s 5x, u. From Lemma 7.2.16 we obtain t V2 u.
Let v V5 w appear in this sequence (so t = v or w = u). We have s > v, s > w, and
(v,w) € I U ¢=¢, by the definition of V, and fairness of I'.

Y Y Y%
o Ifv g, wthenwv —U>;‘zw : R;‘<—w w and thus v <—s>;‘€w w.

o If v <=¢_ w then v <=¢, w for some 7 > 0 then v | w by Lemma 7.6.7. We
obtain v <ﬁ>’7"aoo w as in the previous case and thus v <—% w by Lemma 7.6.10.

Hence ¢ di}kzw u. Confluence of R, now follows from Lemmata 7.2.9 and 7.2.5. It remains
to show <= = <% . Using Corollary 7.6.5 we obtain —¢,ur, C <>¢, by a straight-
forward induction on 4. This in turn yields <=5 = <=¢ g - From Corollary 7.6.8 we
infer <=% ,z. = ¢>x_ and we conclude by an appeal to Corollary 7.6.11. O

Example 7.6.13. Consider the ES £ and the KBO > from Ezample 7.1.1. Let Py, for
n > 1 denote the TRS {ab"1ab — babba’ | 1 <i < n}. One possible infinite completion
run is the following:

(&,2) B (o, {aba — bab}) |-geduee (fabbab ~ babba}, {aba — bab})
Feet (@, {aba — bab} U Py) H{*"< ({abbbab = babbaa}, {aba — bab} U P;)
Forent (@, {aba — bab} U Py) F;

If this run is continued in a fair way we subsequently construct the TRSs Py, and can
in the limit obtain the result R, = {aba — bab} U {ab’™lab — babba® | i > 1}, which is
complete according to Theorem 7.6.12.

This section recapitulates our results on infinite runs [59]. Our correctness proof
(Theorem 7.6.12) differs substantially from earlier proofs in the literature. Due to a less
monolithic structure we consider this proof to be more formalization friendly: Instead
of lexicographically combining several orders into a single proof reduction relation, we
use source decreasingness together with different orders as necessary to prove auxiliary
results. In particular, our approach naturally supports prime critical pairs.

7.7. Ordered Completion

Completion may fail to construct a complete system if unorientable equations are
encountered. For example, the ES £ consisting of the two equations 0 + =z ~ z and
z+1y &~ y+x admits no complete presentation. (We will prove it in Section 7.8.) This can
happen even if a finite complete system exists, as illustrated by the following example.

Example 7.7.1. Consider the ES £ [12] consisting of the three equations

1-(—z4+2z)=0 l-(z+—-2)~z+—2 —r+rRy+—y

162

7.7. Ordered Completion

Any run of standard Knuth-Bendixz completion will fail on this input system; the first two
equations may be oriented from left to right if a suitable order is employed but no further
steps are possible. However, the TRS R consisting of the rules

1-0—=0 r+—-z—=0 —z+z—0
constitutes a canonical presentation of £.

Ordered completion was developed to remedy this shortcoming. In contrast to comple-
tion as presented in the preceding section it never fails, though the resulting system is in
general only ground complete.

For an ES £, an ordered rewrite step is a rewrite step using a rule from £~, which
is the infinite set of rewrite rules o — 7o such that £ ~ r € £* and fo > ro for some
substitution o.

The following inference rules for ordered completion are due to Bachmair, Dershowitz,
and Plaisted [14]. In order to simplify the notation, we abbreviate £ U R, to S, and
use the following shorthands. We write ¢ E>g> w if there exist an equation £ ~r € £*, a
context C, and a substitution o such that ¢t = C[lo], u = C[ro], o > ro, and t > £. The
11;11011 of - and E>g> is denoted by E)g and we write 2)3 for the union of 3)73 and
—E>.

Definition 7.7.2 (Ordered Completion ®). The inference system KB, of ordered com-
pletion operates on pairs (£, R) of equations £ and rules R over a common signature F.
It consists of the following inference rules:

deduce &R if s t compose ERW{s >t} ift >su
uce —————— :
EU{s~t},R RUEE RUEE P E,RU{s = u} s
EW{s~t}, R . EW{s=t},R .,
- - s t - - s
ERUs o1y 15> folu~ip,R U5 sy
orient simplify
EW{s~t},R it s EW{s~t}R it e u
ERU{t— s} EU{s~ul,R s
~ t
delete W collapse m if t Bﬁgu

The deduce rule may be applied to any peak, though in practice it is typically limited
to the addition of extended critical pairs (which are defined in Definition 7.7.11 below).
We write (£,R) Fo (', R') if (£',R’) can be reached from (£, R) by employing one of
the inference rules of Definition 7.7.2. We start by stating the equivalents of Lemma 7.6.4
and Corollary 7.6.5 for ordered completion.

Lemma 7.7.3. If (£,R) o (£, R) then the following inclusions hold:

1. &UR C 4
EUR

163

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#ind:oKBi
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:oKBi_subset

7. Abstract Completion, Formalized

2.5\5’@(%-8’i)iu72’iu: 4
B.R\R’g(%-é”)u(R"?) 4

Corollary 7.7.4. If (§,R) o (§',R') then the relations <—— and <—— coincide. &
EUR EUR!

We illustrate KB, by means of an example.
Example 7.7.5. Consider the ES £ consisting of the following three equations:
f(z) =~ f(a) f(b) = b g(f(b), z) =~ g(z,b)

By taking the Knuth-Bendiz order >y, with precedence f > b and where all function
symbols are assigned weight 1, the following KB, inference sequence can be obtained:

(€,2) Fo=t ({f(x) ~ f(a)}, {f(b) — b, g(f(b),) — g(z,b)})
fdeduce ({f(2) ~ f(a),f(b) ~ f(a)}, {f(b) — b, g(f(b), z) —= g(x,b)})
Fsmelit (£F(2) &~ f(a), b ~ f(a)}, {f(b) — b,g(f(b), z) — g(z,b)})
Rt ({f(«) = f(a)}, {f(b) — b, g(f(b),) — g(z,b), f(a) = b})
Fsmeliy ((£() ~ b}, {f(b) = b, g(f(b), z) = g(z,b),f(a) = b})
feotlopset ({£(2) & b, b ~ b, g(b, 2) ~ g(z,b)}, @)
Fe ({b ~ b, g(b,) ~ g(z,b)}, {f(z) — b})
Fot ({g(b, z) = g(z,b)}, {f(+) — b})
pgetuce ({g(b,z) ~ g(z,b),b ~ b}, {f(z) = b})

This sequence can be extended to an (infinite) run by repeating the last two steps. Then
we have Ry, = {f(z) — b} and &, = {g(b, z) ~ g(z,b)}.

Below, we consider an arbitrary run I': (&, Ro) Fo (£1,R1) Fo (E2,R2) Fo -+ . In
general £, C |z_ does not hold, as Example 7.7.5 illustrates. So unlike in the preceding
section we now omit the condition &, = @. However, this comes at the price of weaker
properties of the resulting system, as the remainder of this section shows.

Lemma 7.7.6. The inclusions Ry, C Roo € > and &,, C Ex hold. vvv

We use the relation 225 from Definition 7.3.6 to show that any equation step below a
term set M eventually turns into a conversion over £, U R that is still below M. Note
that just like in Section 7.6 we avoid the use of a synthesized termination argument by
handling equations and rules separately.

Lemma 7.7.7. The inclusion —- C 2 5% holds for all sets S of terms. 4

oo WU (oo}

164

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:oKBi_E_supset
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:oKBi_R_supset
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:oKBi_conversion
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Rw_subset_Rinf
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Rinf_less
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Ew_subset_Einf
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Ei_subset_EwRi

7.7. Ordered Completion

Proof. Let t = u € £5. We prove

M C M *

tru T EuUReo

by induction on {t,u} with respect to the well-founded order >=my. If t ~ u € £F
then the claim follows trivially. Otherwise, t ~ u € (£_1 \ &)T for some i > 0. Using
Lemma 7.7.3(2), we distinguish two subcases.

e Suppose t ~ u € (Q‘gi . Eii)i. There exist a term ¢’ and an equation v/ ~ v’ € Sii
such that {t,u} = {¢',u/} and t =55 v. It is sufficient to show

t/ ’ t/ !
t’%{ u') *o' and v'<—>{ u) *

EwURo EwUR

The second conversion follows from #' > v’ and the induction hypothesis for
v~ e 5’?, which is applicable as {t,u} = {t/,u'} =nu {v/,u'}. The first
conversion is obtained as follows. Because of ¢ —%5 v/, we have t —g, v/ or
' Zoes o', If ' =g, o' then this step can be labeled with {#,u/} as ' > v
Otherlwise, there exist an equation £ ~ r € S,L-i, a context C', and a substitution o
such that t' = C[lo], v' = C|ro], bo > ro, and t' > £. We have t' > £ and ' > r as
t' & lo > ro B r. Therefore {t',u'} >mu {¢,r} holds, so
{6r}

f+———=3*r
EwURs

follows from the induction hypothesis. Closure under contexts and substitutions
now yields ¢ MEWURW u.

° Ift%uERfU:thentM:u
In both cases t M;quoo u holds. Since M contains upper bounds of ¢t and u
with respect to >, the desired inclusion follows from the closure under contexts and
substitutions of —¢_ g, and >.]

Next, we show that a rewrite step that uses a rule in R4, and is below a multiset of
terms M eventually turns into a conversion over persistent rules and equations that is
still below M. To this end we write Yt for the set {u € T(F,V) |t = u}.

Lemma 7.7.8. The inclusion RM C e MR * holds for all multisets M of terms. &
o0 w U w
Proof. Let £ ~r € Rs. We prove
M., - M«
l—r — ELURL

by induction on (¢,7) with respect to the well-founded order . If £ — r € R, then
the claim trivially holds. Otherwise, there is some i > 0 such that £ — r € R;,_1 \ R;.
From Lemma 7.7.7 and the induction hypothesis the inclusions

N C < N * c N &
Eoo URoo EwURo EwURy

(7.1)

are obtained for every set N C Y/{. Using Lemma 7.7.3, we distinguish two cases.

165

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Ri_subset_ERw

7. Abstract Completion, Formalized

e Suppose f 2)32. u and u ~ r € & for some term u. There exist an equation
0~ 1 € EL URw, a context C and a substitution ¢ such that ¢ = O[],
u=Clr'ol, boc >ro,and £ > ¢'. We have £ = 0/ 1" as (> ¢ and { &> o > r'o &7/
and thus

E/ {E/}

PR LS SN
EooURoo

Since {¢',r'} C Y ¢ we obtain ¢ M&um r’ from (7.1). Therefore, ¢ &aum

u follows from closure under contexts and substitutions and ¢ > u. Again from
. Yl Yl
¢ > u,r we obtain u <—¢__Ugr., r and thus u <—¢_ ugr, 7 follows from (7.1).

e Suppose ¢ — u € R; and u s;— 7 for some term u. We have r > w and thus
(4,7) >ex (¢,u). Hence we can apply the induction hypothesis to ¢ ﬂm%u u,
yielding ¢ <+5¢ z uw. From £ > r > u we obtain u <L>goou7goo r and thus
u <—K>§quw r follows by (7.1).

In both cases ¢ &%wum, r holds. Since —¢_ g, and > are closed under contexts and
substitutions, the desired inclusion on steps using ¢ — r follows. O

We can combine the preceding lemmata to obtain an inclusion in conversions over
persistent equations and rules.

Corollary 7.7.9. The inclusion M C Mo« holds for all multisets of terms
Eoo UR o EuURW

M. v

For instance, in Example 7.7.5 we have f(z) &hgw f(a) for M = {f(z),f(a)} and the
conversion f(7) <+ b <= f(a) in & U R,, clearly satisfies f(z) «+—% r_ f(a).

The results obtained so far are sufficient to show that ordered completion can produce
a complete system.

Theorem 7.7.10. If I' satisfies PCP(Ry,) C g U <=¢e, and &, = @ then R, is a
complete presentation of &. 4

Proof. We prove that R, is confluent by showing that labeled R, reduction on arbitrary
terms is source decreasing. Consider ¢ Rﬁi s 5x, u. From Lemma 7.2.16 we obtain
t V2 u (where R,, takes the place of R in the definition of V,). Let v Vs w appear in this
sequence (so t = v or w = u). We have s > v, s > w, and v |z w or v <+¢_ w by the
definition of v, and the assumption PCP(R,,) C <—¢__.

Vo Vw Vs
o If v g wthenv —% - p*<— wand thus v<+=% w.

o If v<4>g w then v ﬁ)}%w w by Corollary 7.7.9.

Hence ¢ <ﬁ>’7kaw u. Confluence of R, follows from Lemmata 7.2.9 and 7.2.5. Termination
of Ry, holds by Lemma 7.7.6. We have <»7 = <% by an easy induction argument
using Corollary 7.7.4, so R, is a complete presentation of &. O

166

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:ERi_subset_ERw
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Ew_empty_implies_CR_Rw

7.7. Ordered Completion

From now on we specialize our results to ground terms. In the remainder of this section
we therefore assume that > is a ground-total reduction order. Before continuing with
results on ordered completion, we define extended critical pairs.

Definition 7.7.11 (Extended Overlaps). An extended overlap of a given ES & is a
triple (€1 =~ r1,p,l2 = 19) satisfying the following properties:

e there are renamings m and ma such that w1 (€1 ~ r1), m2(ly = 13) € Ex (that is, the
equations are variants of equations in £),

e Var({y =~ ri)NVar(ly = 13) = &,

p € Posr(ls),

0y and by, are unifiable with some mgu p, and

rip F b and rop F Lo

An extended overlap gives rise to the extended critical pair a[r1]ppu =~ rop. An extended
critical pair is called prime if all proper subterms of {1u are £~ -normal forms. The set
of extended prime critical pairs among equations in £ is denoted by PCP~(E).

For example, the equations 1-(z+—2z) ~ z+—xz and y+—y &~ —z+ 2 are variable-disjoint
variants of equations in Example 7.7.1. Neither of them can be oriented from right to left
(independent of the choice of >). Because of the peak 1-(—z+2) <= 1-(v+—2) > z+—1
they admit the extended overlap (y + —y =~ —z + 2,1,1- (z + —z) = = + —z) which
gives rise to the extended critical pair 1-(—z + 2) &~ = + —z. Note that since the second
equation is unorientable, a run of a standard completion procedure will not encounter
this critical pair.

Extended critical pairs are important due to the Extended Critical Pair Lemma [14],
according to which these are the only peaks relevant for ground confluence. In our
formalization we use the following variant. The proof employs a similar peak analysis as
in Lemma 7.2.12.

Lemma 7.7.12. Let £ be an ES and consider a peak 4

Pq, o1 P, 02
t S

rL Rl Oy~ 1o

mwvolving ground terms s, t, and u such that {101 > r101 and fyo9 > ro09. If 11 ~
r1,lo = 19 € £ do not form an extended overlap at position q then t lg> u.

In the sequel, we write S, for the TRS £ U R,,.

Corollary 7.7.13. If s <g—> t for ground terms s and t then s %* t. 4

Proof. We obtain s ﬂ}ww{w t from Corollary 7.7.9. Since > is ground-total, all &,
steps in this conversion are (£_)F steps or trivial steps between identical terms. Hence
s <2 4 ag desired. O

w

167

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Rewriting.html#def:ooverlap
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Rewriting.html#lem:non_ooverlap_GROUND_joinable
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:ground_Einf_Sw

7. Abstract Completion, Formalized

Definition 7.7.14. A run (&), Ro) Fo (€1, R1) Fo (E2,R2) Fo -+ is called fair if the
inclusion PCP- (&, U Ry) C ls, U =g, holds.

The following lemma links extended prime critical pairs to standard critical pairs
and hence allows us to reuse results from Section 7.2.3 for our main correctness result
(Theorem 7.7.16 below).

N

Lemma 7.7.15. For a TRS R and an ES &, the inclusion
holds on ground terms.

U
PCP(S) ~ PCPs(EUR) g

Proof. Suppose s <= t for ground terms s and ¢ and a prime critical pair e: ¢y0[r10], ~
roo generated from the overlap (¢1 — r1,p,l3 — 1r9) in S. Let u; =~ v; be the equation
l; ~ r; if 4 > r; € R and the equation in £* such that ¢; = w;r; and r; = vy
for some substitution 7; if £; — r; € £7. In the former case we let 7; be the empty
substitution. Since the equations w1 =~ v1 and us = v are assumed to be variable-disjoint,
the substitution 7 = 7 U 7o is well-defined. We distinguish two cases.

o If p ¢ Posr(ug) then (u; =~ vy, p,uz & vy) is not an overlap and hence s |s t by
Lemma 7.7.12.

e Suppose p € Posr(uz). Since ug|,70 = la|p0 = 10 = ujTo there exist an mgu p
of us|, and uy, and a substitution p such that pp = 7o. Because u;up = ;o >
Ti0 = vipp, Vift > u;p is impossible. Hence €’ : uapfvip], =~ vop € CP5 (€ U R) and

baolrioly = uapplorpply = uaplviplpp «— vapp = 20

Since e is prime, proper subterms of fo0|, = uappl|, are irreducible with respect
to S, and hence the same holds for proper subterms of usp. It follows that e’ €
PCP- (£ U R) and thus ¢y0[ric], ¢——— rpo. Hence also s «———t. [
PCP> (EUR) PCP- (EUR)
This relationship between extended critical pairs among £ U R and critical pairs among
S is the final ingredient for the main result of this section. As in the preceding section,
we establish correctness of ordered completion via source decreasingness.

Theorem 7.7.16. IfT is fair then S, is ground-complete and «— and - coincide.
4 &o EwURG

Proof. Termination of S, is a consequence of Lemma 7.7.6 and the definition of £;. Next
we show that S, is ground-confluent. To this end, we show that labeled S, reduction is
source decreasing on ground terms. So let s, t, and u be ground terms such that
te— s u
S S
Lemma 7.2.16 yields t V2 u (where S,, takes the place of R in the definition of V). Let
v Vs w appear in this sequence (so ¢ = v or w = w and both terms are ground). We

have s > v, s > w, and (v,w) € |g U ¢=>g, by the definition of V,, Lemma 7.7.15, and
fairness of I'.

168

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:PCP_xPCP
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:correctness_okb

7.7. Ordered Completion

Vo « Vw Vs 4
o Ifv]g wthen v —%5 - g*— w and thus v <=5 w.

o If v <=¢ _ w then v <=¢, w for some ¢ > 0 and thus v &%w w by Corollary 7.7.13.

Hence t <£>j§w u. Confluence of the ARS that is obtained by restricting S, to ground terms
now follows from Lemmata 7.2.9 and 7.2.5. It remains to show <=¢ = <3¢ . Using
Corollary 7.7.4 we obtain —¢,uRr, C <>, for all : = 0 by a straightforward induction
argument. This in turn yields <=2 | C «=¢ and in particular <=¢ [z C <>z . The
reverse inclusion follows from Corollary 7.7.9 and the inclusion <= C<=¢ o . U

If &, is empty, the TRS R, is not only ground-confluent but actually confluent on all
terms. Even though this result is not surprising, we did not find it explicitly stated in
the literature.

Theorem 7.7.17. If T is fair and &, = @ then R, is a complete presentation of &y. &

Proof. We have PCP(R,,) C PCP~ (&, UR,) since R,, C >. Hence the result follows
from fairness and Theorem 7.7.10. L]

Example 7.7.18. Consider the ES £ from Example 7.7.1 and >, with precedence
+ > 0. After two orient steps, we apply deduce:

l-(—z242)—=0 1-(z4+—-2)Dz+—-2 —z+zmy+—-y l-(—z+4+2)~z+—x
The newly added equation is simplified and then oriented:
l-(—z+2)—0 1-(z+—-2)—2z+—2 —cs+rxy+—y r+—2—0

Using the new rewrite rule, the remaining equation is simplified, the second rule is
subjected to compose and subsequently to collapse:

l-(—z+2z)—0 1-0~0 —z+2x~0 r+—z—0
Orienting both equations results in:
1-(—z4+2)—0 1-0—-0 —z+2—0 r+—z—0

At this point the first rule is collapsed using the third rule, and subsequently oriented
(into an existing rule):

1-0—=0 —r+2—0 r+—-r—=0

This sequence can be extended to an infinite run by repeatedly adding (using deduce) and
deleting the trivial equation 0 = 0. Then the set of persistent rules R, coincides with the
TRS R from Example 7.7.1, and &, = .

The final result in this section is in the spirit of Theorem 7.4.7 but for ordered
completion, showing that a ground-complete system can be interreduced to some extent.

169

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Ew_empty_CR_Rw_gtotal

7. Abstract Completion, Formalized

Definition 7.7.19. Given a ground-complete system S = £~ UR, we define

R ={{—=r|l—=reQandlecNF(Z5)}
5/:{8¢’R/ ~ tlR ’S%t€€}\:
where Q = RU(EXN>) and Q is defined in Definition 7.4.5.

Here we write ¢ —»g u if there are arule £ — 7 € S , a context C, and a substitution o
such that t = Clo], u = C[ro], and t > £. For example, if £ is empty and R consists of
the single rule f(z,y) — g(z) we have f(y, z) € NF(Zss), but f(g(z), y) ¢ NF(Zss) and
f(z,) ¢ NF(Zss).

Theorem 7.7.20. If S = £~ U R is ground-complete then &' = £~ UR’ is ground-
complete and normalization and conversion equivalent on ground terms. v

Proof. We first show NF(S") C NF(S). For arule { —r € S, let by, be L if ¢ —r € Q
and T otherwise. We prove ¢ ¢ NF(S’) for every rule £ — r € S, by induction on (¢, by_,,.)
with respect to the lexicographic combination of > and the order where T > 1.

e If { — r € Q two cases can be distinguished. If ¢ ¢ NF(=>s) then ¢ b ¢ for
some rule ¢/ — 1 € S and thus ¢/ ¢ NF(S’) by the induction hypothesis. Hence
also £ ¢ NF(S'). If £ € NF(Z55) then, by construction of R’, there is some rule
¢ — 1" € R (modulo renaming), so ¢ ¢ NF(S’).

e If ¢/ - r ¢ Q then { = uo and r = vo for some equation u ~ v € E* and
substitution o such that ¢ > r. We distinguish two cases. First, if u € NF(R/)
then u = ulr/. We have £ > r > v]gr/c because R’ C > and hence u # vlgr/. It
follows that u ~ v|gs € &F and thus £ — vlg/o € . Hence ¢ ¢ NF(S’). Second,
if u ¢ NF(R') then u ¢ NF(Q) since R’ € Q. So there exists a rule £/ — /' € Q
such that u &> ¢'. Clearly £ &> ¢'. Since ¢ — r ¢ Q, the induction hypothesis yields
¢ ¢ NF(S'). Hence also ¢ ¢ NF(S').

We next establish the inclusion — g C <=3 on ground terms. We have E'"UR' C SEUR
by construction. For ground terms s and t, a step s —g t implies s <—>¢/ g/ t and hence
existence of a conversion s <=3 5 t. We can also obtain such a conversion where all
intermediate terms are ground by replacing every variable with some ground term. Since
the reduction order > is ground-total, —¢ r C <=3 holds on ground terms. Hence there
is a conversion s <% t.

Moreover, the system S’ is clearly terminating as it is included in >. Thus the result
follows from Lemma 7.4.4(2), viewing S and S’ as ARSs on ground terms. O

We illustrate the transformation of Definition 7.7.19 on a concrete example.

Example 7.7.21. Consider the following system with R consisting of one rule and £
consisting of three equations:

s(s(z)) +s(z) = s(z) +s(s(z)) r+s(y) =s(z+vy) T+ycy+o
s(z) +y = s(z +y)

170

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:reduced_ground_complete

7.8. Completeness Results for Ordered Completion

It is ground-complete for the lexicographic path order [65] with + > s as precedence. We
have @ = RU{xz +s(y) = s(z + vy), s(z) +y — s(z + y)}. Since the term s(s(z)) + s(z)
is reducible by the rule s(z) 4+ = — 2 +s(z) € S and s(s(z)) +s(z) & s(z) + z, the rule of
R does not remain in R'. Hence, R' = {z +s(y) = s(z + vy), s(z) +y —s(z + y)} and
E={r+y=y+uz}.

One may wonder whether R’ can simply be defined as Q instead of imposing a strict
encompassment condition. The following example shows that this destroys reducibility.

Example 7.7.22. Consider the following system where R consists of two rules and &
consists of one equation:

f(z,y) — g(z) f(z,y) — g(y) g(r) ~g(y)

Then £~ U R is ground-complete if > is the lexicographic path order with f > g as
precedence. We have R'! = Q=Q =R and &' = € but O = &.

Note that we obtain an equivalent ground-complete system if we add, for instance, an
equation g(g(z)) = g(y). This shows that even systems which are simplified with respect
to the procedure suggested by Theorem 7.7.20 are not unique.

This section resumes our results on ordered completion [59]. Like in Sections 7.3
and 7.6, our proofs deviate from the standard approach [14] in that we avoid proof orders
in favor of different, simpler orderings as required, together with source decreasingness.
Again, we also support prime critical pairs. For Theorem 7.7.17 and the interreduction
result of Theorem 7.7.20 we are not aware of earlier references in the literature.

7.8. Completeness Results for Ordered Completion

Ordered completion never fails and its limit always constitutes a ground-complete system.
On the other hand, if there is a complete presentation that is compatible with the
employed reduction order, does ordered completion also produce a complete presentation,
ending with &, = @7 In this section we revisit two results from the literature which
provide sufficient conditions for ordered completion to always derive a complete system,
independent of the strategy employed by a completion procedure. In Section 7.8.1 we
reprove the result by Bachmair, Dershowitz, and Plaisted for the case where the reduction
order is ground total [14]. The corresponding result by Devie [34] for linear systems is
considered in Section 7.8.2.

7.8.1. Ground-Total Orders

In this subsection we consider a fair run I' of ordered completion
(£0,Ro) Fo (€1, R1) Fo (E2,R2) Fo

with respect to a ground-total reduction order >. If &, = @ then the TRS R, is
a complete presentation of & by Theorem 7.7.17. According to Bachmair et al. [14,

171

7. Abstract Completion, Formalized

Theorem 2|, under certain conditions fair runs always conclude with &, = & whenever
there exists a complete presentation of & compatible with >. In the remainder of this
subsection we give a formalized proof of this result. Like the original proof, it is based
on the idea that ground-completeness of R, is preserved under signature extension with
constants. Let IC be a set of different fresh constants & for every variable z € V. We
first show that the reduction order > can be extended to a ground-total order on the
signature augmented by K such that minimum constants are preserved.

Lemma 7.8.1. There exists a ground-total reduction order >* on T(F UK, V) such
that > C >X and the minimum constant with respect to > is also minimum in >X. &

Proof. Let 1 € F be the minimum constant with respect to >. We consider the KBO
Tkbo With weights wg = 1 and w(f) = 1 for all f € F UK together with a precedence
J which is total on F UK, has L as the minimum element, and satisfies £ 1 f for all
feFandz € K. Givenatermt € T(FUK,V), we write t; for the term obtained from
t by replacing every constant in C with L. Furthermore, we define s >X t as s| > ¢, or
both s; =t, and s Tkpo t. We show that >X is a ground-total reduction order with the
stated properties. Ground totality of >X follows from ground totality of Txpo given the
total precedence. Well-foundedness holds by construction as a lexicographic combination
of well-founded relations. Closure under substitutions is satisfied because it holds for
both > and Jypo, and s, =t implies so| = to . Similar arguments apply to closure
under contexts and transitivity. By construction of 7 and the definition of >*, the
constant L is still minimal. Moreover >* extends > because s > t implies s,t € T(F,V),
sos; =s>t=t, and hence s >X ¢. O

We write ¢ for the ground term that is obtained from ¢ by replacing every variable z
by the constant . In the next lemma we verify some basic properties related to this
grounding operation.

Lemma 7.8.2. Let R be a TRS over a signature F and let s,t € T (F,V).

1. If s >t then § > ¢, 4
2. Suppose s #t. Then s = t if and only if § —x t. 4
Proof.

1. Suppose s > t. Lemma 7.8.1 yields s >* t and, because >X is closed under
substitutions, § >* 1.

2. We consider the two implications separately.

o If s —» t then Var(t) C Var(s). Let o be a substitution such that § = so. We
have ¢ = to and thus § = s =g to = t.

e Conversely, if § =% f then 4|, = fo and { = §[ro], for some rule £ — r € R,
position p, and substitution . We denote the substitution {z — ¢(o(z)) |
x € V} by 04. Here ¢(u) denotes the term obtained from u after replacing
every constant & of K by z. Because s|, = ¢(5|,) = ¢(lo) = log and
t = ¢(t) = ¢(8[ralp) = s[rog)y, we obtain s —x t as desired. O

172

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:less_sk
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:sk_less_compat
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:rstep_step_sk

7.8. Completeness Results for Ordered Completion

It is not hard to see that the TRS &, still constitutes a ground-complete presentation
of & when considered over the extended signature, as shown below.

Lemma 7.8.3. The TRS S, is ground-complete over F UK and <=¢ r = <z, - 4

Proof. Since >* contains > by Lemma 7.8.1, the run I is also a valid run with respect
to > It is moreover fair since > C >X implies PCP_x(£) C PCP~ (&) for any set of
equations &, by Definition 7.7.11. Hence the result follows from Theorem 7.7.16. O

An important observation for the completeness proof below is that normal forms with
respect to the final system S, and with respect to the union S, of intermediate systems
coincide, as shown below.

Lemma 7.8.4. The inclusion NF(S,) C NF(Sx) holds. 4
Proof. The result is an immediate consequence of the following two claims:

(a) If =7 c &L, 0 €NF(Ry), and Lo > ro then lo ¢ NF(E).

(b) If ¢ —» r € R then £ ¢ NF(S,).

For claim (a) we use induction on {/,r} with respect to =my. If £ ~r € £ the result is
immediate. Otherwise, £ ~ 1 € £ \Eiy1 orr =L € &\ E;41 for some i > 0. Without loss of
generality we assume the former since the latter case is similar. From Lemma 7.7.3(2) we
obtain ¢ (—>§i1+1 . &Hi)i r,l—re€Ri1, r— LR, or £ =r. The latter two cases
are impossible because of the assumption ¢o > ro and the inclusion R;11 € Roo C >.
Also £ — r € R;41 is impossible because of the assumption £ € NF(R).

e Suppose / —>§,1+1 uand u ~ r € Eﬁl for some term u. The step £ —s,., u
cannot use a rule in R;y; because ¢ € NF(Ry). So there must be an equation
U ~r' e Sil, a substitution 7, and a position p in ¢ such that ¢|, = ¢'1, ul, = r',
Ut >7'7t,and £ > ¢'. Because of £ &> ' > r'7 &> r' we have £ = ', and therefore
{6,r} =mu {€,r"}. Moreover, ¢’ € NF(R). The induction hypothesis yields

'7 ¢ NF(E7). Since £ B> ¢'T, we have £ ¢ NF(E7) and thus also o ¢ NF(E7).

e In the remaining case we have r —>§; uandum/l € Sijil for some term u. We
have r > w and thus also 7 = w and {¢,7} >mnu {¢,u}. Because o > ro > uo, the
result follows from the induction hypothesis.

For claim (b) we use induction on (¢,r) with respect to =je. If £ — r € R, then
¢ ¢ NF(S,) trivially holds. Otherwise, ¢ — r € R; \ Riy1 for some ¢ > 0. From
Lemma 7.7.3(3) we obtain ¢ —>z_2+1 ~&ix1ror L Riy1 - 5., 7. In the latter case there
is a term u such that £ — u € R;11 and r —s,, u. Since this implies r > v and thus
(,7) =1ex (£,u), we obtain £ ¢ NF(S,,) from the induction hypothesis. In the former case
there is a term u such that ¢ —>i2+1 wand u~r € E4q. If the step £ —s,, u uses a
rule ¢/ — ' € R;41 then the result follows from the induction hypothesis because £ > ¢/
implies (£,7) =ex (¢',7"), and ¢ ¢ NF(S,) implies ¢ ¢ NF(S,). Otherwise, there exist

173

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:correctness_okb_sk
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:NF_Sw_subset_NF_Sinf

7. Abstract Completion, Formalized

an equation ¢ ~ r’ € &1, a position p in ¢, and a substitution ¢ such that ¢|, = {'o,
rlp=r'c, l'c>r'c,and { > . If ' € NF(R) then we obtain ¢'o ¢ NF(E7) from claim
(a) and thus ¢ ¢ NF(S,) because ¢ &> 'c. If ¢/ ¢ NF(R) then there exists some rule
0" — r" € Roo such that ¢/ &> ¢”. In this case we have £ > ¢ and thus (£,7) =jex (¢, 7).
We obtain ¢ ¢ NF(S,,) from the induction hypothesis. Hence also ¢ ¢ NF(S,,). O

Corollary 7.8.5. The identity NF(S,) = NF(Sx) holds. v

Proof. We obtain NF(S.) € NF(S,,) from the inclusion —s, € —s. and hence the
result follows from Lemma 7.8.4. O

Hereafter we assume that there is a complete presentation R of & with R C >. We
next show that grounded terms which are S,,-normal forms are also R-normal forms.

Lemma 7.8.6. Ift € NF(S,,) then t € NF(R). v

Proof. Suppose t € NF(S,) but ¢ ¢ NF(R), so £ — u for some term u. Since { is ground
and R is terminating, also u is ground. We obtain # ls,, w from the ground-completeness
of S, (Lemma 7.8.3). Since ¢ >* u by the global assumption R C > and Lemma 7.8.2(1),
the joining sequence cannot be of the form ¢ sS4 w as this would imply u > t and thus
u > 1, contradicting the well-foundedness of >*. Therefore we must have ¢ —>‘J§w Ceeu
which means that # is reducible in S,,, contradicting the assumption # € NF(S,,). O

The preliminary results collected so far now lead to the following key observation: If
a grounded term § is reducible then so is its (possibly non-ground) counterpart s. In
Lemma 7.8.8 below we can then connect R-reducibility to S,-reducibility for terms over
the original signature.

Lemma 7.8.7. If § =5 t then s ¢ NF(Sw). v

Proof. There exist an equation ¢ ~ r € Soio U R, a position p, and a substitution o
such that 3|, = (5, t= [ralp, and 4o >K 5. We perform induction on ¢ with respect
to >X. If p # € then ¢ > ré and thus £ >* ré because >X is a ground-total reduction
order. The induction hypothesis yields fo ¢ NF(Sx), which implies s ¢ NF(Sx). So in
the following we assume that the step § —s__ t takes place at the root position. If s >t
then s — t € Sy, from which the claim is immediate. This covers the case £ ~ r € R,
so if s % t then £ ~ r € £L. We distinguish two cases, { € NF(S) and £ ¢ NF(Sw).

e If £ € NF(Sy) then ¢ € NF(S,) by Corollary 7.8.5 and thus ¢ € NF(R) by
Lemma 7.8.6. From Lemma 7.8.3 and the fact that R is a complete presenta-
tion of & we obtain § —% . The latter implies s —7 ¢ by Lemma 7.8.2(2) and
thus s > t, which is a contradiction.

e Suppose t ¢ NF(S..). We distinguish two further cases, depending on whether or
not £ ~ r belongs to £F.

Ifl~r¢&F then L~r e (&)\ Ev1)T for some i > 0. From Lemma 7.7.3(2) we

obtain £ (—s,,, - giﬂil)i r,l—1r € Ry, r— L€ Rirq, or £ =r. The last two

174

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:NF_Sw_NF_Sinf
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:NF_S_NF_R
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:sk_Swinf_step_imp_no_Sinf_NF

7.8. Completeness Results for Ordered Completion
cases contradict § >* £, If £ =, - Ef_il rorf—r &Rt then ¢ ¢ NF(Sy) and
thus s = lo ¢ NF(S). Otherwise, r —s,,, u for some term u with u ~ ¢ € EZ_H.
We have s = lo <>¢_ uo s« ro = t and thus § = (6 —s,_ ué = uc and
t = ré6 > ué. The induction hypothesis yields s ¢ NF(Sy).

In the second case we assume £ ~ r € £F. From the assumption ¢ ¢ NF(Ss) w
obtain a term w such that £ —s_ @. We have >* 4 and thus ¢ ¢ NF(S,,) by th
induction hypothesis. Consider an innermost S,-step starting from ¢, say t L>SM
such that there exists a peak

§ =100 <pmp 7O =1 =% (%)

with lo = s # t = ro. If the two steps form an overlap then s <>pcp_ (g, uRr,) v
since t —+s, v is innermost, and thus s <¢_ v or s ls, v is obtained from the
fairness of the run. In the former case, since 3 >* ¢ >X 4, we have § —s_ ¥ and
thus the induction hypothesis applies. If on the other hand s |g v then we cannot
have v =% s as this would imply v > s, contradicting $ >K & because > and >~
are compatible by Lemma 7.8.2(1). So s must be S,-reducible.

Otherwise, the peak (x) constitutes a variable overlap, so there is some variable
x € Var(r) and positions ¢; and g2 such that r|;, =z and ¢ = qiqo. If z ¢ Var(¢)
then s <—¢_ v and the induction hypothesis applies as before. Otherwise, s = {0 is
reducible in S. O

Lemma 7.8.8. The inclusion NF(S,) C NF(R) holds. ¥

Proof. Suppose t = u, so t > u and thus also ¢ >* @. From Lemma 7.8.3 we obtain
tl s., . Like in the proof of Lemma 7.8.6, & —7_ ¢ would imply @ >* £, contradicting well-
foundedness of >X. Therefore the joining sequence must be of the shape £ —)jgrw TS U

and thus ¢ is reducible in S,, and also in S, because S, C Ss. Lemma 7.8.7 yields
t ¢ NF(Ss) and thus t ¢ NF(S,,) by Corollary 7.8.5. O

We call (&,,R,) simplified if R, is reduced and all equations in &, are irreducible
with respect to R,,, unorientable with respect to >, and non-trivial. We use the following
auxiliary result before proving the main completeness theorem.

Lemma 7.8.9. If (§,,R.) is simplified then NF(R,) C NF(S,). 4

Proof. Suppose (Ey, Rw) is simplified and let s € NF(R,,). We prove s € NF(S,,) by
induction on s with respect to . If s ¢ NF(S,,) then there exist an equation £ ~ r € £X, a

context C, and a substitution o such that s = C[lo] and fo > ro. Since s & lo > ro B r
implies s > r and r € NF(R,,) by the assumption that (€., R,,) is simplified, the induction
hypothesis yields € NF(S,,). Hence r € NF(R) by Lemma 7.8.8. Since R is a complete
presentation of &, we have £ | r and thus £ =% r. From R C > we infer £ > r or £ =r,
contradicting the assumption that (&, R.,) is simplified. O

Theorem 7.8.10. If (€., Rw) is simplified then &, = & and R, is literally similar to
R. v

175

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:NF_Sw_subset_NF_R
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:NF_Rw_subset_NF_Sw
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:completeness

7. Abstract Completion, Formalized

Proof. Suppose &, # @ and let s ~ t be an equation in &,. The terms s and t are
R-normal forms by the assumption that (&,,R,) is simplified in combination with
Lemmata 7.8.8 and 7.8.9. Since R is a complete presentation of &), we obtain s = ¢,
contradicting the assumption that (&,,R,,) is simplified. Hence, &, = @ and therefore
R. is a complete presentation of & by Theorem 7.7.17. Since (&, R,) is simplified, R,
is even a canonical presentation of &. As R, C >, literal similarity of R, and R is
concluded by Theorem 7.4.11. O

A run of ordered completion is called simplifying if its limit (&,,, R,,) is simplified.

Example 7.8.11. Consider again the ES £ from Example 7.7.1 and its complete pre-
sentation R, which cannot be derived using standard completion. Termination of R
can be shown by a suitable KBO. Thus, by Theorem 7.8.10 any fair and simplifying
run of ordered completion on £ using the same order will succeed with a variant of R,
independent of the employed strategy.

The results of this subsection are due to Bachmair, Dershowitz, and Plaisted [14].
However, our proof is structured into many preliminary results, as opposed to the
monolithic original version, and we fill in numerous details omitted in the original version.

7.8.2. Linear Systems

The previously presented correctness and completeness results (Theorems 7.7.16 and
7.8.10) do not state any properties of the system obtained when running KB, with a
reduction order that is not ground-total. The following example from Devie [34] shows
that the restriction to ground-total orders can actually be severe.

Example 7.8.12. Consider the ES £ consisting of the following equations:

f1(g1(i1(2))) = g1 (i1 (fr(g1(i2(2))))) higa(in(2))) =~ g(in()) fi(a) = a
fa(ga(i2(2))) ~ ga(ia(fa(g2(11(2))))) ha(ga(iz(2))) ~ ga(iz(w)) fa(a) = a
g(a) = a hi(a) = a i1(a) ~ a
gala) ~ 2 ha(a) ~ 2 2(a) ~ 2

When orienting all equations from left to right we obtain a TRS R which is easily shown
to be terminating by automatic tools. As all critical pairs are joinable it is confluent, and
thus canonical since it is also reduced. However, R cannot be oriented by any ground-total
reduction order >. We have i1(a) <= ia(a) but neither iz(a) > i1(a) noriy(a) > ia(a) can
hold; using the rule f1(g;(i1(2))) — g1(i1(f1(g1(12(2))))), the former would imply

f1(g1(i2(2))) > fi(e1(i1(a))) > g1(i1(f1(e1(i2(a)))))

which contradicts well-foundedness, and for the latter a similar argument applies. As
a matter of fact, in [34] it is shown that any KB, run starting from £ and using a
ground-total reduction order will fail to generate a finite result.

176

7.8. Completeness Results for Ordered Completion

Devie [34] gives a second sufficient condition for an ordered completion procedure to
compute a canonical result whenever such a presentation exists, without imposing any
restriction on the reduction order. Instead, the set of input equalities & is required to
be linear, and Devie considers an ordered completion inference system with a modified
deduction rule to ensure that linearity is preserved. He moreover shows that under these
circumstances a relaxed fairness condition is sufficient. In this section we give a new
proof of this result which has been formalized. First we recall Devie’s inference system.

Definition 7.8.13 (Linear Ordered Completion). The inference system KB, of linear
ordered completion consists of the rules orient, delete, compose, simplify, and collapse, of
KB; (Definition 7.6.2) together with the following modified deduction rule:

ER
EU{s~t}R

We write (€, R) by (£, R') if (', R’) can be reached from (£, R) by employing one of
the inference rules of Definition 7.8.13.

t and s =t is linear

deduce if s

¢ .
ETUR EFTUR

Lemma 7.8.14. The inclusion KB} C KBy holds. «

Note that in contrast to the ordered completion system KB, ordered rewriting using
orientable instances of £ is not permitted in compose, simplify, and collapse, . This is because
ordered rewrite steps need not preserve linearity as stated in Lemma 7.8.15 below. For
example, a compose step in KB, on the linear rule g(z) — f(f(z)) using the linear equation
f(z) = f(y) may result in the nonlinear rule g(z) — f(h(z, z)) when h(z, z) is substituted
for the variable y and a reduction order > is used such that f(f(z)) > f(h(z,z)).

With these restrictions, it is not hard to prove that inference steps preserve linearity.

Lemma 7.8.15. If E UR is linear and (£,R) by (E',R') then & UR' is linear. v
From now on we consider £ U Rg to be linear.

Definition 7.8.16. An extended overlap (Definition 7.7.11) which satisfies €1 > 1 and
ro # Lo, or by > ro and r1 } {1 gives rise to a linear critical pair [34]. The set of all
linear critical pairs originating from equations in & is denoted LCP~(E). An infinite run

(€0, Ro) 1 (E1,R1) Hr (E2,R2) F
is fair if the inclusion LCP~ (&, U Ry) C lg,, U ¢=¢,, holds.

Below, we consider an infinite fair run I'. We next show that the result of a fair run
without persistent equations is indeed complete.

Theorem 7.8.17. If T is fair and £, = & then R, is a complete presentation of £,. &

Proof. The run I' is also a valid KB, run by Lemma 7.8.14. We moreover have that
PCP(R.) € LCP(&, U Ry,) since R, € >, and hence PCP(R,,) C | U<>e,, by fairness.
So the result follows from Theorem 7.7.10. O

177

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#ind:oKBilin
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:oKBilin_step_imp_oKBi_step
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:oKBilin_step_linearity_preserving
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Ew_empty_CR_Rw_linear

7. Abstract Completion, Formalized

The following result relates equations in £, and rules in R, to persistent equations
and rules, respectively.

Lemma 7.8.18.

1. Eg C — - ¢ - — ~
Roo Ew Roo
2. If 0 — 1 € Rog then { — - ()" 1. o4

Rw EwURw
Proof.

1. For an equation s ~ t € £, we prove the desired inclusion by induction on {s,t}
with respect to >yl

2. By induction on (¢,7) with respect to >|ex. O

In order to show that R, is Church-Rosser modulo &,,, we need a result about joinability
of critical peaks modulo persistent equations.

Lemma 7.8.19. If there is an equation £ =~ r € EX UR,, with r # £ that is involved in a
peak s «—— - —> t then s — - <— - <— t. 4
r~f Ru Reo Eu Roo
Proof. If the two steps occur at parallel positions then they commute and thus s =g,
- ra 04— t. If the peak constitutes an overlap then s <= cpe,ur,,) ¢ since Ry, C > and
r # £ by assumption. We thus have s <=¢_ t or s |zt by fairness such that the claim
follows from Lemma 7.8.18(1) and R, € Roo. Otherwise, we have a variable overlap. By
Lemma 7.8.15 both &, and R,, are linear. This implies s =% - ¢ ¢, so the claim
follows from the inclusion R, C Reo-]

Lemma 7.8.20. The TRS R, is Church-Rosser modulo &,,. 4

Proof. Define the ARSs A and B with multiset labeling as follows:

s %Atifsﬁngw t and M = {s'} for some term s’ > s.

/7t/
o s MLptifs Mgu t and M = {s',t'} for some terms s’ > s and ' > ¢.

By equipping them with the well-founded order >, Lemmata 7.8.19 and 7.8.18 imply
the condition of peak decreasingness modulo. Hence, Lemma 7.2.7 applies. O

For a run of KBy we call (&, R,,) simplified if R, is reduced and &, is irreducible
with respect to R, and does not contain trivial equations. From now on we assume that
(Ews Rw) is simplified. This allows us to establish relationships between R-normal forms
and normal forms with respect to the result of the linear completion run.

Lemma 7.8.21. The inclusion NF(R) C NF(£X) N NF(Ry) holds. v

178

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Einf_to_Ew
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:Rinf_Rw_msteps
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:linear_peak_cases
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:CRm
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:NF_R_subset_NF_REw

7.8. Completeness Results for Ordered Completion

Proof. Let t € NF(R). Assume to the contrary that ¢ — u for some term w by applying
an equation £ ~ r € £EX UR,, from left to right. Because R is a complete presentation
of &, U Ry, we have ¢ | 7. Since t € NF(R) implies ¢ € NF(R), we obtain r —%
(. If £ ~ r € R, this contradicts R, C >, otherwise ¢/ ~ r € Ef and r —% [/
contradict unorientability and non-triviality of &,, which hold by the assumption that
&, is simplified. O

Lemma 7.8.22. The inclusion NF(R,) C NF(R) holds. ¥

Proof. We show that /¢ —>7ng r for every £ — r € R, which is sufficient to prove the claim.
Let £ — r € R. By Lemma 7.8.20 we have

(s u"ve—r
w Ew R
for some terms u and v. Since R is reduced, r € NF(R). According to Lemma 7.8.21, both
r € NF(EF) and r € NF(R,,) hold. Hence r = v follows from r —R vand u<=g v=r
implies v = v. Therefore £ —% 7. Since R is terminating, £ = r is impossible and thus
L —>;§w r as desired. O

As in the previous section, the last result allows us to establish the main completeness
theorem.

Theorem 7.8.23. If (€., Rw) is simplified then &, = & and R, is literally similar to
R. &

Proof. The TRS R is complete, the TRS R,, is terminating, and the inclusion —¢_ C
<% holds because R is a complete presentation. Moreover, NF(R,,) € NF(R) by
Lemma 7.8.22. Hence, Lemma 7.4.4(2) applies. Since R, is a complete presentation,
&, = @ by the assumption of a simplified system. O

Example 7.8.24. By Theorem 7.8.23 any simplifying KB, run on the equational system
& and the reduction order >\po from Example 7.3.9 will result in a canonical presentation,
independent of the order in which inference steps are applied. Note that Theorem 7.8.10
does not apply since the given order >0 is not ground total.

We conclude the subsection by showing the absence of a complete presentation for the
equational system mentioned in the first paragraph of Section 7.7.

Example 7.8.25. Let £ be the ES consisting of the two equations 0 + z ~ = and
r+yxy+z. Weshow that £ admits no complete presentation. Assume to the contrary
that R is a complete presentation of £. We use —>7'§ as the reduction order > for KB,.
Because 0+ 1z <% = implies 0+ = |p = and © € NF(R), we have 0+ 2 > z. In the same

179

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:NF_Rw_subset_NF_R
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#lem:linear_completeness

7. Abstract Completion, Formalized

way © + 0 > z is derived. Therefore, the following fair run of KB, is constructed:
&,2) Bt {r+y~y+2}{0+2— 1})

Fpetee e+ y~y+z,2+0x= 2} {0+2 — z})

Hret e+ y~y+2h{0+2 —2,204+0— 2})

Fpetee {o+y~y+2,0=0},{0+2 = z,2+0— z})
e e+ y~y+2}{0+2 = 2,240— z})

Hietee {4+ y~y+2,0=0},{0+2 = z,2+0— z})
'_i:/elete

It is easy to check that this run is fair; the two non-trivial critical pairs © + 0 =~ z and
0+z = x belong to EL. We have &, = {v+y~y+az} and Ry = {0+7 — z,2+0 — z}.
Note that (€,,R.) is simplified. According to Theorem 7.8.23, the persistent set &, must
be empty. This is a contradiction and thus R does not exist.

In summary, our proof of Theorem 7.7.10 resembles the approach by Devie [34], though
our version is structured along several preliminary results that are of independent interest,
such as Lemmata 7.8.20, 7.8.21, and 7.8.22.

7.9. Conclusion

In this paper we have presented new and formalized proofs for a number of correctness
and completeness results for abstract completion, ranging from the decidable case of
ground-completion to completeness results for ordered completion. By using modern
abstract confluence criteria, we could avoid the use of proof orders, which had a positive
effect on the Isabelle/HOL formalization.

We mention some topics for future work. Concerning completion of ground systems,
the literature contains other interesting results that we might consider as target for
future formalization efforts. Gallier et al. [40] showed that every ground ES £ can be
transformed into an equivalent canonical TRS in O(n?®) time, where n is the combined
size of the terms appearing in £. Snyder [128] improved this result to an O(nlogn)
time algorithm. Moreover, his algorithm can enumerate all canonical presentations, of
which there are at most 2¥ [128, Theorem 4.7], where k is the number of equations in &.
Furthermore, all canonical presentations have the same number of rules.

In the context of ordered completion, completeness remains an open problem in the
general case: It is unknown whether an ordered completion run can find a complete
system R for a set of input equations &£ if neither £ is linear (Theorem 7.8.23) nor R is
compatible with a ground-total reduction order (Theorem 7.8.10).

There are several important extensions of completion that we did not consider in this
paper. We mention completion in the presence of associative and commutative (AC)
symbols [117], normalized completion [81, 175], as well as maximal completion [69]. They
are natural candidates for future formalization efforts.

180

7.9. Conclusion

Acknowledgement

We are grateful for the detailed comments by the anonymous reviewers, which greatly
helped us to improve the paper.

181

8. Certified Equational Reasoning via
Ordered Completion

Publication Details

Christian Sternagel and Sarah Winkler. Certified Equational Reasoning via Ordered
Completion. In Proceedings of the 27th International, volume 11716 of Lecture Notes in
Computer Science, pages 508-528, Springer, 2019
do0i:10.1007/978-3-030-29436-6_30

Abstract

On the one hand, equational reasoning is a fundamental part of automated theorem
proving with ordered completion as a key technique. On the other hand, the complexity of
corresponding, often highly optimized, automated reasoning tools makes implementations
inherently error-prone. As a remedy, we provide a formally verified certifier for ordered
completion based techniques. This certifier is code generated from an accompanying
Isabelle/HOL formalization of ordered rewriting and ordered completion incorporating
an advanced ground joinability criterion. It allows us to rigorously validate generated
proof certificates from several domains: ordered completion, satisfiability in equational
logic, and confluence of conditional term rewriting.

8.1. Introduction

Equational reasoning constitutes a main area of automated theorem proving in which
completion has evolved as a fundamental technique [71]. Completion aims to transform
a given set of equations into a terminating and confluent rewrite system that induces the
same equational theory. Thus, on success, such a rewrite system can be used to decide
equivalence of terms with respect to the initial set of equations. The original completion
procedure may fail due to unorientable equations. As a remedy to this problem, ordered
completion—also known as unfailing completion—was developed [14]. As the name
suggests, unfailing completion always yields a result (which may however be infinite
and thus take infinitely many inference steps to compute). This time, the result is an
ordered rewrite system (given by a ground total reduction order, a set of rules which
are oriented with respect to this order, and a set of equations) that is still terminating,
but in general only ground confluent (that is, confluent on ground terms). Thus, the
resulting system can be used to decide equivalence of ground terms with respect to the
initial set of equations. This suffices for many practical purposes: A well-known success

183

http://dx.doi.org/10.1007/978-3-030-29436-6_30

8. Certified Equational Reasoning via Ordered Completion

story of ordered completion is the solution of the long-standing Robbins conjecture [85],
followed by applications to other problems from (Boolean) algebra [86]. More recent
applications include the use of ordered completion in algebraic data integration [124] and
in confluence proofs of conditional term rewrite systems [155].

As an introductory example, let us illustrate ordered completion on the following set
of equations describing a group where all elements are self-inverse:

f(z,y) = f(y,z) f(z,f(y,2)) = f(f(z,y), 2) f(z,2) =0 f(z,0) =z

Using ordered completion, the tool MedMax [176] transforms it into the following rules
(—) and equations (&), together with a suitable ground total reduction order > that
orients all rules from left to right.

f(a,f(z,y)) — f(0,v) f(x,f(y,z)) = f(0,y) f(z,z) =0 f(z,0) ==z
f(f(z,v),2) = f(z,f(y, 2)) f(0,2) —» =
f(z,f(y, 2)) = f(y,f(z, 2)) f(z,y) ~f(y,z)

This ordered rewrite system can be used to decide a given equation between ground
terms, by checking whether the unique normal forms (with respect to ordered rewriting
using >) of both terms coincide.

Automated reasoning tools are highly sophisticated pieces of software, not only be-
cause they implement complex calculi, but also due to their high degree optimization.
Consequently, their implementation is inherently error-prone.

To improve their trustability we follow a two-staged certification approach and (1) add
the relevant concepts and results regarding ordered completion to a formal library using
the proof assistant Isabelle/HOL [103] (version Isabelle2019), and from there (2) code
generate [52] a trusted certifier that is correct by construction. Our formalization
strengthens the originally proposed procedure [14] by using a relaxed version of the
inference system, while incorporating a stronger ground joinability criterion [83]. Our
certifier allows us to rigorously validate generated proof certificates from several domains:
ordered completion, satisfiability in equational logic, and confluence of conditional term
rewriting.

More specifically, our contributions are as follows:

e We extend the existing Isabelle Formalization of Rewriting! (IsaFoRfor short) by
ordered rewriting and a generalization of the ordered completion calculus oKB [14],
and prove the latter correct for finite completion runs with respect to ground total
reduction orders (Section 8.3).

o We establish ground totality of the Knuth-Bendix order and the lexicographic path
order in IsaFoR(Section 8.3).

e We formalize two criteria for ground joinability [14, 83] known from the literature,
that allow us to apply our previous results to concrete completion runs (Section

"http://cl-informatik.uibk.ac.at/isafor

184

http://cl-informatik.uibk.ac.at/isafor

8.2. Preliminaries

8.4). In fact, we present a slightly more powerful version of the latter, and fix an
error in its proof, as described below.

e We apply ordered completion to satisfiability in equational logic and infeasibility of
conditions in conditional rewriting (Section 8.5).

e We extend the XML-based certification problem format (CPF for short) [144] by
certificates for ordered completion and formalize corresponding executable check
functions that verify the supplied derivations (Section 8.6).

e Finally, we extend the completion tool MaedMax [176], as well as the confluence
tool ConCon [155] by certificate generation and evaluate our approach on existing
benchmarks (Section 8.7).

As a result, CeTA(the certifier accompanying IsaFoR) can now certify (a) ordered
completion proofs and (b) satisfiability proofs of equational logic produced by the tool
MadMax, as well as (c¢) conditional confluence proofs by ConCon where infeasibility
of critical pairs is established via equational logic. To the best of our knowledge,
CelTAconstitutes the first proof checker in all of these domains.

In the remainder we provide hyperlinks (marked by ®) to an HTML rendering of our
formalization.

This work is an extension of an earlier workshop paper [151]. Further note that
the IsaFoRformalization of the results in this paper is, apart from very basic results
on (ordered) rewriting, entirely disjoint from our previous formalization together with
Hirokawa and Middeldorp [59]. On the one hand, we consider a relaxed completion
inference system where more inferences are allowed. This is possible since we are only
interested in finite completion runs. On the other hand, we employ a stronger ground
joinability criterion. Another major difference is that our new formalization enables
actual certification of ordered completion based techniques, which is not the case for our
work with Hirokawa and Middeldorp.

8.2. Preliminaries

In the sequel, we use standard notation from term rewriting [9]. Let 7 (F,V) denote the
set of all terms over a signature F and an infinite set of variables V, and T (F) the set of
all ground terms over F (that is, terms without variables). A substitution o is a mapping
from variables to terms. As usual, we write to for the application of o to the term ¢.
A wariable permutation (or renaming) 7 is a bijective substitution such that = (z) € V
for all x € V. Given an equational system (ES) &, we write £ to denote its symmetric
closure EU{t =~ s|s~te&}. A reduction order is a proper and well-founded order on
terms which is closed under contexts and substitutions. It is F-ground total if it is total
on 7 (F). In the remainder we often focus on the Knuth-Bendix order (KBO), written
>kbo, and the lexicographic path order (LPO), written >j,,. Given a reduction order >
and an ES &, the term rewrite system (TRS) £ consists of all rules so — to such that
s~te &7 and so > to.

185

8. Certified Equational Reasoning via Ordered Completion

Given a reduction order >, an extended overlap consists of two variable-disjoint
variants 1 ~ r; and {3 ~ ry of equations in £ such that p € Posz(l2) and ¢; and /3],
are unifiable with most general unifier . An extended overlap which in addition satisfies
rip # Cip and rop F lop gives rise to the extended critical pair lo[r]ppu =~ rop. The
set CP~ (&) consists of all extended critical pairs between equations in £. A relation
on terms is (ground) complete, if it is terminating and confluent (on ground terms). A
TRS R is (ground) complete whenever the induced rewrite relation —% is. Finally, we
say that a TRS R is a presentation of an ES &£, whenever <= = =% (that is, their
equational theories coincide).

A substitution o is grounding for a term t if o(x) € T(F) for all z € Var(t). Two terms
s and t are called ground joinable over a rewrite system R, denoted s i% tif so g to
for all substitutions ¢ that are grounding for s and t¢.

For any complete rewrite relation —, we denote the (necessarily unique) normal form
of a term ¢ (that is, the term u such that we have ¢ —* u but u /4 v for all terms v) by ¢{.
By an ordered rewrite system we mean a pair (£, R), consisting of an ES £ and a TRS R,
together with a reduction order >. Then, ordered rewriting is rewriting with respect to
the TRS R U &s. Note that ordered rewriting is always terminating if R C >. Take
commutativity = x y & y * = for example, which causes nontermination when used as a
rule in a TRS. Nevertheless, the ordered rewrite system ({z vy ~ y 2}, &) together with
KBO, say with precedence x > a > b, is terminating and we can for example rewrite a * b
to b x a since applying the substitution {z — a, y — b} to the commutativity equation
results in a KBO-oriented instance.

8.3. Formalized Ordered Completion

Ordered completion is commonly presented as a set of inference rules, parameterized by
a fixed reduction order >. This way of presentation conveniently leaves a lot of freedom
to implementations. We use the following inference system, with some differences to the
original formulation [14] that we discuss below.

Definition 8.3.1 (Ordered Completion &). The inference system oKB of ordered com-
pletion operates on pairs (€, R) of equations £ and rules R over a common signature
F. It consists of the following inference rules, where S abbreviates R U &~ and 7 is a
TENAMING.

ER .. RUE® E,RWY{s =t})
ded =t t
educe EUlsr~trhR if s+ -—1t compose ERU 57 = ur) ift >su
EW{s~t},R EW{s~t}, R .
t
E,RU{sm — tr} ifs> EU{ur =tr}, R ifs=su
orient simplify
EW{s~t},R it s EW{s~t},R it s u
E,RU{tm — sm} EU{st=ur},R s
~ t
delete Eu{s~shR collapse ERW{t > s} ift >su

E,R EU{ur ~ s}, R

186

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion.html#ind:oKB'

8.3. Formalized Ordered Completion

We write (£,R) F (&', R') if (£',R’) is obtained from (£, R) by employing one of the

above inference rules. A finite sequence of inference steps
(50, @) [(51,R1) .o F (En,Rn)

is called a run. Definition 8.3.1 differs from the original formulation of ordered comple-
tion [14] (as well as the formulation in our previous work together with Hirokawa and
Middeldorp [59]) in two ways. First, collapse and simplify do not have an encompassment
condition.? This omission is possible since we only consider finite runs. Second, we allow
variants of rules and equations to be added. This relaxation tremendously simplifies
certificate generation in tools, where facts are renamed upon generation to avoid the
maintenance and processing of many renamed versions of the same equation or rule. Also
note that the deduce rule admits the addition of equations that originate from arbitrary
peaks. In practice, tools usually limit its application to extended critical pairs.

The following two results establish that the rules resulting from a finite oKBrun are
oriented by the reduction order > and that the induced equational theories before and
after completion coincide.

Lemma 8.3.2 (). If (,R) F* (£',R') then R C > implies R' C >. O
Lemma 8.3.3 (™). If (£,R) F* (', R’) then <>} g = 5 p- O

If the employed reduction order is F-ground total then the above two results imply
the following conversion equivalence involving ordered rewriting with respect to the final
system.

Lemma 8.3.4 (). Suppose > is F-ground total and R C >. If (£,R) F* (&', R’) such
that £', R', and > are over the signature F, then =% = e uge holds for conversions
>

between terms in T (F). O

This result is a key ingredient to our correctness results in Section 8.4. In order to
apply it, however, we need ground total reduction orders. To this end, we formalized the
following two results in IsaFoR.

Lemma 8.3.5 (¥). If > is a total precedence on F then >ypo is F-ground total. O
Lemma 8.3.6 (). If > is a total precedence on F then >0 is F-ground total. O

In addition, we proved that for any given KBO >yp, (LPO >|,,) defined over a total
precedence > there exists a minimal constant, that is, a constant ¢ such that ¢ >ype ¢
(t >1po ¢) holds for all ¢ € T(F) (which will be needed in Section 8.4). In earlier work
by Becker et al. [15] ground totality of a lambda-free higher-order variant of KBO is
formalized in Isabelle/HOL. However, for our purposes it makes sense to work with the
definition of KBO that is already widely used in IsaFoR.

2The encompassment condition demands that if a rule or equation ¢ & r is used to rewrite a term
t = C[lo] then C is non-empty or o is not a renaming.

187

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion_Impl.html#lem:oKB'_rtrancl_less
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion_Impl.html#lem:oKB_steps_conversion_permuted
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion_Impl.html#lem:oKB'_rtrancl_FGROUND_conversion
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/KBO.html#lem:S_ground_total
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/RPO.html#lem:lpo_ground_total

8. Certified Equational Reasoning via Ordered Completion

By Lemma 8.3.4, any two ground terms convertible in the initial equational theory are
convertible with respect to ordered rewriting in the system obtained from an oKBrun.
The remaining key issue is to decide when the current ordered rewrite system is ground
confluent, such that a tool implementing oKBcan stop. Instead of defining a fairness
criterion as done by Bachmair et al. [14], we use the following criterion for correctness
involving ground joinability.

Lemma 8.3.7 (&). If for all equations s ~ t in & we have s >t ort ~ s in £ and
CP-(€) C ¢§> then & is ground confluent with respect to >. O

Note that the symmetry condition on £ above is just a convenient way to express
the split of £ into rewrite rules with fixed orientation, and equations applicable in both
directions, which allows us to treat an ordered rewrite system as a single set of equations.
Lemmas 8.3.4 and 8.3.7 combine to the following correctness result.

Corollary 8.3.8 (). If > is F-ground total and (&y, @) H* (€,R) such that &', R/,
and > are over the signature F and CP~(RUET) C i?zus;’ then S = RUES is ground

complete and <=% = <% holds for conversions between terms in T (F).

Before we can apply this result in order to obtain ground completeness we need to be
able to discharge its ground joinability assumption on extended critical pairs. This is the
topic of the next section.

8.4. Formalized Ground Joinability Criteria

In general, ground joinability is undecidable even for terminating rewrite systems [68].
Below, we formalize two sufficient criteria.

8.4.1. A Simple Criterion

We start with the criterion that Bachmair et al. [14] proposed when they introduced
ordered completion.

Lemma 8.4.1 (). Suppose > is a ground total reduction order over F with a minimal
constant. Then, & is F-ground complete whenever for all s =t € CP~(E) it holds
that s Lg_t, or s~t= (s =)o for some s’ =t € ET. O

A minimal constant ¢ is needed to turn arbitrary ordered rewrite steps into ordered
rewrite steps over T (F): when performing an ordered rewrite step using an equation
u~ v with V' = Var(v) \ Var(u) # &, a step over T (F) is obtained by instantiating all
variables in V to c¢. We illustrate the criterion on an example.

Example 8.4.2. The following equational system &y is derived by ConCon while checking
infeasibility of a critical pair of the conditional rewrite system Cops #361:

z+y={0,y) =y =(s(q),r) r—0=x
0—y=0 s(z) —s(y) =z —vy s(z)>s(y)=z>vy
s(z) >0 = true s(z)<s(y) =z <y 0 <z = true

188

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Rewriting.html#lem:ground_joinable_ooverlaps_implies_GCR
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion_Impl.html#lem:oKB'_correct
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Completion_Impl.html#lem:check_ordered_completion_proof_sound
http://cops.uibk.ac.at/?q=361

8.4. Formalized Ground Joinability Criteria

In an ordered completion run, MaedMaxtransforms &y into the following rules R and
equations E:

r—0—ux 0—z—0 s(z) —s(y) >z —vy
0<z — true s(r)<s(y) > z<y r+y—(0,y)
s(z) >0 — true s(z)>s(y) >z >y
(5(2), 9 = (5(0),) (0, 5) ~ (s(a),) (0,4 = (0,)

Ground confluence of this system can be established by means of Lemma 8.4.1. For
example, the extended overlap between the first two equations gives rise to the extended
critical pair (0,y) ~ (s(z),y), which is just an instance of the second equation (and
similarly for the other extended critical pairs).

8.4.2. Ground Joinability via Order Closures

The criterion discussed in Section 8.4.1 is rather weak. For instance, it cannot handle
associativity and commutativity, as illustrated next [83, Example 1.1].

Example 8.4.3. Consider the system £ consisting of the three equations
(1) (zxy)sxzmazx(yxz) (2) zxymyxz (3) zx(y*xz)myx*(r*z)

and the reduction order >ypo with wog = 1 and w(x) = 0. The first equation can be
oriented from left to right, whereas the other ones are unorientable.
We obtain the following extended critical peak from equations (2) and (1):

zx(wxy)—(rxy)xz = xx(yx*2)

The resulting extended critical pair is neither an instance of an equation in € nor joinable.
Thus the criterion of Lemma 8.4.1 does not apply.

Howewver, this extended critical pair is ground joinable, which we show in the following.
The reduction order >ypo 18 contained in an F'-ground total one on any extension of
the signature F' O F (using the well-order theorem and incrementality of KBO). Thus,
for any grounding substitution o the terms zo, yo, and zo are totally ordered. Suppose
for instance that xo > zo0 > yo. Then there is an ordered rewrite sequence witnessing
joinability:

zo * (xo * yo) o % (Yo * z0)
% 2o x (yo x zo) yo x (10 % 20) 4
%yo* (za*xa)%

If, on the other hand, xo = yo > zo holds, there is a joining sequence as well:
10 % (z0 % 20) = x0 * (yo * z20)
10 % (20 % 10) ()

zo % (20 % yo) = 20 % (r0 x 20)—F)

189

8. Certified Equational Reasoning via Ordered Completion

By ensuring the existence of a joining sequence for all possible relationships between zo,
yo, and zo, ground joinability can be established. Using this approach to show that all
extended critical pairs are ground joinable, it can be verified that £ is in fact ground
complete.

The ground joinability test by Martin and Nipkow [83] is based on the idea illustrated
in Example 8.4.3 above: perform a case analysis by considering ordered rewriting using
all extensions of > to instantiations of variables. Below, we give the corresponding formal
definitions used in IsaFoR. For any relation R on terms, let o(R) denote the relation such
that so o(R) to holds if and only if s R t.

Definition 8.4.4 (). A closure C is a mapping between relations on terms that satisfies
the following properties:

(1) If s C(R) t then so C(o(R)) to, for all relations R, substitutions o, and terms s
and t.

(2) If R C R’ then C(R) C C(R'), for all relations on terms R and R'.
The closure C is compatible with a relation on terms R if C(R) C R holds.

In the remainder of this section we assume F to be the signature of the input problem,
we consider an F-ground total reduction order > as well as a closure C that is compatible
with >. Furthermore, we assume for every finite set of variables V' C V and every
equivalence relation = on V' a representation function repg ,» such that for any x € V we
have = = repg z (), repeur(z) € V and = = y implies repg jz () = repg = (y). Given
an equivalence relation = on V, let = denote the substitution such that =(z) = repg 5 ()
forall x € V.

Definition 8.4.5 (). Given an ES £ and a reduction order >, terms s and t are
C-joinable, written s ig t, if for all equivalence relations = on Var(s,t) and every order
> on the equivalence classes of = it holds that

sE L St (8.1)
Ce-) € Eem

Example 8.4.6. For instance, consider the terms s = z % (zr * y) and t = = * (y * 2)
from Ezample 8.4.3. One possible equivalence relation = on Var(s,t) = {xz,y, 2} is given
by the equivalence classes {z,y} and {z}; one possible order on these is =(z) = =(2)
(corresponding to the second example for an order on the instantiations ro and zo in
Ezxzample 8.4.3). By taking C to be the KBO closure (see Definition 8.4.13 below), we
have x % z C(=) z*x and v * (2 x 1) C(>=) 2z * (v *). Using the ES € from Example 8.4.3
we thus obtain the ordered rewrite sequence

t==axx(r*xz) — r*(2%12) — zx (z*x 1) = s=
Ee(=) Ee(=)

Ground joinability follows from C-joinability. Since this is the key result for the ground
joinability criterion of this subsection, we also sketch its proof.

190

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Rewriting.html#loc:order_closure
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Rewriting.html#def:var_order_joinable

8.4. Formalized Ground Joinability Criteria

Lemma 8.4.7 (). If s |S ¢ then s V.t

Proof. We assume s i‘gz t and consider a grounding substitution o to show so g to.
There is some equivalence relation = on Var(s,t) such that x = y holds if and only if
o(z) = o(y) for all z,y € Var(s,t). Note that this implies so = s=c and to = t=0.

We can define an order > on the equivalence classes of = such that [z]=z > [y]= if
and only if o(z) > o(y). Hence o(>>) C > holds, and by Definition 8.4.4(2) we have
C(o(>)) C C(>). Compatibility implies C(>) C >, and thus C(c(>)) C >.

From Definition 8.4.4(1) we can show that u —¢, | v implies uo —¢, ., vo for all
terms u and v. So using the assumption s ig t we can apply o to a conversion of the
form (8.1) to obtain

S0 = 8§50 —— > ——— 1Z0 = to (8.2)
O)
Ordered rewriting is monotone with respect to the order, and hence C(o(>~)) C > implies
oy & —E-- Thus (8.2) implies the existence of a conversion

S0 = ¢ to
Es Es Es

where the <>¢_ step exists as any two F-ground terms are comparable in >. O O

Note that the proof above uses the monotonicity assumption for closures (Defini-
tion 8.4.4(2)), which is not present in [83]. The following counterexample illustrates that
monotonicity is indeed necessary.

Example 8.4.8. Consider the ES € = {f(x) ~ a} and suppose that > = C(>) is an
LPO with precedence a > b > ¢ > f. Moreover, take s = f(b) and t = f(c). Any order >~
as in Definition 8.4.5 is empty since Var(s,t) = &. As C is not required to be monotone,
the relation C(>) may contain (f(b),a) and (f(c),a). Then s =g, a andt —g, a
mmply s ig t even though s ¢§> t does not hold.

)

Below, we define an inductive predicate gj which is used to conclude ground joinability
of a given equation.

Definition 8.4.9 (®). Given an ES £ and a reduction order >, gj is defined inductively
by the following rules:

delete gj(t,t)

closure st = gj(s,t)

step s t = gj(s,1)

rewrite left s and gj(u,t) = gj(s,t)
>

rewrite right t g—> u and gj(s,u) = gj(s,t)
>

congruence gj(si,t;) forall1 <i<n = gj(f(s1,-..,5n), f(t1,...,tn))

191

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Rewriting.html#lem:var_order_joinable_ground_joinable
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Rewriting.html#ind:ground_join_rel

8. Certified Equational Reasoning via Ordered Completion

This test differs from the one due to Martin and Nipkow [83] by the two rewrite rules,
which were added to allow for more efficient checks, as illustrated next.

Example 8.4.10. Consider the ES £
f(r) ~ (1) g(s, 1) ~ (2)

together with a KBO that can orient the second equation (for instance, one can take
as precedence g > f > ¢ and let all function symbol weights as well as wy be 1). Then
gj(f(x),f(2)) holds by the step rule, gj(g(x, v),f(2)) follows by an application of rewrite left,
and gj(g(z,v),8(z, w))) by rewrite right. By Lemma 8.4.11 below it thus follows that the
equation g(z,y) ~ g(z,w) is ground joinable.

However, the criterion by Martin and Nipkow [83] lacks the rewrite steps. Hence
ground joinability of g(z,y) =~ g(z,w) can only be established by applying the closure rule.
This amounts to checking ground joinability with respect to 81 relations between the four
variables. Since the number of variable relations is in general exponential, the criterion
stated in Definition 8.4.9 can in practice be exponentially more efficient than the test by
Martin and Nipkow [83].

Using Lemma 8.4.7 it is not hard to show the following correctness results.

Lemma 8.4.11 (). Suppose for all s ~ t in £ we have s >t ort ~ s in £. Then
gi(s,t) implies s ¢§> t. O

Lemma 8.4.12 (). If for all s =~ t in & we have s >t ort ~ s in & and CP= (&) C ¢§>
then & is ground confluent with respect to >. Ol

This test can not only handle Example 8.4.3 but also the group theoretic problem from
the introduction. Moreover, it subsumes Lemma 8.4.1 since whenever for some equation
s~ t we have s ¢§> t by Lemma 8.4.1 then gj(s,t) holds.

Closures for Knuth-Bendix Orders.

Definition 8.4.4 requires abstract properties on closures. In the following we define
closures for KBO as used in IsaFoR/CeTA.

Similar to the already existing definition of KBO in IsaFoR [142] we define the closure
> as follows.

Definition 8.4.13 (). Let R be a relation on terms, > a precedence on F, and (w,wp)
a weight function. The KBO closure >5bo s a relation on terms inductively defined as
follows: s > tif s Rt, or|s|y > |t|, for allz €V and either

(a) w(s) > w(t), or

(b) w(s) =w(t) and one of
(1) s¢V andt eV, or
(2) Szf(slw"vsn); t:g(thatm) andf>g; or

192

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Rewriting.html#lem:ground_join_rel_ground_joinable
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Rewriting.html#lem:xCPs_ground_join_rel_GCR
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/KBO_More.html#def:kbo_closure

8.5. Applications

(3) s = f(s1,...,8n), t = f(t1,...,tn) and there is some i < n such that s; = t;
foralll <j<iands; >5b0 t;

Note that even though Definition 8.4.13 resembles the usual definition of KBO, it
defines a closure of a relation R in a KBO-like way rather than a reduction order. For
instance, if = > z, as in Example 8.4.6, then = % 2 >k>bo z * x holds.

We prove that >be is indeed a closure that is compatible with >yp, based on the same
weight function and precedence.

Lemma 8.4.14. Let R be a relation on terms, > a precedence on F, and (w,wy) a
weight function. Then all of the following hold:

(a) If s >wpo t then s >t for all terms s and t. ¥
(b) If RC R then > C >[. ©
(c) If s >Ebo t then so >Eéf) to, for all substitutions o, and terms s and t. 4
(d) The closure >{t is compatible with >ypo. ¥

8.5. Applications

Ground complete rewrite systems can be used to decide equivalence of ground terms
with respect to their induced equational theory. Here we highlight applications of this
decision problem.

Deciding Ground Equations.

Suppose we obtain the ordered rewrite system (£,R) and the reduction order > by
applying ordered completion to an initial set of equations &. Then it is easy to decide
whether two ground terms s and ¢ are equivalent with respect to & (that is, whether
s <>g, t): it suffices to check if the (necessarily unique) normal forms of s and ¢ with
respect to R U & coincide. Also if all variables of a non-ground goal equation are
universally quantified, the goal can be decided by substituting fresh constants for its
variables.

Equations with Existential Variables.

The following trick by Bachmair et al. [14] allows us to reduce equations with existentially
quantified variables to the ground case: Let £ be a set of equations and s =~ ¢ a goal
equation where all variables are existentially quantified. This corresponds to the question
whether there is a substitution o such that so <=% to holds. We employ three fresh
function symbols eq, true, and false, and define Sse; to denote £ extended by the two
equations eq(z,) & true and eq(s, t) ~ false.

If a ground complete system equivalent to 8;3 is found—for instance discovered by
ordered completion—then it can be used to decide the goal, as stated next.

193

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/KBO_More.html#lem:kbo_kbo_closure
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/KBO_More.html#lem:kbo_closure_mono
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/KBO_More.html#lem:kbo_closure_subst
http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/KBO_More.html#lem:kbo_closure_compatible

8. Certified Equational Reasoning via Ordered Completion

Lemma 8.5.1 (). Let s, t, and £ all be over signature F and let S be a ground

complete TRS such that <—>2§qt C =% on T(F). If so <=% to then truelg = falsels.

*
&
Moreover, (appealing to an earlier formalization about signature extensions [137]) there
exists an F-grounding substitution 7 such that s7 <% 7. So we have

s,t

. . . . e
Proof. Since so <—§ to, there is a conversion so <% to by construction of &gj.
s,t ’

true «— eq(sT, sT) — eq(sT, tT) — false
£5% £ £

and by the assumed conversion inclusion an S-conversion between true and false. Several
applications of ground confluence of S yield joinability of true|s and falselg. Since both
of these terms are normal forms they coincide. O O

Infeasibility of Conditions.

A decision procedure for ground equations can also be harnessed to prove infeasibility of
conditions in conditional term rewriting. Here a condition c is a sequence of pairs of terms
s1 &~ t1,...,S; ~ tp and we say that c is infeasible whenever there is no substitution such
that s;0 —7% t;0 holds for all 1 <14 < k. Now, it is obviously a sound overapproximation
to ensure that there is no o such that s;o <=7 t;0 for all 1 <4 < k. This suggests that
completion methods might be applicable.

But there are still two complications before we are able to achieve an infeasibility
check: (1) the rules of a conditional term rewrite system (CTRS for short) R may be
guarded by conditions, making R an unsuitable input for ordered completion, and (2) the
conditions ¢ are most of the time not ground. As is conventional when adopting TRS
methods to conditional rewriting, we solve (1) by dropping all conditions from the rules
of R, resulting in the unconditional TRS R, whose rewrite relation overapproximates
the one of R. Of course if we can establish that there is no o such that s;o _>;<2u tio
for all 1 <¢ < k, then we also obtain infeasibility of ¢ with respect to the CTRS R. In
order to solve (2) we use a fresh function symbol ¢ and apply Lemma 8.5.1 to decide the
equation s = c(s1,...,Sk) ~ c(t1,...,tx) =t by applying ordered completion to RuZ?t' If
s %%ueqt t we can conclude infeasibility of c.

S,

Checking for infeasibility is for example useful when analyzing the confluence of a
conditional rewrite system, since whenever we encounter a conditional critical pair whose
conditions are infeasible, we can ignore it entirely. Since 2019 the Confluence Competition
(CoCo)? also features a dedicated infeasibility category.

8.6. Certification

In this section we describe the proof certificates for the different certifiable properties
and summarize the corresponding Isabelle/HOL check functions.

3http://project-coco.uibk.ac.at/2019/

194

http://cl-informatik.uibk.ac.at/isafor/v2.37/LMCS2019/Ordered_Rewriting.html#lem:conversion_imp_fground_NF_eq
http://project-coco.uibk.ac.at/2019/

8.6. Certification

Here, check functions are the formal connection between general, abstract results and
concrete certificates. For example, a check function for a KBO termination proof takes a
certificate, containing a concrete TRS, a specific precedence, and fixed weight functions,
as input. It checks that the KBO instance is admissible and orients all rules of the TRS
from left to right. By appealing to the abstract result that compatibility of a TRS with
an admissible KBO implies termination, it then concludes termination of the concrete
instance.

Only check functions that are both executable and proven sound are allowed in the
certifier. The latter means that success of the check function implies a concrete instance
of the corresponding general result (in our example success proves termination of the
given TRS). In case of failure it is customary for CeTAcheck functions to give a human
readable reason for why a certificate is rejected.

Ordered Completion Certificates.

Here, the certificate consists of
e a set of initial equations &,
e an ordered completion result (£, R) together with a reduction order >, and
e a sequence of inference steps according to Definition 8.3.1.

The corresponding check function verifies that (1) the inference steps form a valid run
(Eom, @) H* (£, R) for some renaming 7, (2) all extended critical pairs are joinable, by
default according to Lemma 8.4.12, and (3) the reduction order is admissible, in case of
KBO.

Next, we illustrate such an ordered completion proof by an example.

Example 8.6.1. The certificate corresponding to Example 8.4.2 contains the equations
&o, the resulting system (E£,R), and the reduction order >ypo with precedence > > s >
<>true>—>+> () >0, wg =1, and w(0) = 2, w(=+) = w(true) = w(s) =1, and
all other symbols having weight 0. In addition, a sequence of inference steps explains how
(E,R) is obtained from &Ey:

simplifyiere = =y =~ (s(q),r) to {0,y) =~ (s(q),)

deduce (0,) = (s(u), v) = (0, 7)

deduce (s(),y) (0, u) = (s(q),)

deduce x>y s(z) >s(y) = s(s(x)) >s(s(y))

orienty, 0 <2 — true

orienty s(s(z)) >s(s(y)) =z >y (%)
orient), s(z) —s(y) =z —y

orienty, 0—xz—0

orienty, s(z)<s(y) »z<y

collapse s(s(z)) >s(s(y)) mz>ytor>y~a>y

collapse s(s(z)) >s(0) — true to s(z) > 0 = true

195

8. Certified Equational Reasoning via Ordered Completion

simplifyiere s(z) > 0 & true to true ~ true
delete T>yYRT>Y
delete true = true

The first collapse step using rule (x) above illustrates our relaxed inference rule, it
would not have been possible according to the original inference system [14] due to the
encompassment condition since s(s(x)) > s(s(y)) ¥ s(s(z)) > s(s(y)).

We briefly comment on the differences to the certification of standard Knuth-Bendix
completion as already present in CeTA [142]. For standard completion, the certificate
contains the initial set of equations &, the resulting TRS R together with a termination
proof, and stepwise &y-conversions from ¢ to r for each rule £ — r € R. The certifier
first checks the termination proof to guarantee termination of R. Then, confluence of
R can be guaranteed by ensuring that all critical pairs are joinable. At this point it is
easy to verify the inclusion <= C «>%: for each equation s = ¢ € & the R-normal
forms of s and ¢ are computed and checked for syntactic equality. The converse inclusion
> C <, 1s taken care of by the provided £y-conversions. Overall, we obtain that R
is a complete presentation of & without mentioning a specific inference system.

Unfortunately, the same approach does not work for ordered completion: The inclusion
g, © ¢?Rus. cannot be established by rewriting equations in &y to normal form, since
they may contain variables but R U £~ is only ground confluent. Moreover, since ground
joinability is undecidable no complete check can be performed. Therefore, we instead ask
for certificates that contain explicit inference steps, as described above.

Equational Satisfiability Certificates.

We use the term “satisfiability” of unit equality problems in line with the terminology
of TPTP [161]: given a set of equations & and a ground goal inequality s % ¢, show
that this axiomatization is satisfiable. To this end, completion-based tools try to find a
ground complete presentation S of & and verify that slg # tlg.

A certificate for this application extends an ordered completion certificate by the goal
terms. The corresponding check function verifies that

e the presented ordered completion proof is valid as described above,
e the goal inequality is ground,
e the signature of &), £, and R is included in the signature of >, and

e the terms in the goal have different normal forms.

We chose the symbols mentioned by the reduction order to be the considered signature
F. In comparison to picking the signature of &, this has the advantage that it is easy to
add additional function symbols. Moreover, since KBO precedences in the CPF input are
lists of function symbols, no additional checks are required to ensure F-ground totality
of the constructed reduction order.

196

8.7. Experiments

As a side note, unsatisfiability proofs are much easier to certify: a tool only needs
to output a conversion between the two goal terms. Support for the corresponding
certificates has already been added to CeTAearlier [160].

Infeasibility Certificates.

Actually we check (generalized) nonreachability [135] of a target ¢ from a source s with
respect to a TRS R, that is, the property that, given a TRS R and two terms s and t,
there is no substitution o with so =% to.

The corresponding certificates list function symbols eq, true, and false, together with
an equational satisfiability certificate. The check function first constructs, using eq, true,
and false from the certificate the TRS R:?t and then verifies that the equation true ~ false
is not satisfiable according to the supplied equational satisfiability certificate with Rif‘t
as initial set of equations.

8.7. Experiments

Below we summarize experiments with our certifier on different problem sets. More
details are available from the accompanying website.*

Ordered Completion.

Martin and Nipkow [83] give 10 examples. The criterion of Lemma 8.4.12 with KBO
applies to 7 of those and MaedMaxproduces corresponding proofs. Six of these proofs
are certified by CeTA. The missing example uses a trick also used by Waldmeister [8]:
certain redundant equations need not be considered for critical pair computation. This
simplification is not yet supported by CelA.

We also ran MadMaxon the 138 problems [122] for standard completion collected
from the literature. Using KBO, MadMaxcan complete 55 of them, and 52 of those are
certified. (Using LPO and KBO, 91 are completed.) For the three remaining (AC) group
examples, MaedMaxuses a stronger criterion [174] which is currently not supported by
CeTA. Overall, this amounts to 58% certification coverage of all ordered completion proofs
by MadMax.

Satisfiable Unit Equality Problems.

There are 144 unit equality problems (UEQ) in the TPTP 7.2.0 [161] benchmark that
are classified as satisfiable, of which MaedMaxusing KBO only can prove 11. All these
proofs are certified by CeTA. With its general strategy MaedMaxcan handle 14 problems,
but two of those require duplicating rules, such that KBO is not applicable, and one has
multiple goals, which is currently not supported by CelA.

‘http://cl-informatik.uibk.ac.at/experiments/okb/

197

http://cl-informatik.uibk.ac.at/experiments/okb/

8. Certified Equational Reasoning via Ordered Completion

Infeasibility Problems.

There are 148 oriented CTRSs in version 807 of the Cops® benchmark (that is, the version
of Cops where the highest problem number is 807) of CoCo. Here oriented means that a
condition s ~ t is satisfied by a substitution o, whenever so —% to. (This is the class of
systems ConCon is specialized to, hence we restrict our experiments to the above 148
systems.)

Out of those 148 CTRSs, the previous version of ConCon (1.7) can prove (non)confluence
of 109 with and of 112 without certification. The new version of ConCon (1.8), extended
by infeasibility checks via ordered completion with MadMax, can handle 111 CTRSs
with and 114 without certification. We thus obtain two new certified proofs, namely for
Cops #340 and #361.

8.8. Conclusion

We presented our Isabelle/HOL formalization of ordered completion and two accompany-
ing ground joinability criteria—now part of IsaFoR 2.37. It comes with check functions
for ordered completion proofs, equational satisfiability proofs, and infeasibility proofs for
conditional term rewriting. Formalizing soundness of these check functions allowed us to
add support for corresponding certificates to the certifier CeTAthat is code generated from
IsaFoR. To the best of our knowledge, CeTAconstitutes the first proof checker for ordered
completion proofs. Indeed, it already helped us to detect a soundness error in MadMax,
where in certain corner cases some extended critical pairs were ignored. Our experiments
show that we can certify 58% of ordered completion proofs (corresponding to 94% of the
KBO proofs) and 85% of the satisfiability proofs produced by MadMax(100% for KBO).
The number of certified proofs of ConCon increased by two.

Moreover, CeTAis the only certifier used in the Confluence Competition; by certifying
infeasibility proofs our work thus helps to validate more tool output. Regarding the recent
CoCo 2019, certification currently covers roughly 83% of the benchmarks in the two
categories (CTRS and TRS) that have certified counterparts (CPF-CTRS and CPF-TRS).

In the future, we plan to add support for closures of LPO and extend our certifier to
verify proofs of pure, not necessarily unit, equality formulas, as well as ground confluence
proofs by tools participating in the confluence competition.

Acknowledgments.

We thank the anonymous referees for their constructive comments and various suggestions
for improvements.

Shttp://cops.uibk.ac.at?q=1..807

198

http://cops.uibk.ac.at/?q=340
http://cops.uibk.ac.at/?q=361
http://cops.uibk.ac.at/results/?y=2019&c=CTRS
http://cops.uibk.ac.at/results/?y=2019&c=TRS
http://cops.uibk.ac.at/results/?y=2019&c=CPF-CTRS
http://cops.uibk.ac.at/results/?y=2019&c=CPF-TRS
http://cops.uibk.ac.at?q=1..807

Bibliography

1]

B. Alarcén, R. Gutiérrez, S. Lucas, and R. Navarro-Marset. Proving termination
properties with MU-TERM. In Proceedings of the 13th International Conference
on Algebraic Methodology And Software Technology (AMAST), volume 6486 of
Lecture Notes in Computer Science, pages 201-208. Springer, 2011. doi:10.1007/
978-3-642-17796-5_12.

E. Alkassar, S. Bohme, K. Mehlhorn, and C. Rizkallah. Verification of certifying
computations. In Proceedings of the 23rd International Conference on Computer
Aided Verification (CAV), volume 6806 of Lecture Notes in Computer Science,
pages 67-82. Springer, 2011. doi:10.1007/978-3-642-22110-1_7.

S. Antoy and M. Hanus. Functional logic programming. Commun. ACM, 53(4):
74-85, 2010. doi:10.1145/1721654.1721675.

T. Aoto and M. Yamaguchi. ACP: System description for CoCo 2019. In Proceedings
of the 8th International Workshop on Confluence (IWC), page 51, 2019.

T. Aoto, J. Yoshida, and Y. Toyama. Proving confluence of term rewriting systems
automatically. In Proceedings of the 20th International Conference on Rewriting
Techniques and Applications (RTA), volume 5595 of Lecture Notes in Computer
Science, pages 93-102. Springer, 2009. doi:10.1007/978-3-642-02348-4_7.

M. Avanzini, C. Sternagel, and R. Thiemann. Certification of complexity proofs
using CeTA. In Proceedings of the 26th International Conference on Rewriting
Techniques and Applications (RTA), volume 5674 of Lecture Notes in Computer
Science, pages 452—468. Springer, 2015. doi:10.1007/978-3-642-03359-9_31.

J. Avenhaus and C. Loria-Sdenz. On conditional rewrite systems with extra
variables and deterministic logic programs. In Proceedings of the 5th International
Conference on Logic for Programming and Automated Reasoning (LPAR), volume
822 of Lecture Notes in Computer Science, pages 215-229. Springer, 1994. doi:10.
1007/3-540-58216-9_40.

J. Avenhaus, T. Hillenbrand, and B. Léchner. On using ground joinable equations
in equational theorem proving. Journal of Symbolic Computation, 36(1-2):217-233,
2003. do0i:10.1016/80747-7171(03)00024-5.

F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998. doi:10.1017/CB09781139172752.

199

http://dx.doi.org/10.1007/978-3-642-17796-5_12
http://dx.doi.org/10.1007/978-3-642-17796-5_12
http://dx.doi.org/10.1007/978-3-642-22110-1_7
http://dx.doi.org/10.1145/1721654.1721675
http://dx.doi.org/10.1007/978-3-642-02348-4_7
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/3-540-58216-9_40
http://dx.doi.org/10.1007/3-540-58216-9_40
http://dx.doi.org/10.1016/S0747-7171(03)00024-5
http://dx.doi.org/10.1017/CBO9781139172752

Bibliography

[10]

200

L. Bachmair. Canonical Equational Proofs. Birkhauser, 1991. doi:10.1007/
978-1-4684-7118-2.

L. Bachmair and N. Dershowitz. Commutation, transformation, and termination. In
Proceedings of the 8th International Conference on Automated Deduction (CADE),
volume 230 of Lecture Notes in Computer Science, pages 520, 1986. doi:10.1007/
3-540-16780-3_76.

L. Bachmair and N. Dershowitz. Equational inference, canonical proofs, and proof
orderings. Journal of the ACM, 41(2):236-276, 1994. doi:10.1145/174652.174655.

L. Bachmair, N. Dershowitz, and J. Hsiang. Orderings for equational proofs. In
Proceedings of the 1st IEEE Symposium on Logic in Computer Science (LICS),
pages 346-357, 1986.

L. Bachmair, N. Dershowitz, and D. A. Plaisted. Completion without failure. In
Resolution of Equations in Algebraic Structures, volume 2: Rewriting Techniques
of Progress in Theoretical Computer Science, pages 1-30. Academic Press, 1989.

H. Becker, J. C. Blanchette, U. Waldmann, and D. Wand. A transfinite Knuth-
Bendix order for lambda-free higher-order terms. In Proceedings of the 26th
International Conference on Automated Deduction (CADE), volume 10395 of
Lecture Notes in Computer Science, pages 432—453. Springer, 2017. doi:10.1007/
978-3-319-63046-5_27.

S. Berghofer. A constructive proof of Higman’s lemma in Isabelle. In Proceedings
of the 3rd International Workshop on Types for Proofs and Programs (TYPES),
volume 3085 of Lecture Notes in Computer Science, pages 66—82. Springer, 2003.
doi:10.1007/978-3-540-24849-1_5.

J. A. Bergstra and J. W. Klop. Conditional rewrite rules: Confluence and
termination. Journal of Computer and System Sciences, 32(3):323-362, 1986.
doi:10.1016/0022-0000(86)90033-4.

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development;
Coq’Art: The Calculus of Inductive Construcdtions. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2004. doi:10.1007/978-3-662-07964-5.

C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards
QED. Journal of Formalized Reasoning, 9(1):101-148, 2016. doi:10.6092/issn.
1972-5787/4593.

F. Blanqui and A. Koprowski. CoLoR: a Coq library on well-founded rewrite
relations and its application to the automated verification of termination certificates.
Mathematical Structures in Computer Science, 21(4):827-859, 2011. doi:10.1017/
S0960129511000120.

http://dx.doi.org/10.1007/978-1-4684-7118-2
http://dx.doi.org/10.1007/978-1-4684-7118-2
http://dx.doi.org/10.1007/3-540-16780-3_76
http://dx.doi.org/10.1007/3-540-16780-3_76
http://dx.doi.org/10.1145/174652.174655
http://dx.doi.org/10.1007/978-3-319-63046-5_27
http://dx.doi.org/10.1007/978-3-319-63046-5_27
http://dx.doi.org/10.1007/978-3-540-24849-1_5
http://dx.doi.org/10.1016/0022-0000(86)90033-4
http://dx.doi.org/10.1007/978-3-662-07964-5
http://dx.doi.org/10.6092/issn.1972-5787/4593
http://dx.doi.org/10.6092/issn.1972-5787/4593
http://dx.doi.org/10.1017/S0960129511000120
http://dx.doi.org/10.1017/S0960129511000120

[21]

22]

[23]

[26]

Bibliography

M. Blum and S. Kannan. Designing programs that check their work. Journal of
the ACM, 42(1), 1995. doi:10.1145/200836.200880.

S. Bohme and T. Nipkow. Sledgehammer: Judgement day. In Proceedings of the 5th
International Joint Conference on Automated Reasoning (IJCAR), volume 6173 of
Lecture Notes in Computer Science, pages 107-121. Springer, 2010. doi:10.1007/
978-3-642-14203-1_9.

B. Boyer, T. Genet, and T. Jensen. Certifying a tree automata completion checker.
In Proceedings of the 4th International Joint Conference on Automated Reasoning
(IJCAR), volume 5195 of Lecture Notes in Computer Science, pages 523-538.
Springer, 2008. doi:10.1007/978-3-540-71070-7_43.

S. Burckel. Syntactical methods for braids of three strands. Journal of Symbolic
Computation, 31:557-564, 2001. doi:10.1006/jsco.2000.0473.

M. Codish, C. Fuhs, J. Giesl, and P. Schneider-Kamp. Lazy abstraction for
size-change termination. In Proceedings of the 16th International Conference
on Logic for Programming and Automated Reasoning (LPAR), volume 6397 of
Lecture Notes in Computer Science, pages 217-232. Springer, 2010. doi:10.1007/
978-3-642-16242-8_16.

E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Automated certified
proofs with CiME3. In Proceedings of the 22nd International Conference on
Rewriting Techniques and Applications (RTA), volume 10 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 21-30. Schloss Dagstuhl — Leibniz-
Zentrum fir Informatik, 2011. doi:10.4230/LIPIcs.RTA.2011.21.

S. de Gouw, F. de Boer, and J. Rot. Proof Pearl: The KeY to correct and stable
sorting. Journal of Automated Reasoning, 53(2):129-139, 2014. doi:10.1007/
510817-013-9300-y.

S. de Gouw, J. Rot, F. S. de Boer, R. Bubel, and R. Hahnle. OpenJDK’s
Java.utils.Collection.sort() is broken: The good, the bad and the worst case. In
Proceedings of the 27th International Conference on Computer Aided Verification
(CAV), volume 9206 of Lecture Notes in Computer Science, pages 273-289. Springer,
2015. do0i:10.1007/978-3-319-21690-4_16.

S. de Gouw, F. S. de Boer, R. Bubel, R. Hahnle, J. Rot, and D. Steinhéfel. Verifying
OpenJDK’s sort method for generic collections. Journal of Automated Reasoning,
62(1):93-126, 2019. doi:10.1007/s10817-017-9426-4.

R. C. de Vrijer. Conditional linearization. Indagationes Mathematicae, 10(1):145 —
159, 1999. doi:10.1016/S0019-3577(99)80012-3.

N. Dershowitz. A note on simplification orderings. Information Processing Letters,
9(5):212-215, 1979. doi:10.1016/0020-0190(79)90071-1.

201

http://dx.doi.org/10.1145/200836.200880
http://dx.doi.org/10.1007/978-3-642-14203-1_9
http://dx.doi.org/10.1007/978-3-642-14203-1_9
http://dx.doi.org/10.1007/978-3-540-71070-7_43
http://dx.doi.org/10.1006/jsco.2000.0473
http://dx.doi.org/10.1007/978-3-642-16242-8_16
http://dx.doi.org/10.1007/978-3-642-16242-8_16
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://dx.doi.org/10.1007/s10817-013-9300-y
http://dx.doi.org/10.1007/s10817-013-9300-y
http://dx.doi.org/10.1007/978-3-319-21690-4_16
http://dx.doi.org/10.1007/s10817-017-9426-4
http://dx.doi.org/10.1016/S0019-3577(99)80012-3
http://dx.doi.org/10.1016/0020-0190(79)90071-1

Bibliography

[32]

33]

[42]

202

N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science,
17(3):279-301, 1982. doi:10.1016/0304-3975(82)90026-3.

N. Dershowitz, M. Okada, and G. Sivakumar. Confluence of conditional rewrite
systems. In Proceedings of the 1st International Workshop on Conditional and
Typed Rewriting Systems, volume 308 of Lecture Notes in Computer Science, pages
31-44. Springer, 1988. do0i:10.1007/3-540-19242-5_3.

H. Devie. Linear completion. In Proceedings of the 2nd International Workshop on
Conditional and Typed Rewriting Systems, pages 233-245. Springer, 1991. doi:10.
1007/3-540-54317-1_94.

L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with
n distinct prime factors. American Journal of Mathematics, 35(4):413-422, 1913.
doi:10.2307/2370405.

B. Felgenhauer and R. Thiemann. Reachability analysis with state-compatible
automata. In International Confluence on Language and Automated Theory and
Applications (LATA), volume 8370 of Lecture Notes in Computer Science, pages
347-359. Springer, 2014. doi:10.1007/978-3-319-04921-2_28.

G. Feuillade and T. Genet. Reachability in conditional term rewriting systems. In
Proceedings of the 4th International Workshop on First-Order Theorem Proving,
volume 86 of FElectronic Notes in Theoretical Computer Science, pages 133-146,
2003. do0i:10.1016/81571-0661(04)80658-3.

J.-C. Fillidtre and N. Magaud. Certification of sorting algorithms in the Coq
system. In Theorem Proving in Higher Order Logics: Emerging Trends, 1999.
http://www-sop.inria.fr/croap/TPHOLs99/proceeding.html.

D. Fridlender. Higman’s lemma in type theory. In Proceedings of the 1st
International Workshop on Types for Proofs and Programs (TYPES), volume
1512 of Lecture Notes in Computer Science, pages 112-133. Springer, 1998.
doi:10.1007/BFb0097789.

J. H. Gallier, P. Narendran, D. A. Plaisted, S. Raatz, and W. Snyder. An algorithm
for finding canonical sets of ground rewrite rules in polynomial time. Journal of
the ACM, 40(1):1-16, 1993. doi:10.1145/138027.138032.

T. Genet. Decidable approximations of sets of descendants and sets of normal
forms. In Proceedings of the 9th International Conference on Rewriting Techniques
and Applications (RTA), volume 1379 of Lecture Notes in Computer Science, pages
151-165. Springer, 1998. doi:10.1007/BFb0052368.

T. Genet and V. Viet Triem Tong. Reachability analysis of term rewriting systems
with timbuk. In Proceedings of the 8th International Conference on Logic for
Programming and Automated Reasoning (LPAR), volume 2250 of Lecture Notes in

http://dx.doi.org/10.1016/0304-3975(82)90026-3
http://dx.doi.org/10.1007/3-540-19242-5_3
http://dx.doi.org/10.1007/3-540-54317-1_94
http://dx.doi.org/10.1007/3-540-54317-1_94
http://dx.doi.org/10.2307/2370405
http://dx.doi.org/10.1007/978-3-319-04921-2_28
http://dx.doi.org/10.1016/S1571-0661(04)80658-3
http://www-sop.inria.fr/croap/TPHOLs99/proceeding.html
http://dx.doi.org/10.1007/BFb0097789
http://dx.doi.org/10.1145/138027.138032
http://dx.doi.org/10.1007/BFb0052368

[43]

[44]

[46]

[47]

[49]

[50]

[51]

Bibliography

Computer Science, pages 695-706. Springer, 2001. doi:10.1007/3-540-45653-8_
48.

J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination
of higher-order functions. In Proceedings of the 5th International Workshop on
Frontiers of Combining Systems, volume 3717 of Lecture Notes in Computer Science,
pages 216-231. Springer, 2005. doi:10.1007/11559306_12.

J. Giesl, P. Schneider-Kamp, and R. Thiemann. AProVE 1.2: Automatic termination
proofs in the dependency pair framework. In Proceedings of the 3rd International
Joint Conference on Automated Reasoning (IJCAR), volume 4130 of Lecture Notes
in Artificial Intelligence, pages 281-286. Springer, 2006. doi:10.1007/11814771_24.

J. Giesl, A. Rubio, C. Sternagel, J. Waldmann, and A. Yamada. The termination
and complexity competition. In Proceedings of the 25th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 11429 of Lecture Notes in Computer Science, pages 156-166. Springer, 2019.
doi:10.1007/978-3-030-17502-3_10.

K. Gmeiner. CoScart: Confluence prover in Scala. In Proceedings of the 5th
International Workshop on Confluence (IWC), page 82, 2016.

K. Gmeiner, B. Gramlich, and F. Schernhammer. On (un)soundness of unravelings.
In Proceedings of the 21st International Conference on Rewriting Techniques and
Applications (RTA), volume 6 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 119-134. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2010.
d0i:10.4230/LIPIcs.RTA.2010.119.

K. Gmeiner, N. Nishida, and B. Gramlich. Proving confluence of conditional term
rewriting systems via unravelings. In Proceedings of the 2nd International Workshop
on Confluence (IWC), pages 35-39, 2013.

M. Gordon. From LCF to HOL: a short history. In Proof, Language, and Interaction,
Essays In Honour of Robin Milner, pages 169-186. MIT Press, 2000.

M. J. C. Gordon, R. Milner, and C. P. Wadsworth. FEdinburgh LCF, volume 78 of
Lecture Notes in Computer Science. Springer, 1979. doi:10.1007/3-540-09724-4.

B. Gramlich. On interreduction of semi-complete term rewriting systems. Theoretical
Computer Science, 258(1-2):435-451, 2001. doi:10.1016/50304-3975(00)00030-X.

F. Haftmann and T. Nipkow. Code generation via higher-order rewrite systems.
In Proceedings of the 10th International Symposium on Functional and Logic
Programming (FLOPS), volume 6009 of Lecture Notes in Computer Science, pages
103-117. Springer, 2010. doi:10.1007/978-3-642-12251-4_9.

F. Haftmann, G. Klein, T. Nipkow, and N. Schirmer. I¥TEX sugar for Isabelle doc-
uments, 2013. http://isabelle.in.tum.de/website-Isabelle2013-2/dist/
Isabelle2013-2/doc/sugar.pdf.

203

http://dx.doi.org/10.1007/3-540-45653-8_48
http://dx.doi.org/10.1007/3-540-45653-8_48
http://dx.doi.org/10.1007/11559306_12
http://dx.doi.org/10.1007/11814771_24
http://dx.doi.org/10.1007/978-3-030-17502-3_10
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.119
http://dx.doi.org/10.1007/3-540-09724-4
http://dx.doi.org/10.1016/S0304-3975(00)00030-X
http://dx.doi.org/10.1007/978-3-642-12251-4_9
http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/sugar.pdf
http://isabelle.in.tum.de/website-Isabelle2013-2/dist/Isabelle2013-2/doc/sugar.pdf

Bibliography

[54]

[55]

[59]

204

M. Hamana and K. Kikuchi. The system sol version 2018. In Proceedings of the
7th International Workshop on Confluence (IWC), page 70, 2018.

M. Hanus. On extra variables in (equational) logic programming. In Proceedings
of the 12th International Conference on Logic Programming, pages 665-679. MIT
Press, 1995.

H. Herbelin. A program from an A-translated impredicative proof of Higman’s
lemma, 1994. http://coq.inria.fr/pylons/contribs/view/HigmanNW/v8. 3.

G. Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, $3-2(1):326-336, 1952. do0i:10.1112/plms/s3-2.1.326.

N. Hirokawa, A. Middeldorp, and C. Sternagel. A new and formalized proof
of abstract completion. In Proceedings of the 5th International Conference on
Interactive Theorem Proving (ITP), volume 8558 of Lecture Notes in Computer
Science, pages 292-307, 2014. doi:10.1007/978-3-319-08970-6_19.

N. Hirokawa, A. Middeldorp, C. Sternagel, and S. Winkler. Infinite runs in
abstract completion. In Proceedings of the 2nd International Conference on
Formal Structures for Computation and Deduction (FSCD), volume 84 of Leib-
niz International Proceedings in Informatics (LIPIcs), pages 19:1-19:16, 2017.
do0i:10.4230/LIPIcs.FSCD.2017.19.

P. Hudak, J. Peterson, and J. H. Fasel. A gentle introduction to Haskell. SIGPLAN
Notices, 27(5), 1992. doi:doi.acm.org/10.1145/130697.130698. Original version
at http://doi.acm.org/10.1145/130697.130698, updated version at https://
www.haskell.org/tutorial/.

G. P. Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797-821, 1980. doi:10.1145/322217.
322230.

G. P. Huet. A complete proof of correctness of the Knuth-Bendix completion
algorithm. Journal of Computer and System Sciences, 23(1):11-21, 1981. doi:10.
1016/0022-0000(81)90002-7.

T. Ida and S. Okui. Outside-in conditional narrowing. IEICE Transactions on
Information and Systems, E77-D(6):631-641, 1994.

F. Jacquemard. Decidable approximations of term rewriting systems. In Proceedings
of the Tth International Conference on Rewriting Techniques and Applications
(RTA), volume 1103 of Lecture Notes in Computer Science, pages 362-376. Springer,
1996. doi:10.1007/3-540-61464-8_65.

S. Kamin and J.-J. Lévy. Two generalizations of the recursive path ordering.
Unpublished manuscript, University of Illinois, 1980.

http://coq.inria.fr/pylons/contribs/view/HigmanNW/v8.3
http://dx.doi.org/10.1112/plms/s3-2.1.326
http://dx.doi.org/10.1007/978-3-319-08970-6_19
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.19
http://dx.doi.org/doi.acm.org/10.1145/130697.130698
http://doi.acm.org/10.1145/130697.130698
https://www.haskell.org/tutorial/
https://www.haskell.org/tutorial/
http://dx.doi.org/10.1145/322217.322230
http://dx.doi.org/10.1145/322217.322230
http://dx.doi.org/10.1016/0022-0000(81)90002-7
http://dx.doi.org/10.1016/0022-0000(81)90002-7
http://dx.doi.org/10.1007/3-540-61464-8_65

[66]

[67]

[74]

[75]

Bibliography

D. Kapur and P. Narendran. A finite Thue system with decidable word problem
and without equivalent finite canonical system. Theoretical Computer Science, 35:
337-344, 1985. doi:10.1016/0304-3975(85)90023-4.

D. Kapur, D. R. Musser, and P. Narendran. Only prime superpositions need
be considered in the Knuth-Bendix completion procedure. Journal of Symbolic
Computation, 6(1):19-36, 1988. doi:10.1016/S0747-7171(88)80019-1.

D. Kapur, P. Narendran, and F. Otto. On ground-confluence of term rewriting sys-
tems. International Conference on, 86(1):14-31, 1990. doi:10.1016/0890-5401(90)
90023-B.

D. Klein and N. Hirokawa. Maximal completion. In Proceedings of the 22nd Inter-
national Conference on Rewriting Techniques and Applications (RTA), volume 10
of Leibniz International Proceedings in Informatics (LIPIcs), pages 71-80. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2011. doi:10.4230/LIPIcs.RTA.2011.
T1.

J. W. Klop. Combinatory Reduction Systems. PhD thesis, Utrecht University, 1980.

D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In
Computational Problems in Abstract Algebra, pages 263—297. Pergamon Press, 1970.

C. Kop. Higher-Order Termination: Automatable Techniques for Proving Ter-
mination of Higher-Order Term Rewriting Systems. PhD thesis, VU University
Amsterdam, 2012. http://hdl.handle.net/1871/39346.

M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool
2. In Proceedings of the 20th International Conference on Rewriting Techniques
and Applications (RTA), volume 5595 of Lecture Notes in Computer Science, pages
295-304. Springer, 2009. doi:10.1007/978-3-642-02348-4_21.

A. Krauss. Partial and nested recursive function definitions in higher-order
logic. Journal of Automated Reasoning, 44(4):303-336, 2010. doi:10.1007/
s10817-009-9157-2.

A. Krauss. Recursive definitions of monadic functions. In Proceedings of the
Workshop on Partiality and Recursion in Interactive Theorem Proving (PAR),
volume 43 of Electronic Proceedings in Theoretical Computer Science, pages 1-13,
2010. doi:10.4204/EPTCS.43.1.

A. Krauss, C. Sternagel, R. Thiemann, C. Fuhs, and J. Giesl. Termination
of Isabelle functions via termination of rewriting. In Proceedings of the 2nd
International Conference on Interactive Theorem Proving (ITP), volume 6898 of
Lecture Notes in Computer Science, pages 152—167. Springer, 2011. doi:10.1007/
978-3-642-22863-6_13.

205

http://dx.doi.org/10.1016/0304-3975(85)90023-4
http://dx.doi.org/10.1016/S0747-7171(88)80019-1
http://dx.doi.org/10.1016/0890-5401(90)90023-B
http://dx.doi.org/10.1016/0890-5401(90)90023-B
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.71
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.71
http://hdl.handle.net/1871/39346
http://dx.doi.org/10.1007/978-3-642-02348-4_21
http://dx.doi.org/10.1007/s10817-009-9157-2
http://dx.doi.org/10.1007/s10817-009-9157-2
http://dx.doi.org/10.4204/EPTCS.43.1
http://dx.doi.org/10.1007/978-3-642-22863-6_13
http://dx.doi.org/10.1007/978-3-642-22863-6_13

Bibliography

[77]

[82]

[83]

[84]

[85]

[36]

206

J. B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture.
Transactions of the American Mathematical Society, 95(2):210-225, 1960. doi:10.
2307/1993287.

P. Lammich. Efficient verified (UN)SAT certificate checking. Journal of Automated
Reasoning, pages 1-20, 2019. do0i:10.1007/s10817-019-09525~-z.

K. R. M. Leino and P. Lucio. An assertional proof of the stability and correctness
of natural mergesort. ACM Transactions on Computational Logic, 17(1):6:1-6:22,
2015. doi:10.1145/2814571.

S. Lucas and R. Gutiérrez. Use of logical models for proving infeasibility in term
rewriting. Information Processing Letters, 136:90-95, 2018. doi:10.1016/j.ipl.
2018.04.002.

C. Marché. Normalized rewriting: An alternative to rewriting modulo a set of
equations. Journal of Symbolic Computation, 21(3):253-288, 1996. doi:10.1006/
jsco.1996.0011.

S. Marlow. Haskell 2010 language report, 2019. https://www.haskell.org/
definition/haskel12010.pdf.

U. Martin and T. Nipkow. Ordered Rewriting and Confluence. In Proceedings
of the 10th International Conference on Automated Deduction (CADE), volume
449 of Lecture Notes in Computer Science, pages 366—-380, 1990. doi:10.1007/
3-540-52885-7_100.

F. J. Martin-Mateos, J. L. Ruiz-Reina, J. A. Alonso, and M. J. Hidalgo. Proof Pearl:
A formal proof of Higman’s lemma in ACL2. Journal of Automated Reasoning, 47
(3):2297250, 2011. doi:10.1007/s10817-010-9178-x.

W. McCune. Solution of the Robbins problem. Journal of Automated Reasoning,
19(3):263-276, 1997. doi:10.1023/A:1005843212881.

W. McCune, R. Veroff, B. Fitelson, K. Harris, A. Feist, and L. Wos. Short single
axioms for Boolean algebra. Journal of Automated Reasoning, 29(1):1-16, 2002.
doi:10.1023/A:1020542009983.

Y. Métivier. About the rewriting systems produced by the Knuth-Bendix comple-
tion algorithm. Information Processing Letters, 16(1):31-34, 1983. doi:10.1016/
0020-0190(83)90009-1.

F. Mefiner, J. Parsert, J. Schopf, and C. Sternagel. A formally verified solver
for homogeneous linear diophantine equations. In Proceedings of the 9th In-
ternational Conference on Interactive Theorem Proving (ITP), volume 10895 of
Lecture Notes in Computer Science, pages 441-458. Springer, 2018. doi:10.1007/
978-3-319-94821-8_26.

http://dx.doi.org/10.2307/1993287
http://dx.doi.org/10.2307/1993287
http://dx.doi.org/10.1007/s10817-019-09525-z
http://dx.doi.org/10.1145/2814571
http://dx.doi.org/10.1016/j.ipl.2018.04.002
http://dx.doi.org/10.1016/j.ipl.2018.04.002
http://dx.doi.org/10.1006/jsco.1996.0011
http://dx.doi.org/10.1006/jsco.1996.0011
https://www.haskell.org/definition/haskell2010.pdf
https://www.haskell.org/definition/haskell2010.pdf
http://dx.doi.org/10.1007/3-540-52885-7_100
http://dx.doi.org/10.1007/3-540-52885-7_100
http://dx.doi.org/10.1007/s10817-010-9178-x
http://dx.doi.org/10.1023/A:1005843212881
http://dx.doi.org/10.1023/A:1020542009983
http://dx.doi.org/10.1016/0020-0190(83)90009-1
http://dx.doi.org/10.1016/0020-0190(83)90009-1
http://dx.doi.org/10.1007/978-3-319-94821-8_26
http://dx.doi.org/10.1007/978-3-319-94821-8_26

[89]

[90]

[91]

[92]

[93]

[94]

[98]

Bibliography

A. Middeldorp. Approximating dependency graphs using tree automata techniques.
In Proceedings of the 1st International Joint Conference on Automated Reasoning
(IJCAR), volume 2083 of Lecture Notes in Artificial Intelligence, pages 593-610,
2001. doi:10.1007/3-540-45744-5_49.

A. Middeldorp and E. Hamoen. Completeness results for basic narrowing. Applicable
Algebra in Engineering, Communication and Computing, 5:213-253, 1994. doi:10.
1007/BF01190830.

A. Middeldorp and H. Zantema. Simple termination of rewrite systems. Theoretical
Computer Science, 175(1):127-158, 1997. doi:10.1016/S0304-3975(96)00172-7.

A. Middeldorp, J. Nagele, and K. Shintani. Confluence competition 2019. In
Proceedings of the 25th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 11429 of Lecture Notes in
Computer Science, pages 25—40. Springer, 2019. doi:10.1007/978-3-030-17502-3_
2.

C. R. Murthy. FEaxtracting Constructive Content from Classical Proofs. PhD thesis,
Cornell University, 1990. http://hdl.handle.net/1813/6991.

J. Nagele. CoCo 2018 participant: CSlho 0.3.2. In Proceedings of the 7th Interna-
tional Workshop on Confluence (IWC), page 68, 2018.

J. Nagele and A. Middeldorp. Certification of classical confluence results for left-
linear term rewrite systems. In Proceedings of the 7th International Conference on
Interactive Theorem Proving (ITP), volume 9807 of Lecture Notes in Computer
Science, pages 290-306. Springer, 2016. doi:10.1007/978-3-319-43144-4_18.

J. Nagele and R. Thiemann. Certification of confluence proofs using CeTA. In Pro-
ceedings of the 3rd International Workshop on Confluence (IWC), 2014. Available at
http://cl-informatik.uibk.ac.at/users/thiemann/paper/IWC14CeTA. pdf.

J. Nagele and H. Zankl. Certified rule labeling. In Proceedings of the 26th Interna-
tional Conference on Rewriting Techniques and Applications (RTA), volume 36 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 269-284. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2015. doi:10.4230/LIPIcs.RTA.2015.
269.

J. Nagele, R. Thiemann, and S. Winkler. Certification of nontermination proofs
using strategies and nonlooping derivations. In Proceedings of the 6th Working
Conference on Verified Software: Theories, Tools, and Experiments (VSTTE),
volume 8471 of Lecture Notes in Computer Science, pages 216-232. Springer, 2014.
doi:10.1007/978-3-319-12154-3_14.

J. Nagele, B. Felgenhauer, and H. Zankl. Certifying confluence proofs via relative
termination and rule labeling. Logical Methods in Computer Science, 13(2):4:1-4:27,
2017. doi:10.23638/LMCS-13(2:4)2017.

207

http://dx.doi.org/10.1007/3-540-45744-5_49
http://dx.doi.org/10.1007/BF01190830
http://dx.doi.org/10.1007/BF01190830
http://dx.doi.org/10.1016/S0304-3975(96)00172-7
http://dx.doi.org/10.1007/978-3-030-17502-3_2
http://dx.doi.org/10.1007/978-3-030-17502-3_2
http://hdl.handle.net/1813/6991
http://dx.doi.org/10.1007/978-3-319-43144-4_18
http://cl-informatik.uibk.ac.at/users/thiemann/paper/IWC14CeTA.pdf
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.269
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.269
http://dx.doi.org/10.1007/978-3-319-12154-3_14
http://dx.doi.org/10.23638/LMCS-13(2:4)2017

Bibliography

[100]

[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

208

C. S. J. A. Nash-Williams. On well-quasi-ordering finite trees. Proceedings
of the Cambridge Philosophical Society, 59(4):833-835, 1963. do0i:10.1017/
S50305004100003844.

M. H. A. Newman. On theories with a combinatorial definition of equivalence.
Annals of Mathematics, 43(2):223-243, 1942. doi:10.2307/1968867.

T. Nipkow. Equational reasoning in Isabelle. Sci. Comput. Programming, 12(2):
123-149, 1989. do0i:10.1016/0167-6423(89)90038-5.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer,
2002. doi:10.1007/3-540-45949-9.

N. Nishida and Y. Maeda. CO3 (version 2.0). In Proceedings of the 8th International
Workshop on Confluence (IWC), page 50, 2019.

N. Nishida, M. Sakai, and T. Sakabe. Soundness of unravelings for conditional
term rewriting systems via ultra-properties related to linearity. Logical Methods in
Computer Science, 8:4:1-4:49, 2012. doi:10.2168/LMCS-8(3:4)2012.

V. van Qostrom. Confluence by decreasing diagrams. Theoretical Computer Science,
126(2):259-280, 1994. doi:10.1016/0304-3975(92)00023-K.

V. van Oostrom. Random descent. In Proceedings of the 18th International Confer-
ence on Rewriting Techniques and Applications (RTA), volume 4533 of Lecture Notes
in Computer Science, pages 314-328, 2007. doi:10.1007/978-3-540-73449-9_24.

V. van Oostrom. Confluence by decreasing diagrams — converted. In Proceedings
of the 19th International Conference on Rewriting Techniques and Applications
(RTA), volume 5117 of Lecture Notes in Computer Science, pages 306-320, 2008.
doi:10.1007/978-3-540-70590-1_21.

V. van Oostrom and Y. Toyama. Normalisation by random descent. In Proceedings
of the 1st International Conference on Formal Structures for Computation and
Deduction (FSCD), volume 52 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 32:1-32:18, 2016. doi:10.4230/LIPIcs.FSCD.2016.32.

M. Ogawa and C. Sternagel. Open induction. The Archive of Formal Proofs, Nov.
2012. ISSN 2150-914x. afp:0pen_Induction.

E. Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002. doi:10.1007/
978-1-4757-3661-8.

R. O’Keefe. A smooth applicative merge sort. Technical report, Department of
Artificial Intelligence, University of Edinburgh, 1982.

http://dx.doi.org/10.1017/S0305004100003844
http://dx.doi.org/10.1017/S0305004100003844
http://dx.doi.org/10.2307/1968867
http://dx.doi.org/10.1016/0167-6423(89)90038-5
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.2168/LMCS-8(3:4)2012
http://dx.doi.org/10.1016/0304-3975(92)00023-K
http://dx.doi.org/10.1007/978-3-540-73449-9_24
http://dx.doi.org/10.1007/978-3-540-70590-1_21
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.32
https://www.isa-afp.org/entries/Open_Induction.shtml
http://dx.doi.org/10.1007/978-1-4757-3661-8
http://dx.doi.org/10.1007/978-1-4757-3661-8

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

Bibliography

K. Onozawa, K. Kikuchi, T. Aoto, and Y. Toyama. ACPH: System description
for CoCo 2017. In Proceedings of the 6th International Workshop on Confluence
(IWC), page 70, 2017.

S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In Proceedings of the 11th International Conference on Automated Deduction
(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748-752,
1992. doi:10.1007/3-540-55602-8_217.

L. C. Paulson. Logic and Computation: Interactive Proof with Cambridge LCF.
Cambridge University Press, 1987.

L. C. Paulson. ML for the Working Programmer. Cambridge University Press,
New York, NY, USA, second edition, 1996. ISBN 0-521-56543-X.

G. E. Peterson and M. E. Stickel. Complete sets of reductions for some equational
theories. Journal of the ACM, 28(2):233-264, 1981. doi:10.1145/322248.322251.

D. Plaisted and A. Sattler-Klein. Proof lengths for equational completion. Interna-
tional Conference on, 125(2):154-170, 1996. doi:10.1006/inco.1996.0028.

E. L. Post. A variant of a recursively unsolvable problem. Bull. Amer. Math. Soc.,
52, 1946. doi:10.1090/S0002-9904-1946-08555-9.

N. Robertson and P. Seymour. Graph minors. i. excluding a forest. Journal of
Combinatorial Theory, Series B, 35(1):39-61, 1983. doi:10.1016/0095-8956 (83)
90079-5.

N. Robertson and P. Seymour. Graph minors. xx. wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325-357, 2004. doi:10.1016/j.jctb.2004.
08.001.

H. Sato and S. Winkler. Encoding dependency pair techniques and control strategies
for maximal completion. In Proceedings of the 25th International Conference on
Automated Deduction (CADE), volume 9195 of Lecture Notes in Computer Science,
pages 152-162, 2015. doi:10.1007/978-3-319-21401-6_10.

F. Schernhammer and B. Gramlich. VMTL — a modular termination laboratory.
In Proceedings of the 20th International Conference on Rewriting Techniques and
Applications (RTA), volume 5595 of Lecture Notes in Computer Science, pages
285-294. Springer, 2009. doi:10.1007/978-3-642-02348-4_20.

P. Schultz and R. Wisnesky. Algebraic data integration. Journal of Functional
Programming, 27(e24):51 pages, 2017. doi:10.1017/350956796817000168.

M. Seisenberger. On the Constructive Content of Proofs. PhD thesis, LMU Munich,
2003. http://nbn-resolving.de/urn:nbn:de:bvb:19-16190.

209

http://dx.doi.org/10.1007/3-540-55602-8_217
http://dx.doi.org/10.1145/322248.322251
http://dx.doi.org/10.1006/inco.1996.0028
http://dx.doi.org/10.1090/S0002-9904-1946-08555-9
http://dx.doi.org/10.1016/0095-8956(83)90079-5
http://dx.doi.org/10.1016/0095-8956(83)90079-5
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1016/j.jctb.2004.08.001
http://dx.doi.org/10.1007/978-3-319-21401-6_10
http://dx.doi.org/10.1007/978-3-642-02348-4_20
http://dx.doi.org/10.1017/S0956796817000168
http://nbn-resolving.de/urn:nbn:de:bvb:19-16190

Bibliography

[126]

[127]

[128]

[129]

[130]

[131]

[132]

133

[134]

[135]

[136]

210

K. Shintani and N. Hirokawa. ColLL: A confluence tool for left-linear term rewrite
systems. In Proceedings of the 25th International Conference on Automated Deduc-
tion (CADE), volume 9195 of Lecture Notes in Computer Science, pages 127-136.
Springer, 2015. doi:10.1007/978-3-319-21401-6_8.

K. Slind and M. Norrish. A brief overview of HOL4. In Proceedings of the 21st
International Conference on Theorem Proving in Higher Order Logics (TPHOLs),
volume 5170 of Lecture Notes in Computer Science, pages 28-32. Springer, 2008.
doi:10.1007/978-3-540-71067-7_6.

W. Snyder. A fast algorithm for generating reduced ground rewriting systems from
a set of ground equations. Journal of Symbolic Computation, 15(4):415-450, 1993.
doi:10.1006/jsco.1993.1029.

C. Sternagel. Automatic Certification of Termination Proofs. PhD thesis, University
of Innsbruck, 2010.

C. Sternagel. Efficient Mergesort. The Archive of Formal Proofs, Nov. 2011. ISSN
2150-914x. afp:Efficient-Mergesort.

C. Sternagel. Well-Quasi-Orders. The Archive of Formal Proofs, Apr. 2012. ISSN
2150-914x. afp:Well_Quasi_Orders.

C. Sternagel. A locale for minimal bad sequences. In Isabelle Users Workshop,
2012. arXiv:1208.1366.

C. Sternagel. Certified Kruskal’s tree theorem. In Proceedings of the 3rd Inter-
national Conference on Certified Programs and Proofs (CPP), volume 8307 of
Lecture Notes in Computer Science, pages 178-193. Springer, 2013. doi:10.1007/
978-3-319-03545-1_12.

C. Sternagel and T. Sternagel. Level-confluence of 3-CTRSs in Isabelle/HOL. In
Proceedings of the 4th International Workshop on Confluence (IWC), pages 28-32,
2015. arXiv:1602.07115.

C. Sternagel and T. Sternagel. Certifying confluence of almost orthogonal CTRSs via
exact tree automata completion. In Proceedings of the 1st International Conference
on Formal Structures for Computation and Deduction (FSCD), volume 52 of
Leibniz International Proceedings in Informatics (LIPlcs), pages 29:1-29:16. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik, 2016. doi:10.4230/LIPIcs.FSCD.2016.
29.

C. Sternagel and T. Sternagel. Certifying confluence of quasi-decreasing strongly
deterministic conditional term rewrite systems. In Proceedings of the 26th In-
ternational Conference on Automated Deduction (CADE), volume 10395 of Lec-
ture Notes in Computer Science, pages 413—431. Springer, 2017. doi:10.1007/
978-3-319-63046-5_26.

http://dx.doi.org/10.1007/978-3-319-21401-6_8
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://dx.doi.org/10.1006/jsco.1993.1029
https://www.isa-afp.org/entries/Efficient-Mergesort.shtml
https://www.isa-afp.org/entries/Well_Quasi_Orders.shtml
http://arxiv.org/abs/1208.1366
http://dx.doi.org/10.1007/978-3-319-03545-1_12
http://dx.doi.org/10.1007/978-3-319-03545-1_12
http://arxiv.org/abs/1602.07115
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.29
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.29
http://dx.doi.org/10.1007/978-3-319-63046-5_26
http://dx.doi.org/10.1007/978-3-319-63046-5_26

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

Bibliography

C. Sternagel and R. Thiemann. Signature extensions preserve termination. In
Proceedings of the 19th EACSL Annual Conference on Computer Science Logic
(CSL), volume 6247 of Lecture Notes in Computer Science, pages 514-528. Springer,
2010. doi:10.1007/978-3-642-15205-4_39.

C. Sternagel and R. Thiemann. Certified subterm criterion and certified usable rules.
In Proceedings of the 21st International Conference on Rewriting Techniques and
Applications (RTA), volume 6 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 325-340. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2010.
doi:10.4230/LIPIcs.RTA.2010.325.

C. Sternagel and R. Thiemann. Modular and certified semantic labeling and
unlabeling. In Proceedings of the 22nd International Conference on Rewriting
Techniques and Applications (RTA), volume 10 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 329-344. Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2011. doi:10.4230/LIPIcs.RTA.2011.329.

C. Sternagel and R. Thiemann. Generalized and formalized uncurrying. In Pro-
ceedings of the 8th International Workshop on Frontiers of Combining Systems,
volume 6988 of Lecture Notes in Computer Science, pages 243-258. Springer, 2011.
do0i:10.1007/978-3-642-24364-6_17.

C. Sternagel and R. Thiemann. Certification of nontermination proofs. In Proceed-
ings of the 3rd International Conference on Interactive Theorem Proving (ITP),
volume 7406 of Lecture Notes in Computer Science, pages 266—282. Springer, 2012.
doi:10.1007/978-3-642-32347-8_18.

C. Sternagel and R. Thiemann. Formalizing Knuth-Bendix orders and Knuth-
Bendix completion. In Proceedings of the 24th International Conference on Rewriting
Techniques and Applications (RTA), volume 21 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 287-302. Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2013. do0i:10.4230/LIPIcs.RTA.2013287.

C. Sternagel and R. Thiemann. Certification monads. The Archive of Formal
Proofs, Oct. 2014. ISSN 2150-914x. afp:Certification_Monads.

C. Sternagel and R. Thiemann. Formalizing monotone algebras for certification
of termination and complexity proofs. In Proceedings of the Joint International
Conference on Rewriting Techniques and Applications (RTA) and International
Conference on Typed Lambda Calculi and Applications (TLCA) 201/, volume 8560
of Lecture Notes in Computer Science, pages 441-455. Springer, 2014.

C. Sternagel and R. Thiemann. Haskell’s show-class in Isabelle/HOL. The Archive
of Formal Proofs, July 2014. ISSN 2150-914x. afp:Show.

C. Sternagel and R. Thiemann. Formalizing monotone algebras for certification
of termination and complexity proofs. In Proceedings of the Joint International

211

http://dx.doi.org/10.1007/978-3-642-15205-4_39
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.325
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.329
http://dx.doi.org/10.1007/978-3-642-24364-6_17
http://dx.doi.org/10.1007/978-3-642-32347-8_18
http://dx.doi.org/10.4230/LIPIcs.RTA.2013287
https://www.isa-afp.org/entries/Certification_Monads.shtml
https://www.isa-afp.org/entries/Show.shtml

Bibliography

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

212

Conference on Rewriting Techniques and Applications (RTA) and International
Conference on Typed Lambda Calculi and Applications (TLCA) 201/, volume 8560
of Lecture Notes in Computer Science, pages 441-455. Springer, 2014. doi:10.1007/
978-3-319-08918-8_30.

C. Sternagel and R. Thiemann. The certification problem format. In Proceedings of
the 11th International Workshop on User Interfaces for Theorem Provers (UITP),
volume 167 of FElectronic Proceedings in Theoretical Computer Science, pages 61-72,
2014. doi:10.1007/11780274_28.

C. Sternagel and R. Thiemann. Xml. The Archive of Formal Proofs, Oct. 2014.
ISSN 2150-914x. afp:XML.

C. Sternagel and R. Thiemann. A framework for developing stand-alone certifiers.
Electronic Notes in Theoretical Computer Science, 312:51-67, 2015. doi:10.1016/
j.entcs.2015.04.004.

C. Sternagel and R. Thiemann. Deriving comparators and show-functions in
Isabelle/HOL. In Proceedings of the 6th International Conference on Interactive
Theorem Proving (ITP), volume 9236 of Lecture Notes in Computer Science, pages
421-437. Springer, 2015. doi:10.1007/978-3-319-22102-1_28.

C. Sternagel and S. Winkler. Certified ordered completion. In Proceedings of the
7th International Workshop on Confluence (IWC), 2018. arXiv:1805.10090.

C. Sternagel and S. Winkler. Certified equational reasoning via ordered completion.
In Proceedings of the 27th International Conference on Automated Deduction
(CADE), Lecture Notes in Computer Science, pages 508-525. Springer, 2019.
doi:10.1007/978-3-030-29436-6_30.

C. Sternagel and A. Yamada. Reachability analysis for termination and confluence
of rewriting. In Proceedings of the 25th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS), volume 11427
of Lecture Notes in Computer Science, pages 262-278. Springer, 2019. doi:10.1007/
978-3-030-17462-0_15.

C. Sternagel, R. Thiemann, S. Winkler, and H. Zankl. CelA — a tool for certi-
fied termination analysis. In Proceedings of the 10th International Workshop on
Termination (WST), 2009. arXiv:1208.1591.

T. Sternagel and A. Middeldorp. Conditional confluence (system description). In
Proceedings of the Joint International Conference on Rewriting Techniques and
Applications (RTA) and International Conference on Typed Lambda Calculi and
Applications (TLCA) 2014, volume 8560 of Lecture Notes in Computer Science,
pages 456-465, 2014. doi:10.1007/978-3-319-08918-8_31.

T. Sternagel and A. Middeldorp. Infeasible conditional critical pairs. In Proceedings
of the 4th International Workshop on Confluence (IWC), pages 1317, 2015.

http://dx.doi.org/10.1007/978-3-319-08918-8_30
http://dx.doi.org/10.1007/978-3-319-08918-8_30
http://dx.doi.org/10.1007/11780274_28
https://www.isa-afp.org/entries/XML.shtml
http://dx.doi.org/10.1016/j.entcs.2015.04.004
http://dx.doi.org/10.1016/j.entcs.2015.04.004
http://dx.doi.org/10.1007/978-3-319-22102-1_28
http://arxiv.org/abs/1805.10090
http://dx.doi.org/10.1007/978-3-030-29436-6_30
http://dx.doi.org/10.1007/978-3-030-17462-0_15
http://dx.doi.org/10.1007/978-3-030-17462-0_15
http://arxiv.org/abs/1208.1591
http://dx.doi.org/10.1007/978-3-319-08918-8_31

[157]

158

[159]

160

[161]

[162]

[163]

[164]

[165]

[166]

167]

Bibliography

T. Sternagel and C. Sternagel. Formalized confluence of quasi-decreasing, strongly
deterministic conditional TRSs. In Proceedings of the 5th International Workshop
on Confluence (IWC), pages 60-64, 2016. arXiv:1609.03341.

T. Sternagel and C. Sternagel. Certified non-confluence with ConCon 1.5. In
Proceedings of the 6th International Workshop on Confluence (IWC), 2017. arXiv:
1709.05162.

T. Sternagel and H. Zankl. KBCV — Knuth-Bendix completion visualizer. In
Proceedings of the 6th International Joint Conference on Automated Reasoning
(IJCAR), volume 7364 of Lecture Notes in Computer Science, pages 530-536.
Springer, 2012. doi:10.1007/978-3-642-31365-3_41.

T. Sternagel, S. Winkler, and H. Zankl. Recording completion for certificates in
equational reasoning. In Proceedings of the 4th International Conference on Certified
Programs and Proofs (CPP), pages 41-47, 2015. doi:10.1145/2676724.2693171.

G. Sutcliffe. The TPTP Problem Library and Associated Infrastructure: The
FOF and CNF Parts. Journal of Automated Reasoning, 43(4):337-362, 2009.
do0i:10.1007/s10817-009-9143-8.

T. Suzuki, A. Middeldorp, and T. Ida. Level-confluence of conditional rewrite
systems with extra variables in right-hand sides. In Proceedings of the 6th In-
ternational Conference on Rewriting Techniques and Applications (RTA), vol-
ume 914 of Lecture Notes in Computer Science, pages 179-193. Springer, 1995.
doi:10.1007/3-540-59200-8_56.

Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003. ISBN 9780521391153.

R. Thiemann. Formalizing bounded increase. In Proceedings of the 4th Inter-
national Conference on Interactive Theorem Proving (ITP), volume 7995 of Lec-
ture Notes in Computer Science, pages 245-260. Springer, 2013. doi:10.1007/
978-3-642-39634-2_19.

R. Thiemann and C. Sternagel. Certification of termination proofs using CelA. In
Proceedings of the 22nd International Conference on Theorem Proving in Higher
Order Logics (TPHOLs), volume 5674 of Lecture Notes in Computer Science, pages
452-468. Springer, 2009. doi:10.1007/978-3-642-03359-9_31.

R. Thiemann, G. Allais, and J. Nagele. On the formalization of termination
techniques based on multiset orderings. In Proceedings of the 23rd International
Conference on Rewriting Techniques and Applications (RTA), volume 15 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 339-354, 2012. doi:10.
4230/LIPIcs.RTA.2012.339.

Y. Toyama. How to prove equivalence of term rewriting systems without induction.
Theoretical Computer Science, 90(2):369-390, 1991.

213

http://arxiv.org/abs/1609.03341
http://arxiv.org/abs/1709.05162
http://arxiv.org/abs/1709.05162
http://dx.doi.org/10.1007/978-3-642-31365-3_41
http://dx.doi.org/10.1145/2676724.2693171
http://dx.doi.org/10.1007/s10817-009-9143-8
http://dx.doi.org/10.1007/3-540-59200-8_56
http://dx.doi.org/10.1007/978-3-642-39634-2_19
http://dx.doi.org/10.1007/978-3-642-39634-2_19
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.339
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.339

Bibliography

[168]

169

[170]

[171]

[172]

[173]

[174]

[175]

176

[177]

214

W. Veldman. An intuitionistic proof of Kruskal’s theorem. Archive for Mathematical
Logic, 43(2):215-264, 2004. doi:10.1007/s00153-003-0207-x.

J. Waldmann. Matchbox: A tool for match-bounded string rewriting. In Proceedings
of the 15th International Conference on Rewriting Techniques and Applications
(RTA), volume 3091 of Lecture Notes in Computer Science, pages 85-94. Springer,
2004. doi:10.1007/978-3-540-25979-4_6.

I. Wehrman, A. Stump, and E. Westbrook. Slothrop: Knuth-Bendix completion with
a modern termination checker. In Proceedings of the 17th International Conference
on Rewriting Techniques and Applications (RTA), volume 4098 of Lecture Notes in
Computer Science, pages 287-296. Springer, 2006. doi:10.1007/11805618_22.

M. Wenzel. Isabelle/Isar — A Versatile Environment for Human-readable Formal
Proof Documents. PhD thesis, Technische Universitat Miinchen, 2002. http:
//tumbl.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf.

M. Wenzel, L. C. Paulson, and T. Nipkow. The Isabelle framework. In Proceedings
of the 21st International Conference on Theorem Proving in Higher Order Logics
(TPHOLs), volume 5170 of Lecture Notes in Computer Science, pages 33-38.
Springer, 2008. do0i:10.1007/978-3-540-71067-7_7.

F. Winkler and B. Buchberger. A criterion for eliminating unnecessary reductions in
the Knuth-Bendix algorithm. In Proc. Colloquium on Algebra, Combinatorics and
Logic in Computer Science, Vol. II, volume 42 of Colloquia Mathematica Societatis
J. Bolyai, pages 849-869, 1986.

S. Winkler. A ground joinability criterion for ordered completion. In Proceedings
of the 6th International Workshop on Confluence (IWC), pages 45—49, 2017.

S. Winkler and A. Middeldorp. Normalized completion revisited. In Proceedings
of the 24th International Conference on Rewriting Techniques and Applications
(RTA), volume 21 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 318-333. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2013. doi:10.
4230/LIPIcs.RTA.2013.318.

S. Winkler and G. Moser. MadMax: A maximal ordered completion tool. In
Proceedings of the 9th International Joint Conference on Automated Reasoning
(IJCAR), volume 10900 of Lecture Notes in Computer Science, pages 472-480, 2018.
d0i:10.1007/978-3-319-94205-6_31.

S. Winkler and R. Thiemann. Formalizing soundness and completeness of un-
ravelings. In Proceedings of the 10th International Workshop on Frontiers of
Combining Systems, volume 9322 of Lecture Notes in Computer Science, pages
239-255. Springer, 2015. doi:10.1007/978-3-319-24246-0_15.

http://dx.doi.org/10.1007/s00153-003-0207-x
http://dx.doi.org/10.1007/978-3-540-25979-4_6
http://dx.doi.org/10.1007/11805618_22
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf
http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.pdf
http://dx.doi.org/10.1007/978-3-540-71067-7_7
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.318
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.318
http://dx.doi.org/10.1007/978-3-319-94205-6_31
http://dx.doi.org/10.1007/978-3-319-24246-0_15

[178]

[179]

[180]

[181]

[182]

183

[184]

[185]

Bibliography

S. Winkler, H. Sato, A. Middeldorp, and M. Kurihara. Optimizing mkbTT. In
Proceedings of the 21st International Conference on Rewriting Techniques and
Applications (RTA), volume 6 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 373-384. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2010.
d0i:10.4230/LIPIcs.RTA.2010.373.

C. Wu, X. Zhang, and C. Urban. The Myhill-Nerode theorem based on regular
expressions. The Archive of Formal Proofs, Aug. 2011. ISSN 2150-914x. afp:
Myhill-Nerode.

C. Wu, X. Zhang, and C. Urban. A formalisation of the Myhill-Nerode theorem
based on regular expressions. Journal of Automated Reasoning, 52(2):1-30, 2014.
doi:10.1007/s10817-013-9297-2.

A. Yamada, K. Kusakari, and T. Sakabe. Nagoya termination tool. In Proceedings
of the Joint International Conference on Rewriting Techniques and Applications
(RTA) and International Conference on Typed Lambda Calculi and Applications
(TLCA) 2014, volume 8560 of Lecture Notes in Computer Science, pages 466—475.
Springer, 2014. doi:10.1007/978-3-319-08918-8_32.

A. Yamada, C. Sternagel, R. Thiemann, and K. Kusakari. AC dependency pairs
revisited. In Proceedings of the 25th EACSL Annual Conference on Computer
Science Logic (CSL), volume 62 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 8:1-8:16. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2016.
do0i:10.4230/LIPIcs.CSL.2016.8.

H. Zankl, C. Sternagel, D. Hofbauer, and A. Middeldorp. Finding and certifying
loops. In Proceedings of the 36th International Conference on Theory and Practice
of Computer Science (SOFSEM), volume 5901 of Lecture Notes in Computer
Science, pages 755—766. Springer, 2010. doi:10.1007/978-3-642-11266-9_63.

H. Zankl, B. Felgenhauer, and A. Middeldorp. CSI — a confluence tool. In Proceedings
of the 23rd International Conference on Automated Deduction (CADE), volume
6803 of Lecture Notes in Artificial Intelligence, pages 499-505. Springer, 2011.
doi:10.1007/978-3-642-22438-6_38.

Y. Zhang, Y. Zhao, and D. Sanan. A verified timsort C implementation in
Isabelle/HOL, 2018. arXiv:1812.03318.

215

http://dx.doi.org/10.4230/LIPIcs.RTA.2010.373
https://www.isa-afp.org/entries/Myhill-Nerode.shtml
https://www.isa-afp.org/entries/Myhill-Nerode.shtml
http://dx.doi.org/10.1007/s10817-013-9297-2
http://dx.doi.org/10.1007/978-3-319-08918-8_32
http://dx.doi.org/10.4230/LIPIcs.CSL.2016.8
http://dx.doi.org/10.1007/978-3-642-11266-9_63
http://dx.doi.org/10.1007/978-3-642-22438-6_38
http://arxiv.org/abs/1812.03318

	Preface
	Introduction
	Contributions
	Code Generation (Chapter 3)
	Certification (Chapter 5)
	Well-Quasi-Order Theory (Chapter 4)
	Completion (Chapters 7 and 8)
	Confluence (Chapter 6)
	Further Contributions

	Selected Publications
	A Mechanized Proof of GHC's Mergesort
	Introduction
	GHC's Sorting Algorithm
	Preliminaries
	Correctness
	Stability
	Goal

	Efficient Mergesort
	Correctness
	Stability
	Complexity

	Conclusion and Related Work

	Certified Kruskal's Tree Theorem
	Introduction
	Preliminaries
	Homogeneous Sequences
	Dickson's Lemma
	Minimal Bad Sequences
	Higman's Lemma
	The Tree Theorem
	Examples
	Conclusion and Related Work

	A Framework for Developing Stand-Alone Certifiers
	Introduction
	Certification
	Human Inspection
	Certification via Programs
	Certification via Proof Assistants
	Certification via Programs and Proof Assistants

	Error Handling
	Readable Error Messages
	Parsing
	A Parser from Strings to XML
	A Library for Parsing XML

	Soundness
	Conclusion

	Certified Confluence of Conditional Rewriting
	Introduction
	Preliminaries
	Roadmap of Formalized Methods
	Orthogonality
	Certification

	A Critical Pair Criterion
	Certification
	Certification Challenges
	Check Functions

	Finding Witnesses for Non-Confluence of CTRSs
	Implementation
	Certification

	Infeasibility of Conditional Critical Pairs
	Unification
	Symbol Transition Graph
	Decomposing Reachability Problems
	Exact Tree Automata Completion
	Exploiting Equalities
	Certification

	Supporting Methods
	Infeasible Rule Removal
	Inlining of Conditions
	Certification and Implementation

	Experiments
	Comparing ConCon's Confluence Methods
	Comparing ConCon's Non-Confluence Methods
	Comparing ConCon's Infeasibility Methods

	Conclusion
	Formalization and Implementation
	Future Work
	Related Work

	Abstract Completion, Formalized
	Introduction
	Preliminaries
	Rewrite Systems
	Abstract Confluence Criteria
	Critical Peaks

	Correctness for Finite Runs
	Canonicity and Normalization Equivalence
	Ground Completion
	Correctness for Infinite Runs
	Ordered Completion
	Completeness Results for Ordered Completion
	Ground-Total Orders
	Linear Systems

	Conclusion

	Certified Equational Reasoning via Ordered Completion
	Introduction
	Preliminaries
	Formalized Ordered Completion
	Formalized Ground Joinability Criteria
	A Simple Criterion
	Ground Joinability via Order Closures

	Applications
	Certification
	Experiments
	Conclusion

	Bibliography

