
Getting Started with Isabelle/jEdit

Christian Sternagel∗

JAIST, Japan
c-sterna@jaist.ac.jp

Abstract

We give a beginner-oriented introduction to Isabelle/jEdit, providing motivation for
using it as well as pointing at some differences to the traditional Proof General interface
and current limitations.

1 Introduction

Before starting, let us clarify our goals. This document is intended as a short introduction to
Isabelle/jEdit (as shipped with Isabelle2012) from a new user’s perspective. We highlight
some differences to Proof General and common pitfalls for new users (mostly issues that have
been collected from the Isabelle mailing lists). We do not give any technical or implementation
details (for such, refer to [1, 3, 5, 4, 2] and the Isabelle documentation). Moreover, our intended
audience are newcomers to Isabelle/jEdit (that is, we have nothing to say that people could
not easily find out on their own, but hope to save some people some time).

In paragraphs like this, we point out differences to Proof General. Thus, users who are not familiar
with Proof General, may safely skip them.

! Points that may need special attention are marked like this.

We use the following conventions: When indicating a menu like A→B→C we mean: “Click
on submenu C in submenu B of menu A.” When indicating keyboard shortcuts like C-s we mean:
“Keep key C pressed while pressing key s.” Here, C refers to the control key (usually labeled
with Ctrl on PC keyboards; on Mac OS this is actually command).

The remainder is structured as follows: First, in Section 2, we argue why we think that Isa-
belle/jEdit is more suitable as a user interface to Isabelle than the traditional Proof General,
but also give some current limitations. Then, in Section 3, we explain how to obtain and start
Isabelle/jEdit and give an example walkthrough. The next section (Section 4) is concerned
with some typical use cases. Finally, we conclude in Section 5.

2 Why Isabelle/jEdit is Awesome

The most important point (in our opinion) is that Isabelle/jEdit (or rather the technology1 that
makes it possible to use the editor jEdit as an interface to the proof assistant Isabelle) provides
an interaction model that is broadly known and used nowadays (e.g., in word processors and
integrated development environments for programming languages). Lets call it the continuous
model. The user sees and freely edits a document and all the heavy machinery of Isabelle

∗Supported by the Austrian Science Fund (FWF): J3202.
1Isabelle/jEdit is a client to the PIDE framework [5]; there may be other clients (e.g., web-based or as part

of an existing IDE, like Eclipse).

1

Getting Started with Isabelle/jEdit C. Sternagel

asynchronously runs in the background and supplies source text with semantic information
that is again presented in ways people are used to nowadays (highlighting, hyperlinks, tooltips,
wavy underlines, etc.).

The traditional interaction model, in contrast, is more like a command-line interface, we
sequentially enter commands (one at a time) and wait for the corresponding output. Since this
would be exceedingly tedious whenever we wanted to change something we entered very early
(essentially, we have to enter everything again), this kind of interaction is usually combined
with source text. Such that instead of typing everything again, we just tell the system which
part of the source text has to be reloaded. However, in order for this to work, we need some
kind of locked region (the part of the source text that has already been processed) which we
are not allowed to edit. Or alternatively, reload everything after each change.

In Proof General there is a visible locked region that can be extended or reduced using keyboard
shortcuts or corresponding menu buttons. Mostly this works just fine, but if you are unfortunate

the locked region may become out of sync with the underlying prover process. In contrast, Isabelle/
jEdit allows to freely edit a document at any position.

At this point you may wonder: “What’s the big deal about the continuous model?” Since
it may seem that the only difference to the traditional model (lets call it the sequential model)
is that we do not have to manage a locked region manually. Well, the main point is that the
sequential model is inherently sequential, whereas the continuous model offers plenty of space
for parallelization. Thus, Isabelle/jEdit does not only provide a more modern (and for many
potential users more familiar) user interface but additionally facilitates (again, the real reason
is rather the underlying technology) to seamlessly make use of multi-core architectures.

Having said this (and that is the reason why Isabelle/jEdit is indeed awesome), bear in mind
that we are talking about brand new technology here (which was moreover mostly developed
by a single person; cf. the references). Hence, it comes as no surprise that there are still some
small quirks and deficiencies. Most notably, there is no real tutorial for Isabelle/jEdit and most
menus that where available in the traditional interface are still missing. We will have more to
say about this in Section 4. Nevertheless, Isabelle/jEdit is ready for production use now.

3 Get Rolling

Before we can use Isabelle/jEdit, we have to download it. Since it is contained in the official
Isabelle release, we download that from:

http://isabelle.in.tum.de or http://www.cl.cam.ac.uk/research/hvg/Isabelle/
or http://mirror.cse.unsw.edu.au/pub/isabelle/

The correct version for your operating system and architecture should be provided by the big
green button and can be installed to an arbitrary directory ISABELLE_HOME.

! Do not try to combine arbitrary versions of PolyML, Isabelle, Scala, Java, and jEdit if you want to
avoid problems. Everything you need is packaged in the Isabelle bundle.

To start Isabelle/jEdit from a command line (e.g., under Linux) use (something similar to)

ISABELLE_HOME/bin/isabelle jedit

(Under Mac OS click on the Isabelle2012.app icon and then select Isabelle/jEdit instead of the
default Proof General. Under Windows click on Isabelle2012.exe.)

2

http://isabelle.in.tum.de
http://www.cl.cam.ac.uk/research/hvg/Isabelle/
http://mirror.cse.unsw.edu.au/pub/isabelle/

Getting Started with Isabelle/jEdit C. Sternagel

Figure 1: Isabelle/jEdit when first started.

In Figure 1 you see how Isabelle/jEdit presents itself after being started the first time (we
just reduced the initial window size in favor of readability). On the top half we have the main
buffer, this is where our source text is shown and editing takes place. At the bottom of the lower
half we have (among others) buttons Output and Prover Session which determine the content
of the panel directly above of them. By default Prover Session is selected. When selecting
Output the panel shows the output buffer, this is where messages from the current command
are to be found, where the current command is determined by the cursor position in the main
buffer (i.e., by default the output buffer shows the message(s) corresponding to the command
on which the cursor is positioned).

! Under Prover Session we have a panel containing the tabs README and Theory Status. The former
is of general interest (since it lists some limitations and workarounds as well as known problems) and
the latter can always be consulted to check whether Isabelle/jEdit agrees with you on what files are
loaded (and how much of them), where problems are indicated in red.

! Prover Session also contains a drop-down list where it seems to be possible to select a certain logic
image (where the default is default (HOL)). This does, however, not work at the moment. Instead you
have to restart Isabelle/jEdit like

isabelle jedit -l Image

where Image is the name of the desired logic image and you have to make sure that the selection is
default (HOL) (otherwise, the -l flag will be ignored).

3

Getting Started with Isabelle/jEdit C. Sternagel

To start using Isabelle/jEdit let us formalize a simple fact about lists. Before we can do so,
we need to start a theory (which is Isabelle parlance for a source file that bundles definitions
and facts under a common name). We start by typing “theory Test imports Main begin”
into the main buffer, which tells the system to start a theory with name Test on top of the
theory named Main, the default starting point for Isabelle theories (i.e., providing some kind
of “standard library” of definitions and facts). At this point you may notice an error message
in the output buffer (which is additionally stressed by showing a prohibition sign in the left
margin as well as wavy underlining the word “theory” in the input.

Bad file name "Scratch.thy" for theory "Test"

This just happened because the default file name for theories is Scratch.thy and can easily be
resolved by saving (either File→Save or C-s) the current file under the name Test.thy.

! A theory with name Name has to reside in a file with name Name.thy. The Isabelle convention is
to capitalize theory names and separate words by underscores, e.g., Complete_Partial_Order rather
than completePartialOrder, complete_partial_order, etc.

Now, let us come back to the announced fact about lists: when we combine the head and
the tail of a non-empty list, we obtain the same list again. To make it a bit more interesting
(and informative), we define our own functions for computing the head and the tail of a list as
follows:

fun head :: "'a list => 'a" where "head (x # xs) = x"

fun tail :: "'a list => 'a list" where "tail (x # xs) = xs"

There are already a few things to note here. When defining head, a warning occurs (which is
additionally stressed by showing a light bulb sign in the left margin as well as wavy underlining
the word “fun” in the input)

Missing patterns in function definition:

head [] = undefined

which tells us that our function is not defined on input []. This is not an error but just a
warning, since we could intend our function to be undefined in this case (as we indeed do). A
similar warning is issued for tail. Further note that the status of an identifier is indicated by
its color: free variables are rendered blue, bound variables green, defined constants black, etc.
Moreover, many entities allow to jump to their definition by holding C pressed while left-clicking
on them with the mouse. For head and tail this means that we end up in the line containing
the corresponding fun keyword (even if that line would be part of a different file). We can test
this behavior by C-left-clicking # in the definition of head which brings us to the theory List of
Isabelle’s standard library. More concretely, to the line where the list datatype is defined (since
refers to one of the constructors of the list datatype). The fastest way of going back is C-'
(control together with backtick, not to be confused with a single quote) or View→Go to Recent
Buffer.

Now we prove our little lemma (note that at this point head and tail are printed black,
since they are defined constants now):

lemma "~(xs = []) ==> head xs # tail xs = xs"

by (cases xs) simp_all

We finish our small theory by adding end at the end of the file.

4

Getting Started with Isabelle/jEdit C. Sternagel

4 How To . . .

In this section we give several typical use cases of things that you might want (or have) to do
inside Isabelle/jEdit. It is organized by typical user questions/statements.

4.1 How can I use fancy mathematical symbols?

This is really easy and convenient thanks to the code completion facility of the SideKick plu-
gin. By default, code completion is active (you can change the corresponding settings at Plu-
gins→Plugin Options. . .→SideKick) and works as follows: you just enter what you mean in plain
ASCII and if available the system offers you a popup with alternative choices. If you want to
close the popup, just keep on typing (if you are at the end of a word just enter a space) or
press ESC. If you want to choose an alternative, navigate through the popup using the arrow
keys (or the mouse) and press ENTER when you are satisfied. E.g., after typing ==> (two equal
signs followed by a greater than) a popup will show up containing =⇒. Many symbols also
have names that are close to the usual LATEX names, e.g., type forall to obtain ∀, exists to
obtain ∃, etc. Often, you do not even have to enter the full name, a prefix is enough, e.g., after
typing fo you will obtain a choice between the keyword for, the symbol ∀, and the symbol 4.

In Proof General we had to type \<forall> (and this is still how special symbols are actually stored
in your theory files) to obtain ∀ (and woe betide you, in case of a typo . . . we had to start afresh).

Some versions of Proof General allow the shorter \forall.

4.2 There is nothing wrong in my file, but jEdit complains!

It can happen that the parser (which avoids to reparse the whole file for obvious efficiency
reasons) of Isabelle/jEdit gets confused by your editing, resulting in a wrong error message. In
such a case, the usual workaround is to select a chunk of text surrounding your edit and then
cut and paste it (thereby forcing Isabelle/jEdit to reparse the whole chunk). Usually it is a
good idea to cut and paste a “complete” chunk of text, e.g., a comment including (* and *),
a whole lemma statement (not necessarily the corresponding proof), etc.

4.3 Where have all the menus gone?

In Proof General many settings of Isabelle and diagnostic commands could be configured and
started via menus. This is currently not supported in Isabelle/jEdit. The workaround is to
explicitly change a setting or start a diagnostic command from your main buffer. This is not
as tedious as it may sound due to code completion (e.g., a popup containing find_theorems

already occurs after typing fi). The bigger drawback is that we have to memorize all the
available settings and commands (since otherwise you do not know what to type). To this end,
the Isar reference manual (isabelle doc isar-ref) is very helpful, which contains descriptions
(and names) of all available settings and commands. For configuration options like show_types

you additionally have to know how to set them from inside the main buffer, which works by
typing something like:

declare [[show_types, show_sorts=false, ...]]

Arguably the most frequent diagnostic commands are (in arbitrary order):

• find_theorems for finding theorems

5

Getting Started with Isabelle/jEdit C. Sternagel

• print_cases for printing the available cases inside an induction or case analysis

• sledgehammer to invoke sledgehammer on the current goal (a nice feature is that after
sledgehammer reports a metis command in the output buffer, you can just click on it to
substitute it for the sledgehammer in your main buffer)

• nitpick and quickcheck for finding a counter example to the current goal

5 Conclusions

In total, we just summarized some of the points that have already been discussed on the
Isabelle mailing lists (or elsewhere). Nevertheless, we hope that this short and beginner-oriented
introduction may help potential new users out there to get up and running faster than they
would have without this document.

A final point for considering to use Isabelle/jEdit instead of Proof General is the following
(it is rather practical than ideological):

The Isabelle developers do no longer maintain Proof General for Isabelle and until now nobody else
stepped forward to do so.

Acknowledgments. We want to thank the Isabelle community (especially the developers)
for always being very helpful (and friendly) on the Isabelle mailing lists and Makarius Wenzel
for developing such an awesome tool as Isabelle/jEdit (keep going!).

References

[1] Makarius Wenzel. Asynchronous proof processing with Isabelle/Scala and Isabelle/jEdit. In User
Interfaces for Theorem Provers, UITP 2010, Electronic Notes in Theoretical Computer Science. to
appear.

[2] Makarius Wenzel. READ-EVAL-PRINT in parallel and asynchronous proof-checking. In User
Interfaces for Theorem Provers, UITP 2012. www.informatik.uni-bremen.de/uitp12/papers/

paper-02.pdf.

[3] Makarius Wenzel. Isabelle as document-oriented proof assistant. In James H. Davenport, William M.
Farmer, Josef Urban, and Florian Rabe, editors, Conference on Intelligent Computer Mathematics,
CICM 2011, volume 6824, pages 244–259. Springer, 2011. doi:10.1007/978-3-642-22673-1_17.

[4] Makarius Wenzel. Isabelle/jEdit – a prover IDE within the PIDE framework. In Johan Jeuring et al.,
editors, Conference on Intelligent Computer Mathematics, CICM 2012, volume 7362. Springer,
2012. To appear. http://arxiv.org/abs/1207.3441.

[5] Makarius Wenzel and Burkhart Wolff. Isabelle/PIDE as platform for educational tools. In
Pedro Quaresma and Ralph-Johan Back, editors, CTP Components for Educational Software,
THedu 2011, volume 79 of Electronic Proceedings in Theoretical Computer Science, pages 143–153,
2011. doi:10.4204/EPTCS.79.9.

6

www.informatik.uni-bremen.de/uitp12/papers/paper-02.pdf
www.informatik.uni-bremen.de/uitp12/papers/paper-02.pdf
http://dx.doi.org/10.1007/978-3-642-22673-1_17
http://arxiv.org/abs/1207.3441
http://dx.doi.org/10.4204/EPTCS.79.9

	Introduction
	Why Isabelle/jEdit is Awesome
	Get Rolling
	How To …
	How can I use fancy mathematical symbols?
	There is nothing wrong in my file, but jEdit complains!
	Where have all the menus gone?

	Conclusions

