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Abstract. The first part of this paper presents a new approach for au-
tomatically proving nontermination of string rewrite systems. We encode
rewrite sequences as propositional formulas such that a loop can be ex-
tracted from a satisfying assignment. Alternatively, loops can be found
by enumerating forward closures. In the second part we give a formal-
ization of loops in the theorem prover Isabelle/HOL. Afterwards, we use
Isabelle’s code-generation facilities to certify loops. The integration of our
approach in CeTA (a program for automatic certification of termination
proofs) makes it the first tool capable of certifying nontermination.
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Introduction

Proving termination of term rewrite systems is a challenging endeavor since it
is undecidable in general. Nonetheless, there are many powerful algorithms that
are able to automatically prove termination of a huge class of TRSs as witnessed
by the international termination competition.3 This event (where several termi-
nation tools compete on a large set of problems) evolved in 2004. Since then, it
stimulated research and focused the efforts towards the automation of termina-
tion analysis. Surprisingly—compared to the vast amount of methods devoted to
termination—only few techniques concerning nontermination are known and im-
plemented. Nevertheless, checking for nontermination is especially useful for de-
bugging programs, since concrete counterexamples are helpful for tracking down
bugs. Most nontrivial approaches in that direction aim to find looping reduc-
tions and comprise ancestor graphs [28], narrowing [14], match-bounds [11, 25],
unfoldings [22], and transport systems [26]. The first automated approach [21]
dealing with nonlooping nonterminating systems was presented during the 2008
edition of the termination competition.

The increasing complexity of proofs generated by termination tools makes
certification of their output more and more important. Since 2007 a certified cat-
egory is part of the termination competition. The participating tools have to gen-
erate proofs that can automatically be certified. Recent approaches for automatic
certification of termination proofs are Coccinelle/CiME [6], CoLoR/Rainbow [4],
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and IsaFoR/CeTA [24]. The first two use Coq [3] as theorem prover. Coccinelle
and CoLoR are Coq-libraries on rewriting whereas CiME and Rainbow transform
proof output of a termination tool into Coq-script using the respective library.
Afterwards, Coq is used to certify the result. CeTA uses Isabelle/HOL (Isabelle
for short) as theorem prover. IsaFoR (Isabelle Formalization of Rewriting) is
an Isabelle-library on rewriting and CeTA (Certified Termination Analysis) is a
program that certifies a termination proof directly (without calling a theorem
prover). It is generated from IsaFoR using Isabelle’s code-generation facilities [16].

In Section 1 we recall term rewriting and in Section 2 we present two powerful
methods to find loops for string rewriting. Afterwards, Sections 3 and 4 discuss
our Isabelle formalization for IsaFoR and our check-functions for CeTA that are
used to certify looping nontermination. An assessment of our contributions can
be found in Section 5 before ideas for future work are addressed in Section 6.

Parts of Section 2 were first announced in two separate notes by the authors
presented at the 9th and 10th International Workshop on Termination.

1 Preliminaries

We assume familiarity with term rewriting [2] in general and termination [29] in
particular. A signature F is a set of function symbols with fixed arities. Let V
denote an infinite set of variables disjoint from F . Then T (F ,V) forms the set of
terms over the signature F using variables from V. For a term t ∈ T (F ,V) the
size and number of function symbols of t is denoted by |t| and ‖t‖, respectively.
If t = f(. . . ) then f is called the root of t. Rewrite rules are pairs of terms (l, r),
usually written as l → r, where l is not a variable and all variables of r appear
in l. Function symbols that appear as roots of left-hand sides are called defined.
A term rewrite system (TRS) is a finite set of rewrite rules. Contexts are terms
over the signature F ∪ {2} with exactly one occurrence of the fresh constant 2

(called hole). The expression C[t] denotes the result of replacing the hole in C by
the term t. A substitution σ is a mapping from variables to terms and tσ denotes
the result of replacing the variables in t according to σ. Substitutions change only
finitely many variables (thus written as {x1/t1, . . . , xn/tn}). The rewrite relation
induced by a TRS R is a binary relation on terms denoted by→R with s→R t if
and only if there exist a rewrite rule l→ r ∈ R, a context C, and a substitution
σ such that s = C[lσ] and t = C[rσ]. The (reflexive and) transitive closure of
→R is denoted by (→∗R) →+

R. A TRS R is called strongly normalizing (SN) or
terminating if →+

R is well-founded. A sequence t1 →R · · · →R tn →R C[t1σ] is
called a loop of length n, written ([t1, . . . , tn], C, σ).

Next we recall the dependency pair framework [1,13,15,17]. The signature F
is extended with dependency pair symbols f ] for every defined f , where f ] has
the same arity as f , resulting in the signature F ]. In examples we write F for
f ]. If l→ r ∈ R and u is a subterm of r with defined root then the rule l] → u]

is a dependency pair of R. Here l] and u] are the results of replacing the roots of
l and u by the corresponding dependency pair symbols. The set of dependency
pairs of R is denoted by DP(R).
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A DP problem is a pair of TRSs (P,R) such that the roots of the rules in P
do neither occur in R nor in proper subterms of the left- and right-hand sides
of rules in P. The problem is said to be finite if there is no infinite sequence of
the shape s1 →P t1 →∗R s2 →P t2 →∗R · · · . The main theorem underlying the
dependency pair approach states that termination of a TRS R is equivalent to
finiteness of the initial DP problem (DP(R),R).

To prove finiteness of a DP problem, DP processors are employed. A DP
processor is a function taking a DP problem as input while returning a set of DP
problems or “no” as output. For proving termination they need to be sound, i.e, if
all DP problems returned by a DP processor are finite then so is the original one.
To ensure that a DP processor can be used to prove nontermination it must be
complete, i.e., if one of the DP problems returned by the DP processor is not finite
then the original DP problem is not finite. Hence if only complete DP processors
are used and one returns “no” then the original TRS is nonterminating.

2 Finding Loops

A string rewrite system (SRS) is a TRS with unary function symbols only. In-
stead of a(b(c(x))) we write abc (i.e., the variable is implicit). For a string s we
denote the i-th symbol (1 6 i 6 ‖s‖) in s by si, e.g., abc2 = b.

Example 1. Consider the SRS S = {ab → bbaa} which admits the looping re-
duction abb→S bbaab→S bbabbaa where the initial string abb is reached again
after two rewrite steps wrapped in the context C = bb2 and instantiated by the
substitution σ = {x/aa}. Thus S admits the loop ([abb, bbaab], C, σ) of length 2.

The main benefit of the dependency pair approach (for finding loops) is that
leading contexts as in Example 1 are automatically removed by construction of
the dependency pairs [14], and as a result a looping reduction in a DP problem
(P,R) takes the form t →+

P∪R tσ. Our idea is to encode a looping rewrite
sequence within the DP framework in SAT using a matrix of dimension m × n
where (0, 0) denotes the top left entry and (m− 1, n− 1) the bottom right one.
Every row in the matrix corresponds to a string and the intended meaning is that
there is a rewrite step from row i to row i+1. Nowadays many termination tools
interface SAT solvers which makes our contribution little effort to implement.

Example 2. The SRS from Example 1 admits the dependency pairs Ab → Aa
and Ab → A. In a 3 × 5 matrix a looping reduction is possible. The entries
marked with · indicate that any symbol might appear at these positions.

A b b · ·
A a b · ·
A b b a a

In the sequel we describe how to represent such matrices for a DP problem
(P,R) in propositional logic where the following variables are used:4

4 The idea of encoding computation as propositional satisfiability goes back to [7].
Encoding cyclic structures in SAT originates from liveness properties in bounded
model checking [5].
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Ma
ij symbol a occurs at position (i, j) of the matrix

Rl→r
i rule l→ r is applied in row i of the matrix

pi the position (= column) in row i where the rule is applied (in
Example 2 we have p0 = 0 and p1 = 1)

ei pointing to the last symbol of the i-th string (in the example
e0 = 2, e1 = 2, and e2 = 4)

The variables pi and ei are not Boolean but represent natural numbers which are
implemented as lists of Boolean variables encoding the actual value in binary.
To distinguish them from proper propositional variables they are typeset in
boldface. Furthermore, operations such as >,>,=, and + are defined as usual
for such SAT encodings (see, e.g., [10]).

Exactly one function symbol: To get exactly one function symbol at each matrix
position, we ensure at least one symbol per entry and additionally ban multiple
symbols at the same entry. Note that dependency pair symbols (those in F ] \F)
can only appear at column 0 of each row. This is encoded as follows (where
X = F if j > 0 and X = F ] \ F otherwise):

αij =
( ∨

a∈X

Ma
ij

)
∧
∧

a∈X

(
Ma

ij →
∧

b∈X\{a}

¬M b
ij

)
Rule application: If a rule l→ r applies in row i (Rl→r

i ), the rule must be applied
correctly (appl→r

i ) and entries unaffected by the rule application must be copied
from row i to row i+ 1 (cpl→r

ij ). The position of the rule application is fixed by
pi and satisfying cpl→r

ij ensures that only one rule is applied. Hence

βl→r
i = Rl→r

i →
(
appl→r

i ∧
∧

06j<n

cpl→r
ij

)
where in case of l→ r ∈ R we set appl→r

i to∧
06j<‖l‖

M
lj+1

i(pi+j) ∧
∧

06j<‖r‖

M
rj+1

(i+1)(pi+j) ∧ (ei+1 + ‖l‖ = ei + ‖r‖) ∧ (ei > pi + ‖l‖)

and if l → r ∈ P then pi specializes to 0. The first (second) conjunct of appl→r
i

expresses that l (r) matches the string encoded in the matrix at row i (i+ 1) at
the abstract position pi. The last but one conjunct demands that the end pointer
in line i+1 takes the value of ei−‖l‖+‖r‖. To ensure that the contracted redex
fits the string in line i the last conjunct must be satisfied.

The formula for cpl→r
ij is defined as > if j+ max{‖l‖, ‖r‖} > n (these entries

would be outside of the matrix), as(
(j < pi) ∧

∧
a∈X

(Ma
ij ↔Ma

(i+1)j)
)
∨
(
(j > pi) ∧

∧
a∈F

(Ma
i(j+‖l‖) ↔Ma

(i+1)(j+‖r‖))
)

(where X = F ]\F if j = 0 and X = F otherwise) if l→ r ∈ R, and if l→ r ∈ P
then the encoding specializes to the second disjunct (since we know that pi = 0).
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All entries in the matrix before the position where the rule is applied are copied
from row i to i + 1. The second disjunct copies the entries after pi which are
unaffected when applying the rule. The positions of these entries change if the
applied rule is not length-preserving.

Initial string is reached again: To recognize a loop, the string in some row i > 0
has to match the one in row zero. Furthermore the end pointer for this row is
not allowed to be smaller than the one of row zero.

γ =
∨

0<i<m

( ∧
a∈F]\F

(
Ma

00 ↔Ma
i0

)
∧
∧

0<j<n
a∈F

(
Ma

0j ↔Ma
ij

)
∧ (ei > e0)

)

All together: For a DP problem (P,R) the formula loopm,n
P,R is defined as( ∧

06i<m

( ∧
06j<n

αij

)
∧ (ei < n) ∧ βi

)
∧ γ

with βi =
∨

l→r∈P∪RR
l→r
i ∧

∧
l→r∈P∪R β

l→r
i which expresses that one rule has

to apply in row i and that it is applied properly. The condition ei < n ensures
that all strings in the loop stay within the allowed matrix dimensions.

Different types of variables—concrete (Ma
ij) and abstract ones (Ma

ix) where x
is a list of propositional variables representing a natural number in binary—are
used. The latter are needed when a rule is applied at the abstract position pi. By
default, abstract variablesM a

3[x1,x0]
andM a

3[y1,y0]
are different (since the variables

differ) and hence may take different values. If the assignments for x1 and y1 as
well as x0 and y0 are the same, we want to enforce that the variables take identical
values. In the implementation we test for every such abstract variable whether
it matches a concrete one and we identify them if that is the case in order to
obtain consistent results: ϕcons =

∧
Ma

ix

∧
06j<n

(
(x = j)→ (Ma

ij ↔Ma
ix)
)
. This

allows to formulate the main theorem for encoding loops:

Theorem 3. A DP problem (P,R) admits a loop of length at most m involving
strings of size at most n+ 1 if the formula loopm+1,n

P,R ∧ ϕcons is satisfiable. ut

The previous theorem allows to implement a DP processor for nontermination.

Theorem 4 ([14, Theorem 26]). The DP processor that maps a DP problem
(P,R) to “no” if (P,R) loops and to {(P,R)} otherwise is sound and complete.

ut

For our formalization the following lemma is essential (cf. Section 3).

Lemma 5. If P ⊆ DP(R) then any loop in the DP problem (P,R) can be trans-
formed into a loop in R.

Proof. If P ⊆ DP(R) then any sequence t]1 →P∪R t]2 →P∪R t]3 →P∪R · · · can be
transformed into a sequence t1 →R C1[t2]→R C2[t3]→R · · · involving only the
original system by soundness of the dependency pair transformation [1]. ut
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The restriction P ⊆ DP(R) does no harm since the initial DP problem (DP(R),R)
obviously satisfies it and all DP processors we employ only remove rules from P.

The next corollary combines Theorem 3 and Lemma 5. Note that strings in
the transformed loop might be of size larger than n due to additional contexts.

Corollary 6. If loopm+1,n
DP(R),R ∧ ϕcons is satisfiable then R admits a looping re-

duction of length at most m. ut

We state one nice property of the encoding from Theorem 3. Even for DP prob-
lems where all infinite minimal sequences are nonlooping our encoding may find
looping nonminimal sequences [27, Example 5.5].

An alternative characterization of loops can be given in terms of forward
closures. Define the set of right forward closures RFC(R) as the least set of
reductions containing R (as a set of one-step reductions) and being closed under
rewriting (if (t1, . . . , tn) ∈ RFC(R) and tn →R tn+1 then (t1, . . . , tn, tn+1) ∈
RFC(R)) and under right extension (if (t1, . . . , tn) ∈ RFC(R) and tn = sl1 for
some l1l2 → r ∈ R with non-empty l1 and l2 then (t1l2, . . . , tnl2, sr) ∈ RFC(R)).
E.g., the loop in Example 1 is a right forward closure. By Theorem 9 from [12],
R admits a loop if and only if there is a loop in RFC(R). Furthermore, if R
admits a loop of length n then a loop of length at most n exists in RFC(R).

The set of left forward closures LFC(R) is defined symmetrically via left ex-
tension. By symmetry, either way we characterize loops of minimal length, but
minimal length loops in RFC(R) and in LFC(R) can have quite different widths,
where the width of a reduction is the size of the starting string. As a consequence,
we will search for loops both in RFC(R) and in LFC(R).

3 Formalizing Loops

In the next two sections we assume some familiarity with Isabelle [20]. All lemmas
and theorems within these sections have formally been proved in IsaFoR. Next
we sketch how we formalized loops (for full rewriting). Figure 1 lists the most
important function definitions and types. (Here we deviate from the syntax of
IsaFoR, to increase readability, e.g., the application of a substitution would be t·σ
rather than tσ.) A binary relation is a set of pairs. A loop is a triple consisting of
a list of terms, a context, and a substitution. For a given relation A, an element
a is strongly normalizing (SN_elt) if there is no infinite sequence s such that
s0 = a while for all i we have (si, si+1) ∈ A. Strong normalization of a relation A
(SN) holds if all elements of the domain are strongly normalizing with respect
to A. To guarantee that our definition of SN is suitable we proved an easy lemma
stating equivalence to the built-in Isabelle notion of well-foundedness (wf), i.e.,
SN(A) = wf(A−1). The rewrite relation →R induced by a TRS R is a binary
relation on terms closed under contexts and substitutions. The function rsteps
checks for a list of terms if between two consecutive terms there is a rewrite
step. Then the predicate is_loop is defined based on rsteps. The function ith
returns for a loop ([t1, . . . , tn], C, σ) and any i > 0 the i-th term in the sequence:

t1 →R · · · →R tn →R C[t1σ]→R · · · →R C[tnσ]→R C[C[t1σ]σ]→R · · ·

6



types ’a brel = "(’a × ’a)set"

types (’f,’v)loop = "(’f,’v)term list × (’f,’v)ctxt × (’f,’v)sub"

definition SN_elt where

"SN_elt A a ≡ ¬(∃s. s0 = a ∧ (∀i. (si,si+1) ∈ A))"
definition SN where "SN(A) ≡ ∀a. SN_elt A a"

fun rsteps :: "(’f,’v)term list ⇒ (’f,’v)term brel ⇒ bool"

where "rsteps [t] R = True"

| "rsteps (s#t#ts) R = (s →R t ∧ rsteps (t#ts) R)"
fun is_loop :: "(’f,’v)loop ⇒ (’f,’v)term brel ⇒ bool" where

"is_loop (t#ts,C,σ) R = rsteps (t#ts@[C[tσ]]) R"
fun ith :: "(’f,’v)loop ⇒ nat ⇒ (’f,’v)term" where

"ith(t#ts,C,σ)i = (if i < length(t#ts)

then (t#ts)!i
else C[(ith(t#ts,C,σ)i−length(t#ts))σ])"

Fig. 1. Basic definitions

Using ith an infinite sequence s can be constructed, contradicting SN_elt. In
IsaFoR, the main task was to prove the following lemma (which amounts to
proving that rewriting is closed under contexts and substitutions).

Lemma 7. If is_loop ` R then for all i we have ith(`)i →R ith(`)i+1. ut

We obtain the main theorem for the abstract formalization:

Theorem 8. If is_loop ` R then →R is not terminating.

Proof. From is_loop ` R we get an infinite sequence s by defining si = ith(`)i.
By Lemma 7 the sequence s satisfies ∀i. si →R si+1. Hence, for the first term t
of the loop ` we obtain ¬SN_elt →R t and thus by definition of SN, ¬SN(→R).

ut

4 Certifying Loops

This section aims at certification, i.e., an automatic check if a suspected loop
indeed is a loop. For this task we use the code-generation [16] facilities of Isabelle
which allow to generate verified code. We provide an implementation of the
predicate is_loop from Section 3 by the check-function check_loop that tests
if a list of terms, a context, and a substitution form a loop. First we state the
main theorem for certifying loops:

Theorem 9. If check_loop ` R then →set(R) is not terminating. ut

This resembles Theorem 8, but on a constructive (executable) level. Here R is
chosen as a list and set transforms a list into a set. The reason is that for lists ex-
ecutable code can be generated but for sets not. Before considering check_loop
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types (’f,’v)rule = "(’f,’v)term × (’f,’v)term"

types (’f,’v)trsL = "(’f,’v)rule list"

fun rewrites where

"rewrites (s,t) C σ (l,r) R = (s = C[lσ] ∧ t = C[rσ] ∧ (l,r) mem R)"
fun rewrites_to

where "rewrites_to [(s,C,σ,rule)] t R = rewrites (s,t) C σ rule R"
| "rewrites_to ((s,C,σ,rule)#(t,C’,σ’,rule’)#xs) u R = (

rewrites (s,t) C σ rule R ∧
rewrites_to ((t,C’,σ’,rule’)#xs) u R)"

fun check_loop_d

where "check_loop_d [] _ _ _ = False"

| "check_loop_d xs C σ R = rewrites_to xs C[(fst(hd xs))σ] R"

Fig. 2. Checking a loop with all details provided

we focus on a simpler task, namely check_loop_d where more details of the loop
are supplied. In the lemma below, the list xs contains the full information for
every rewrite step s→R t, i.e., the context C, the substitution σ, and the rewrite
rule l → r such that s = C[lσ] →R C[rσ] = t (cf. Figure 2 for the definition of
check_loop_d and the functions it relies on). Using check_loop_d no further
information must be computed and certification of a candidate loop is already
possible:

Lemma 10. If check_loop_d xs C σ R then →set(R) is not terminating.

Proof. The abstract formalization can be linked to the concrete implementation:
If rewrites_to xs t R then rsteps (map fst xs@[t]) (set(R)). By unfolding
the definitions of check_loop_d and is_loop, and using Theorem 8, the proof
concludes. ut

The main drawback of the function check_loop_d is that it requires all in-
formation about the rewrite steps. To the best of our knowledge not a single
termination prover provides all these details. To make the certification of loops
more appealing and user-friendly we turn our focus on the function check_loop
again. Here for every rewrite step s →R t the context C, the substitution σ,
and the rewrite rule l → r such that s = C[lσ] and t = C[rσ] are computed
internally.

A function get s t R computes Some(C, σ, (l, r)) if there is a rewrite step from
s to t involving C, σ, and l→ r ∈ R. Hence get has to test for all rules l→ r ∈ R
if for any context C in s there is a substitution σ satisfying s = C[lσ] and t =
C[rσ].5 To find this substitution we had to implement matching. With the help
of get a function get_list returns the necessary information for a sequence of
rewrite steps and get_loop computes all details for a looping reduction. Finally
the function check_loop just calls check_loop_d on the output of get_loop.
5 If s→{l→r} t and s = C[lσ] then t = C[rσ] holds for free by our definition of TRS.

To handle systems that violate the variable condition we demand both conditions.
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5 Experiments

The first part of this section evaluates the power of our approaches to find loops
for SRSs. The second part focuses on certifying loops for SRSs and TRSs.

In our tests we considered the 1391 TRSs and 732 SRSs from the Termination
Problems Data Base version 5.0 (TPDB). All tests have been performed on a
server equipped with eight dual-core AMD Opteron R© processors 885 running at
a clock rate of 2.6 GHz and on 64 GB of main memory at a time limit of 60 s.

Finding Loops: We integrated the encoding from Section 2 into TTT2 [19] which
was configured such that propositional formulas were solved by MiniSat [9] after
a satisfiability-preserving transformation to CNF [23]. (Using the SMT solver
Yices [8] as back-end produced slightly worse results.)

The implementation of the encoding differs from the presentation in Section 2
for reasons of readability. Our experiments showed that nontermination proving
power can be slightly (i.e., a gain of about 10%) extended by addressing the
following issues. Mutual exclusion of the Ma

ij variables can be expressed more
concisely. After fixing an order on the variables, the property that at most one of
the variables x1, . . . , xn can be satisfied, is expressed by xi → ¬xi+1 ∧ · · · ∧ ¬xn

for all 1 6 i < n. Due to mutual exclusion of the Ma
ij variables, all bi-implications

occurring in subformulas of loopm,n
P,R can safely be replaced by implications. The

encoding contains the requirement ei+1 + ‖l‖ = ei + ‖r‖ where “=” could be
weakened to “6”. (This corresponds to cutting parts of the substitution.) How-
ever, due to the increased search space the more restrictive version performs
better. To reduce the search space, fixing pi < min{3 + i ∗ max

l→r∈R
{‖l‖, ‖r‖}, n}

applies rewrite rules close to the root in the first few rows.
Before applying the loop-finder, TTT2 uses termination methods like matrix

interpretations [10] and bounds [18] to preprocess DP problems. Sometimes
these methods suffice to prove termination and often they simplify DP prob-
lems. Heuristics for encoding loops try matrices of different dimensions ranging
from 10× 10 up to 25× 25. Most successful proofs only take a few seconds.

As an alternative, an enumeration of looping forward closures (cf. Section 2)
is implemented in KnockedForLoops (KFL), a tool developed by the third author.
It is based on a simple brute force, breadth first search strategy. To overcome the
problem with excessive memory consumption, we employ bounds on the width of
forward closures, i.e., bounds on the number of extension steps. By a concurrent
search both in RFC(R) and in LFC(R) with different width bounds, many long
loops with small width can be exhibited. As a simple combinatorial optimization,
we disregard reductions with a rewrite step to the left of the previous step in
case these steps do not overlap (since those two steps would commute).

We compare our implementations with three powerful nontermination ana-
lyzers, namely the 2007 version of Matchbox [25] specialized to nontermination
(enumerations of forward closures, reversing, transport systems), nonloop [21],
and the 2008 edition of NTI [22]. Earlier versions of Matchbox and NTI par-
ticipated in the Standard SRS category of the 2007 competition and nonloop
did so in 2008. These tools were (apart from TTT2) the most powerful ones for
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Table 1. Finding and certifying loops

732 SRSs 1391 TRSs
tool KFL /CeTA Matchbox nonloop NTI TTT2 /CeTA TTT2 /CeTA

no 158 / 158 149 93 67 97 / 97 203 / 203
time 34853/ 6 35441 37855 39508 23039/ 3 25898/ 3

time (avg.) 2.45 /0.03 3.10 5.73 5.78 11.61/0.02 0.19 /0.01

nontermination in this division. The left part of Table 16 presents a compari-
son of the provers where the row labeled no shows the number of successfully
found/certified nontermination proofs, time refers to the accumulated total time
used by the tool in seconds and time (avg.) displays the average time needed
for successfully finding/certifying a nontermination proof. The columns labeled
CeTA are explained in the next subsection. We note that the algorithm underlying
NTI performs much better for terms than for strings (cf. [22]) and that the main
aim of nonloop is establishing nonlooping nontermination. In our experiments
KFL subsumes Matchbox, NTI, and TTT2. Only nonloop can disprove nine systems
terminating which KFL misses. We anticipate that these systems are nonlooping
nonterminating. Most remarkably, KFL finds a loop of length 80 and width 21
for the system Gebhardt/10 from TPDB, the termination status of which has
been—at least to the authors’ knowledge—open for several years.

Certifying Loops: Our contribution amounts to approximately 500 lines of Is-
abelle code that were added to IsaFoR (theory Loop). This includes the abstract
formalization of loops and both approaches for certifying loops (the detailed
one using check_loop_d and the user-friendly one based on check_loop). The
key concept for certification presented here, is the code-generation mechanism
of Isabelle (currently we export verified Haskell code). Thus the whole certifier
consists of a bunch of automatically generated sources and a main file that just
calls the check function on a given problem and proof. This paper refers to ver-
sion 1.01 of CeTA the input format of which can be found at its website.7 When
calling CeTA, two arguments have to be supplied, namely the input problem and
the proof attempt. The tool then tests if the specified proof attempt corresponds
to a loop and terminates with exit code 0 in case of success and exit code 1 if
the input could not be proved to be a loop.

Considering Table 1 again (this time only the columns CeTA) separate em-
pirical data for certifying loops for 732 SRSs and 1391 TRSs is given.8 For the
columns labeled XXX/CeTA the tool XXX was used to find loops which CeTA then
had to certify. The row labeled no indicates the number of successfully certified
6 Experiments are available from http://cl-informatik.uibk.ac.at/ttt2/loops/.
7
http://cl-informatik.uibk.ac.at/software/ceta/

8 For completeness we mention how TTT2 finds loops for TRSs: Apart from the ap-
proach proposed in [22] two trivial methods are employed (test for fresh variables
on right-hand sides and test if a rule is self-embedding).
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systems and time shows the accumulated time in seconds for certifying loops.
The certifier was just called for the successfully found loops but still this number
demonstrates that the overhead for certification is negligible. This is remarkable,
since the certifier has to compute for every two consecutive terms s and t in the
loop a context C, a substitution σ, and a rewrite rule l→ r ∈ R such that indeed
s = C[lσ] →R C[rσ] = t. We conjecture that CeTA’s efficiency is mainly due to
code generation. (For a comparison in run time with other certifiers see [24].)
CeTA could certify all 158 (97) SRSs and 203 TRSs nonterminating for which
KFL (TTT2) and TTT2 provided a nontermination proof, respectively.

6 Conclusion and Future Work

This paper presents two methods for finding loops in SRSs. Since the encoding
from Section 2 takes parameters for the length of looping sequences and the
maximal size of strings occurring within the reduction it is especially suitable
to find short(est) loops. This eases the task of debugging since the reason for
nontermination is concisely represented. Our experiments revealed that detect-
ing loops by enumerating forward closures is powerful. In the second part we
formalized strong normalization in the theorem prover Isabelle and sketched how
our contribution allows to generate verified code capable of certifying loops. The
thereby generated check-function was incorporated into CeTA. Since CeTA is freely
available our contribution allows any termination tool to certify its loop output.

Both contributions may be further investigated. One question concerning
Section 2 is whether the encoding can be lifted from strings to terms. Concerning
the formalization of loops one could try to incorporate the approach from [21]
and also formalize nonlooping nontermination. It has to be clarified if from the
output provided by nonloop the i-th term in a nonterminating sequence can be
extracted easily. This issue will then make the task either easy or undoable.

Acknowledgments. We would like to thank René Thiemann for exploring
the code-generation facilities of Isabelle and Johannes Waldmann for helpful
comments and providing a version of Matchbox’07 specialized to nontermination.
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9. Eén, N., Sörensson, N.: An extensible SAT-solver. In: SAT. LNCS, vol. 2919, pp.
502–518 (2004)

10. Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving ter-
mination of term rewriting. JAR 40(2-3), 195–220 (2008)

11. Geser, A., Hofbauer, D., Waldmann, J.: Termination proofs for string rewriting
systems via inverse match-bounds. JAR 34(4), 365–385 (2005)

12. Geser, A., Zantema, H.: Non-looping string rewriting. TIA 33(3), 279–302 (1999)
13. Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework:

Combining techniques for automated termination proofs. In: LPAR. LNAI, vol.
3452, pp. 301–331 (2005)

14. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In: FroCoS. LNAI, vol. 3717, pp. 216–231 (2005)

15. Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving
dependency pairs. JAR 37(3), 155–203 (2006)

16. Haftmann, F.: Code Generation from Specifications in Higher Order Logic. PhD
thesis, Technische Universität München (2009)

17. Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. I&C
199(1-2), 172–199 (2005)

18. Korp, M., Middeldorp, A.: Match-bounds revisited. I&C (2009). doi:10.1016/
j.ic.2009.02.010

19. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.
In: RTA. LNCS, vol. 5595, pp. 295–304 (2009)

20. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic. vol. 2283 of LNCS. (2002)

21. Oppelt, M.: Automatische Erkennung von Ableitungsmustern in nichtterminieren-
den Wortersetzungssystemen. Master’s thesis, HTWK Leipzig (FH) (2008)
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