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Parallel Reductions in A-Calculus*

MasaKO TAKAHASHI

Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152, Japan

The notion of parallel reduction is extracted from the simple proof
of the Church-Rosser theorem by Tait and Martin-L6f. Intuitively,
this means to reduce a number of redexes {existing in a A-term)
simultaneously. Thus in the case of S-reduction the effect of a parailel
reduction is same as that of a “complete development” which is defined
by using “residuals” of B-redexes. A nice feature of parallel reduction,
however, is that it can be defined directly by induction on the structure
of A-terms {without referring to residuals or other auxiliary notions),
and the inductive definition provides us exactly what we need in
proving the theorem inductively. Moreover, the notion can be easily
extended to other reduction systems such as Girard's second-order
system F and Gddel’s systemn T. In this paper, after reevaluating the
significance of the notion of parallel reduction in Tait-and-Martin-Lof
type proofs of the Church—Rasser theorems, we show that the notion
of parallel reduction is also useful in giving short and direct proofs of
some other fundamental theorems in reduction theory of A-calculus;
among others, we give such simple proofs of the standardization
theorem for B-reduction (a special case of which is known as the
leftmost reduction theorem for S-reduction ), the quasi-leftmost reduc-
tion theorem for B-reduction, the postponement theorem of n-reduction
(in Bn-reduction }, and the leftmaost reduction theorem for 8n-reduction.
€' 1995 Academic Press, Inc.

1. INTRODUCTION

Parallel B-reduction is the key notion of the Tait-and-
Martin-L6f proof of the Church-Rosser theorem for
B-reduction, which intuitively means to reduce a number of
B-redexes (existing in a A-term) simultaneously.

First, we define the notion inductively, and recall the
Tait-and-Martin-L&f proof of the Church—Rosser theorem.
We refer to Barendregt (1984) as the standard text, and
unless otherwise stated we follow the notations there. In

* A previous version of this paper appeared in the Journal of Symbolic
Computation 7 (1989), 113-123. In this revised version, I added a new
introduction (Section 1) explaining the significance of the simplest proof a
la Tait-Martin-L6f of the Church—Rosser theorem and the importance of
the notion of parallel reduction therein. Some new material is also included
(in particular, 2.7, 2.9, 2.10, 2.11 in Section 2). Besides, the whole paper is
restructured, while some of the old proofs are improved (Lemma 2.2,
Theorem 4.3, etc.) 1 express my sincere gratitude to Albert Meyer for his
encouragement and valuable advice for this revision. Thanks are also due
to Yohji Akama, Henk Barendregt, Roger Hindley, Kenichi Noguchi,
Hirofumi Yokouchi, and the anonymous referees for their helpful com-
ments and suggestions, which led to the final form of the paper.
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particular, we use capital letters M, N, P, Q, R, .. for
arbitrary (type-free) A-terms, and x, y, z, .. for arbitrary
variables.

DerFNiTION 1.1, The parallel f-reduction, which we
denote by =>;, i defined inductively, as follows.

(Bl) x=,x.

(B2) ix. M=, ix M If M=, M'"

(B3) MN =, M'N'ifM =, M and N=, N".

(B4) (AxM)N=,M[x:=N'] if M=,M" and
N=,N"

The rules (f1)~(f3) mean that the relation =>4
includes the identity on A-terms, ie., M ==, M holds for
each M. In order to get M ==; M’, however, we may apply
at any S-redexes in M the rule (f4) rather than (£3). Thus
M =, M' means intuitively that M" is obtained from M by
simultanuous contraction of some f-redexes possibly over-
lapping each other.

Based on the inductive definition of =, we can easily
verify the following properties.

MM = MM (1)
M==M = M-p>M. (2)

M=M N=N = M[y=N]M[y:=N']
(3)

(Property (1) can be verified by induction on the context of
the redex, while (2) and (3) are by induction on M.} From
(1) and (2), we know —»; is the reflexive, transitive closure
of ==,. Therefore, to prove the Church-Rosser theorem for
f-reduction,

Ny«gM—» N, = N> M «5N, for some M’,
it suffices to show the “diamond property” of =,
N,?M?Nz = N, ?M'?Nz for some M'. (4)

But we can prove the following stronger statement more
easily:

M=N = N?M*. (5)
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Here M* is a term determined by M (but independent
from N). Intuitively, the property (5) is satisfied by the term
M* which is obtained from M by contracting all the redexes
existing in M simultanuously. The intuition can easily be
verified by induction.

First we define M * by induction on the A-term M.

(f1*) x*=x.

(B2*) (Ax.M)*=/)x. M*.

(B3*) (M\M)*=M}M}if M, M, is not a f-redex.
(B4*) ((Ax.M,) My)*=M¥[x:=M}]

Then property (5) can be verified by induction on M, as
follows.

Case 1. f M=x=,N,then N=x=,x=M*

Case 2. IfM=/Ax.M,=>; N, then N=/Ax.N, for some
N, with M, ==, N,. Since M, is a subterm of M, by the
induction hypothesis we get N, =>; M. This implies
ix. Ny =>p,ix. M¥=M*

Case 3. If M=M M, =>4 N and M is not a f-redex,
then N= N, N, for some N, with M; =, N, (i=1, 2). Then
we have N\ N, =, M¥M¥=M*

Case 4. If M=(Ax.M,) M, =>, N, then either N=
(Ax.N|) N, or N=N,[x:=N,] both for some N, with
M; =, N, (i=1,2). Here we have N, =, M * (i=1,2) by
the induction hypothesis.

Subcase 4.1. If N = (Ix.N,) N,, then N =,
M¥x:=M¥]=M*
Subcase 42. If N=N,[x:=N,], we also have

N =, MF[x:=M}]=M* by property (3) above.

This completes the proof of (5), and hence that of the
Church-Rosser theorem. The proof is rigorous, direct, and
perhaps the shortest among all the known proofs of the
theorem. In addition, to the author’s view the proof is
mathematically clear and easy to understand because the
notion of parallel reduction captures precisely what we need
to express our intuitive idea for the proof. Moreover the
notion has a nice internal structure, which makes simple
inductive argument on the structure of terms suffice for
verifying the statement.

In the literature, variations of the proof are also known
as the Tait-and-Martin-L6f proof In those proofs, the
diamond property (4) of = rather than (5) is often proved
(see, e.g., Barendregt, 1984; Hindley and Seldin, 1986;
Rosser, 1982; Stenlund, 1972). In such cases the term M’ in
(4} is specified depending on M, N,, and N, rather than M
alone. In this way, one might get a term M’ which is the
“closest” to N, and N,, but the case analysis needs a little
more lines than the proof above.

The idea of parallel reduction also applies to the
Church-Rosser theorems for other reduction systems,
such as the extensional A-calculus f, the systems S and
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pn82 (cf. Barendregt, 1984), fn~' (with B-reduction and
n-expansion), Girard’s second-order system F (with and
without z-reduction), etc.

For example, in the case of a non-extensional system F
(see, e.g., Girard et al., 1989), we define the parallel reduc-
tion =>_ inductively on well-typed terms as

(F1) x=>px,
(F2) ix:Ut=Ax: Ut

(F3) ts =1,

(F4) AX.t= AX.1,

(F5) tU=,1t'U,

(F6) (Ax:Ut)s=p1t'[x:=5"],
(F7) (AX ) U= 1'[X:=U],

assuming t => ¢’ and s => 5". (Here we write x for term
variables, ¢, 7', s, s’ for terms of appropriate types, X for type
variables, and U for types.) Then as before by induction we
can easily verify the properties

1558 = I[x:=s]=[x:=¢], (6)
1>t = X =U]l/[X:=U] (7)
ts2t = =1, (8)

where for each term ¢ of F we define r* inductively as

(F1*) x*=x.

(F2*) (Ax: U.t)y*=Ax: U.t*

(F3*) (s)*=r*s*ifr#£Ax: U.r' for any x, Uand ¢
(F4*) (AX.0)*=AX.r*.

(F5*) (U)*=t*Uift# AX ¢ for any X and ¢'.
(F6*) ((Ax: Ut) s)*=t*[x :=5*].

(F7*) ((AX. ) Uy*=t*[X:=U].

Property (8) then immediately yields the Church-Rosser
theorem for F as before.
In the case of an extensional Girard’s system, we add

(F8) Az Uitz=p1'ift =t and - ¢ FV(1)
to the inductive definition of =, add

(F8*) (Az: U.tzy*=r*ifz¢ FV(s)

to the inductive definition of +*, and let (F2*) be valid only
when Ax: U.t is not an z-redex. With these modifications,
again we can prove statements (6) ~ (8) by induction on the
structure of the term 1. For example, to verify (8) where ¢ is
an -redex, we observe that in this case ¢ = {' means either

st=iz Usz =5 =1,
e t=Az: Usz =g iz: Us'z=1¢, or

e t=An Uy Us)z =g Az Us'[y:=z] =7,
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for some s, s, z, y such that s = s’ and z¢ FV(s). In the
first two cases, clearly ¢’ => 5* = ¢* since by the induction
hypothesis s" == s* In the last case, we have ¢ =4iy:
Us' =g (Ay: Us)*=t* by the induction hypothesis
applied to Ay: U.s =>Ay: U.s’. Other cases are straight-
forward.

This proof technique is also applicable to systems with
certain operators and additional reduction rules. As an
example, consider Gédel’s system T for primitive recursive
functionals of finite type. Here we take the version with
pairing, recursor, and conditional operators (cf. Girard
et al., 1989). For this system, we define the parallel reduction
=, inductively on well-typed terms as

(T1) x=>,x,0=,0,T=,T,F=_F,
(T2) ix: Ut =ix:UY,

(T3) ts=,1t's,

(T4)  (tos) =p (108,

(T5) w't=y 7't n’t =>, 7,

(T6)  Risr ==, R's'r,

(T7) Dtsr =, Dt's'r,

(T8) (Ax:U.t)ys = t'[x:=5"],

(T9)  #'<t,s) =, ', 7L, 5D =, 8,
(T10) ResO =, t', Res(Sr) = s'(Re's'r') 1,
(T11) DtsT =, ', DtsF =g/,

assuming t = ', s => §', r = r’. (Here x stands for term
variables, ¢, t', s, §', r, r' for terms of appropriate types, and
U for types.) Then by defining ¢* for each term ¢ of T in the
same spirit as before, we can readily verify

t==>1t

T

=¥,
which shows the Church-Rosser theorem for T.

See Sato (1991) and Takahashi (1993) for other applica-
tions of the proof technique to systems with more operators
and reduction rules.

From these examples, one might get the impression that
the proof technique always works successfully in proving
the confluence of reduction systems. But this is not the case;
there are certain systems, such as the restriction of Sy !
discussed in Mints (1979), for which the proof technique
does not work (because of the context-sensitiveness of the
reduction rules) (cf. Akama, 1993).

As for the origin of the Tait-and-Martin-L&f proof, it was
first presented in a lecture by William W. Tait for com-
binatory logic, and Per Martin-L6f adapted it in 1971 for
his unpublished work (Martin-Léf, 1993). In published
form, to my knowledge, Lévy (1975, 1976) is the only
literature that contains it until late 1980s, when a
preliminary version of the present work appeared (see the
footnote in the first page), while a number of textbooks and
articles carry its variations as mentioned earlier.
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The aim of this paper is to show that the notion of parallel
reduction is useful for proving not only Church-Rosser
theorems but also some other fundamental theorems in the
reduction theory of A-calculus. It is useful in the sense that
the notion provides excellent means to express fundamental
ideas of the proofs, and at the same time, what we so
expressed can be verified by induction without difficulty. In
fact, it often happens as in the case of Church-Rosser
theorems that once the idea is stated properly in terms of the
parallel reduction, the essential part of the proof is almost
over, because the inductive verification of the statement is so
easy, even mechanical.

In Section 2, we apply the notion of parallel f-reduction
to the proof of the standardization theorem for f. The key
statement there on =, (cf. Lemma 2.2) may seem to be
less intuitive at first sight than the case of Church-
Rosser theorems. But when one wants it to be verified by
induction, the idea behind the statement would be under-
stood with ease. The statement is also shown to yield simple
proofs of some other fundamental theorems such as the
head normalization theorem, the quasi-head reduction
theorem and the quasi-leftmost reduction theorem for
J-reduction.

In Section 3, we define the notion of parallel -reduction
=> , and use it to give a short proof of the postponement
theorem of #-reduction (in fx-reduction). The last section is
devoted to a simple inductive proof of the leftmost reduc-
tion theorem for the extensional A-calculus S, based on the
results in previous sections.

In the literature, most of the theorems above mentioned
have been proved by way of “residuals” (based on the
theorem of “finiteness of developments”). This paper
exhibits as a whole that, as far as these theorems are
concerned, the role played by “residuals” in conventional
proofs can be fulfilled by the notion of parallel reduction in
a succinct way. In passing, we note that recently type-
theoretic proofs are found for the head normalization
theorem, the (quasi-)leftmost reduction theorem for f, and
some others (Krivine, 1990).

We also note that another application of the parallel
reduction in the realm of typed A-calculus is found in
Yokouchi (1993).

2. STANDARDIZATION THEOREM FOR $-REDUCTION

In this section, we first establish a fundamental property
of =>, (cf Lemma22), and apply it to prove the
standardization theorem and some other fundamental
theorems in the non-extensional A-calculus g.

We will write - 5 (- 5 4 p» Trespectively) for one-step
head (internal, leftmost) f-reduction, and ——"—»ﬂ ,
s ) for the reflexive transitive closure. The following
lemma is immediate from the definition of - e

(—>
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Lemma 2.1. (1) M-, N implies ix.M >, Ax.N.

(2) M-E N implies M[ x := P] -2, N[x:=P].

(3) Ml*ﬁ N implies MP —"—*p NP, unless M is an
abstraction.

We write P ==, Q when P ==, Q and P—», Q. In case
Pisin head normal form, say P= Ay.xPP,---P,, P ==, Q
means simply P =>; (Q; in this case, of course Q=
AV.xQ1 @y Q, With P,=>,Q; (j=1,2,...n) for some
0, Q,, .., @,. On the other hand, if P has a head redex, say
P=/y.(ix.Py) P\P;--- P, withn>1, then P =, Q means
Q=47.(4x.00) Q105--- 0, with P, =>, 0, (j=0,1, .., n)

for some Q,, Q. ..., Q,.
The key lemma in our proof of the standardization

theorem is the following.

LEMMA 22 (Main Lemma). M =, N implies M -,
P i:,, N for some P.

Proof. By induction we will verify a stronger statement:

M=>,,NimpliesMEMol—>/,M, -'—'*ﬂ
le.,ﬂ..._"_,ﬂMm _—’L>ﬂN
for some m = 0 and M, such that

M, =, N(j=0,1,..m).

For simplicity we call the reduction sequence (*) from M to
N (with the associated condition for M ’s) a x-sequence, and
when there is a *-sequence from M to N we will write M » N.
Now we prove the statement
M = N = MxN (%%)
by induction on the structure of M.

Assume M =, N. Then we are in one of the following
cases:

(A1)
(82)

M=x=N,
M=x.M =, Ax.N' =N,
(f3) M=M'M"=>, N'N"=N,
(f4) M=(xM)M"=,N'[x:=N"]=N.
Here M' ==, N' and M" =, N". In case (B1), clearly we

have M * N. To study the other cases, we use the following
properties of *-sequences:

MxN = Ix.MxIx.N (1)
Mx«N,P=Q = MPxNQ (2)
MxN,PxQ = Plx:=M]=*QO[x:=N]. (3)

Property (1) is clear from the definition; (2) and (3) will be
proved in Lemmas 2.3 and 2.4 below. Once we get these

123

properties, it is easy to verify (xx) in cases (f2)~ (f4) by
induction on M. Indeed, in case (f2), by the induction
hypothesis we know M’ N’ and therefore M =Ax M’
Ax.N’= N by property (1). Similarly in case (£3), from the
induction hypothesis M’ * N’ and property (2), we get
M=M'M"«N'N"=N. In case (f4), since M' * N’ and
M" x N" by the induction hypothesis, we get

M=(x M)YM" % M [x:=M"]=xN'[x:=N"]=N,

using the property (3). This is surely a x-sequence, and
hence M + N. ||

LEMMA 23. M« N, P =, 0 => MP +« NQ.

Proof. Suppose
Mo‘i”,;Mx—h”ﬁMz"h—’ﬁ"""-’ng £>ﬁN

is a *-sequence from M to N. If there is an abstraction
among M,, M,, .., M,,, let M, be the first one. Then

MoP2s M P2 MoPs ot M P s NQ

is the required #-sequence from MP to NQ. (Recall
Lemma 2.1{3) and the fact that M, P=(ix.M') P éﬂ
(Ax.N") Q= NQ for some x, M', N' such that M’ =, N’
since M, =, N.) On the other hand, if there is no abstrac-
tion in My, M, .., M,,, the same holds for k =m. |

LEMMA 24. M *N,Px Q= P[x:=M]+ Q[x:=N].

Proof. First, we consider the case where P * Q is just
P =, Q. Then we have either

(i) P=Ay.yP,P,---P, and Q=4i3.y0,0, - Q, with
nz0and P, =, Q,(j=1,2,..,n),or

(ii) P=AJ.(Ay.Py) P\P,---P, and Q=iy.(Ay.Q,) %
0,0, --Q,withn>land P, =, Q,(j=0,1, .., n)

for a sequence j of variables, a variable y, and A-terms P,
and Q;. (In (i), x and y may be identical.) In both cases we
may assume that j is empty, since the nonempty case
immediately follows from the empty case and the property
(1) of =-sequences.

For each j, let Pj=P,[x:=M] and Q;=Q,[x:=N].
Then we have P; =>; Q; since P, =, Q, and M =+, N. In
case (i), if y = x then by applying Lemma 2.3 repeatedly we
get

Plx:=M]=MP\P,-- - P,« NQ\05---0,=Q[x:=N].
If y # x in case (i), clearly

P[x:=M]=yP\P,---P,=,y00, - @,
=Q[x:=N].
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In case (ii), it is also clear that

Plx:=M]=(iy.Py) P\ Py P, ==, (Ay.Q0) @1 Q5+ O
=Q[x:=N].

Thus the lemma holds when P <>, Q.
Now suppose P = @, and

p'OLL,ﬂ p'li_"_,ﬂ P2 L,ﬂ..._"_,ﬁ ja ":ﬂ 0

is a =*-sequence from P to Q. Then by applying
Lemma 2.1(2) and the fact we have just shown, we get

PO[x:=M]-2 PV[x:=M]-2s,...
s, PP [x:=M]* Q[x:=N],

which is a *-sequence from P[x :=M]to Q{x:=N]. |

The proof of Lemma 2.2 is now completed. It says that
M =, N implies M —*+, P~ N for some P. The same
holds true under the weaker condition M —; N. To see
this we need an additional observation.

LemMMA 25. M <, P2 N implies M—*»,Q <>/ N
for some Q.

Proof. Since P-%» N, we have P=2y.(ix.Pg)P,
P,-.. P, and N=Ay.(Py[x:=P,]) P, -- P, for some
n>z1 and J x, P, Py,..,P, Next, since M= P=
AV (Ax.Py)P,P,-- P,, we know that M = A7 (Ix.My) M,
M,---M, for some M; with M;,=>,P;, (j=0,1,..,n).
This implies M -5, Aj (M[x:=M )M, ---M,=>,
AV (P{x:=P,])P,---P,=N, which together with
Lemma 2.2 shows the lemma. |

CoroOLLARY 2.6 (Mitschke, 1979, Barendregt, 1984,
Lemma 114.6). M—, N implies M -, P~ N for
some P.

Proof. Recall that —-, (—_—i»l,, resp.) is the reflexive
transitive closure of ==; (of =), and apply Lemmas 2.2
and 2.5. |

CoROLLARY 2.7. (Barendregt, 1984, Corollary 114.8,
Head Normalization Theorem). {f M has a head normal
form, then M —"-»ﬂ P for some P in head normal form.

Proof. Immediate from Corollary 2.6, since if P—>; N
and N is in head normal form, thensois P. ||

From Corollary 2.6, we can also obtain the leftmost
reduction theorem and the standardization theorem for
— 4, by using Mitschke’s argument (Mitschke, 1979). To
make the paper somewhat self-contained, we include the
argument.
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THEOREM 2.8 (Barendregt, 1984, Theorem 13.2.2, Left-
most Reduction Theorem for 8). If M has a f-normal form
N, then M~ N.

Proof. By induction on the structure of N. Suppose
M-2» P—» N and N=Aj.xN,N,---N, where n>0
and Ny, .., N, are in f-normal form. Then P=Ay.xP, P, --.
P, for some P,—~; N, (j=0, 1, .., n). Now by induction
hypothesis we have P; ~—’>—>ﬂ N,;(j=0,1, .., n), and therefore
M2 P = Jf.xP\P,--- P, 5+, AF XN\ Py P, o,
Af.xN,N2P3~-Pn——’+>ﬂ...——’»ﬂ,{)‘f.leNzN}--'N,, = N,
which is indeed the leftmost reduction from M to N. |}

A reduction sequence o: Mg —; M, —,---—, M, is
said to be standard if, roughly speaking, the sequence of
“positions™ of the f-redexes contracted in ¢ moves from left
to right. More precisely, when M —; M’ and the f-redex
contracted in this reduction step begins with the pth
symbol from the left in M (in writing M in unabbreviated
fully parenthesized form), we denote the number p by
p(M —,; M'). (Here by “symbols” we mean occurrences of
variables, 4, point and parentheses.) Then we say a reduc-
tion sequence M,—, M| —;---—; M, is standard if
pPMy—, M)<p(M,— ;M)< .- <p(M, _, —,M,).

THEOREM 2.9 (Mitschke, 1979; Barendregt, 1984,
Theorem 114.7, Standardization Theorem for f). If
M —y N, then we can obtain N from M by a standard
reduction sequence.

Proof. By induction on the structure of N. From the
assumption and Corollary 2.6, we have M —» ) P—i»ﬁ N
for some P. When N is a single variable, the theorem is
trivial since M 2> s P = N is certainly a standard reduction
sequence. Otherwise, we can write N=Ay.N,N,---N,
where each N, is a proper subterm of N. Then we have
P=Ay.P\P,---P,where P,—-; N;(j=1,2, .., n). In this
case, by the induction hypothesis there exists a standard
reduction sequence from P, to N, say ;. Let o be the head
reduction sequence M—-"—»—»,, P followed by o,, 0,5, ..., g, (In
this order) applied to the subterms P,, P,, .., P,, respec-
tively. Then clearly o is a standard reduction sequence from
MtoN. |}

The proof technique of Theorem 2.8 can be extended to
show the quasi-leftmost reduction theorem for f-reduction.
Before proving the theorem, we present the quasi-head
reduction theorem which is another consequence of
Lemma 2.5.

An (infinite) f-reduction sequence is called quasi-
leftmost, if it contains infinitely many leftmost reduction
steps SN 5 It 1s also called a quasi-head reduction, if it con-
tains infinitely many head reduction steps ~"—>ﬂ.

THEOREM 2.10 (Quasi-Head Reduction Theorem). If
M has a head normal form, then there is no (infinite) quasi-
head reduction sequence from M.
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Proof. The proof of Lemma 2.5 actually shows that
M <L .25 Nimplies M ;- ;. <>, N. It means that
if there is an infinite quasi-head reduction sequence from A,
then for any n > 0 there is a head reduction sequence from
M whose length is #. So in this case M has no head normal
form by Corollary 2.7. This proves the contraposition of the
theorem. ||

THeOREM 2.11 (Barendregt, 1984, Theorem 13.2.6, Quasi-
Leftmost Reduction Theorem). If M has a f-normal form,
then there is no (infinite) quasi-leftmost f-reduction sequence
from M.

Proof. Suppose N=Ay.xN,.-- N, is the f-normal form
of M, and

/ !
Mo My~ M, —> My — g My —p -

(1)

i
5 My =y My 8

is a quasi-leftmost f-reduction sequence from M. Then by
the previous theorem, only finitely many of M, -4 s My,
(j=0,1,2,..) are head reduction steps. Suppose M, —» 2
M, ., 1s not a head reduction step. Then M, is in head
normal form, and hence by the Church—Rosser theorem
we can writt M, =iy xP P,--- P, where P,—>,N,
(i=1, .., n). Here, by induction hypothesis (on the structure
of N), each P, has no infinite quasi-leftmost reduction
sequence. Then it implies that the tail segment of (1) starting
from M, is finite, which is a contradiction. ||

3. POSTPONEMENT THEOREM

In this section, we define parallel #-reduction, and based
on certain properties of the notion we give a short proof of
the postponement theorem: M —-, N implies M —,
P—_N for some P.

DeriNiTiON 3.1, The parallel #-reduction =, is defined
inductively, as follows:

(nl) x == x,

(n2) ,lx.M=>,1bc.M' ifM.—.-_>”M’,

(13) MN = M'N'if M = M’ and N = N',
(n4) Az Mz= M'if M => M and z¢ FV(M).

As before, M ==, M’ intuitively means that M’ is
obtained from M by simultaneous contraction of #-redexes
existing in M. It is easy to verify that —-, 1s the transitive
closure of =,, and the notion =, is substitution closed;
ie.,

MM N=N = M{y=N]=M[y:=N]
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We will denote the k-fold n-expansion of M by (M), ;
more precisely,

(M), =Azy. (Azp. (- (A2 Mzy) - ) 2,) 74,

where M is a A-term, k>0, and z,,z,, ...z, ¢ FV(M). In
particular, (M), =M.

LEmma 32, (1) M = x< M =(x), for some k>0.

(2) M=, N Ny« M=(MM,), for some k>0 and
M such that M, =>,,N,-(i=1,2).

(3) M= iIx NeM=(ix.M"), for some k>0 and
M’ such that M' ==, N.

Proof. (1) By the definition of =>,, M =, x means
either M=x or M=iz. M,z with M, = x and z¢
FV(M,). Applying the same argument to M, we eventually
get M =(x), for some k. The other direction is trivial. The
proofs of (2) and (3) are similar. |

To establish the fundamental relation between =+, and
=>, (Lemma 3.4), we first observe the following properties
of ==, in relation to #-expansion (M),

LEMMA 33. Suppose M =, M', N =, N', and k>0.
Then
(1) (Ax. M), =, ix. M,

(2) (Ax.M) N=,M'[x:=N"],

(3) (M), N=,M'N',

(4) (M) =>p(M’)1~

Proof. When k=0, the statements are trivial. So we
assume k > 0.

(1) (Ax.M), = 2z, (Azy. (- (Azp . (Ax. M) zp) -+ ) 2502y
= hn). M [x =5z =z_,1 - [zi=2,]=Ax. M.

(2) (AxM)yN=(Azy (Az5.(-- (g (Ax. M) zp) - ) zo)z))
N=;M'[x:=N']

(3) (M) N = (AzMz);, \N=,(M'2)[z:=N'] =
M'N' by (2).

4y (M) =(Az. Mz)y =, Az M'z2=(M"), by (1).(In
(3) and (4), we assume = ¢ FV(MM').) |

The following is the key lemma in our proof of the
postponement theorem.

LEMMA 34. M = P =, N implies M =>, P'=> N
for some P'.

Proof. By induction on the structure of P. According to
the definition of P =>, N, we consider four cases:

(1) P=x=N.

(B2) P=ix.P,=>4Ax.N=Nwith P, = N,.

(83) P=P\P,=,N\N;=Nwith P, =, N, (i=1,2).

(f4) P=()x.P,) Py =+, N\[x:=N,]=Nwith P, =,
N (i=1,2)
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Except for (f4), the proof is straightforward. In case (f4),
by Lemma 3.2 we can write M = ((Ax.M,), M,), for some
k,1>0 and M, such that M, =>, P, (i=1,2). Then by the
induction hypothesis we have M, =, P', = N, for some
P, (i=1,2). This together with Lemma 3.3 implies M =
((Ax. M), My), =5 (P\[x:=P3]), =, N[ x:=N,]=N.

|

THEOREM 3.5 (Barendregt, 1984, Corollary 15.1.6, Post-
ponement Theorem of y-Reduction). M —-, N implies
M —, P—> N for some P.

Proof. Immediate from Lemma 3.4, since —-,; (—
resp.) is the transitive closure of =, (of =>,). |

n°

In passing, we note that when the notion of parallel
Bn-reduction =, is naturally defined (i.e., inductively with
five clauses corresponding to (F1) ~ (F3), (F6), and (F8) in
Section 1), the equivalence

Mﬁ=>N <> M =P = N forsomeP
n 7 B

can be verified as in Lemma 3.4. The converse of Lemma 3.4
however does mnot hold. Indeed, Aix.(Ay.yx):z =,
AX.zX =>, z, but not Ax.(Ay.yx) z =>p =.

We list some other consequences of previous lemmas.

Lemma 3.6. If P =, Qand Q has a f-normal form, then
P has a p-normal form.

Proof. By virtue of Lemma 34, it suffices to show
the lemma in case Q is in f-normal form. Suppose

O=ixx; - x,,.x0,0,---Q, where Q,,..,Q, are in
f-normal form. Then by Lemma 3.2,

P=(Ax; (Axy. - (Ax,,. P')y - )y,
with

Pr=(( "‘(((x)ko Pl)k| PZ)kg"'Pn—l)k,,_| Pn)k,.

for some P,=>, Q, (i=1,2,..,n), and k,, .., k,, 1, .,
l,, = 0. By the induction hypothesis (on the structure of Q),
each P, has a §-normal form, say N,; then P’ has one, since
by Lemma 3.3 P' =, (xP Py P,)y—>5 (XN Ny - N,),
for some k< 1. We also have P =>, Ax,x; - x,,. P’ by the
same lemma. Therefore P has a f-normal form. ||

Lemma 3.7. If P =, Q and P is in B-normal form, then
sois Q.

Proof. I P=ix,x, - x,.xP\Py---P,=> 0, then
either Q=Ax,x, - x,.x0,0,---Q,, or @=Ax;x, -
Xp_1-X@, 0, Q,_, where in both cases P,=> 0, for
each i. Here by the induction hypothesis (on the structure
of P) each Q, is in f-normal form, and sois Q. |

MASAKO TAKAHASHI

From these two lemmas, we immediately know that M
has a f-normal form if and only if M has a fn-normal form
{Barendregt, 1984, Corollary 15.1.5).

4. LEFTMOST REDUCTION THEOREM
FOR pn-REDUCTION

Based on the results in previous sections, we give a simple
proof of the leftmost reduction (or normalization) theorem
for pn-reduction.

The one-step leftmost fy-reduction —— s 18 defined as
follows.

(Ipy1) 1 z¢FV(P), then M = Jy.(4z. Pz) -5, AF.P.

({fn2) If M is not of the form above but has a head
redex and M -, N, then M—Ivﬂ,, N.

(ipn3) If M is not of the forms above and
M=iy.xM M, ---M, where, for some i (1<i<n),
M, .., M,_, arein fiy-normal form and M, >, M, then
M-5, A xM M, M, MM, ,--M

n-

The leftmost fn-redex is defined naturally; in case (/871) the
n-redex Az.Pz is the leftmost fx-redex of M, while in case
(I1Bn2) so is the head redex of M. In case (/f#3) the leftmost
pn-redex of M, is that of M.

The reflexive transitive closure of ~’—+ﬁ is called the

n
leftmost By-reduction, and is denoted by —t- .

LemMa 4.1. If P, Q- R, then either P=R or
P, Q' R for some Q.

Proof. We may assume that the leftmost Sy-redex
of Q is an n-redex, say Az.M:z with z¢ FV(M). Then
Q= - - (Az.Mz)-- g M-~ =P, and the leftmost
p-redex of Q is either contained in the n-redex Az.M: or
thereafter.

{
- —

Case 1. If the leftmost f-redex is Mz, that is,
M=,z M, for some M, then Q= .--(Az.(Az.M)z)---
;- (Az.M})--- = R.In this case P=R.

Case 2. If the leftmost f-redex is in M, suppose
ML, M'. Then we have Q= - (iz.Mz) .-~ R= ..
(lz.M’:)---J—»ﬂ”u-M’--- and P= ~-M--~~i->ﬁ~-M'-~-.

Case 3. 1If the leftmost f-redex is after the n-redex,
suppose Q= -.-()v:.M:)...—’-,ﬁRz -+« (Az.Mz)ooo. Then
R_I_)ﬂ”...MoooandP_:_’...M...—I-)ﬁ...Mooo. I

COROLLARLY 42. If Py Q1 R, then either

(1) P—5, Rwith |P—1-, Rl <|Q -, R|, or

(2) there exists Q' such that P—L»,, (04 «—I—ﬁ”R with
'P'"’l""’p ol ='Q—1"’ﬁR}-

Here by |o| we mean the length of the leftmost B-reduction o.

Proof. By induction on [Q —5, R|, using Lemma 4.1. |
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THeoreM 4.3 (Klop, 1980, Theorem 5.8).
Bn-normal form N, then M >, N.

If M has a

Proof. By Theorem 3.5, we have M —>;, P—> N for
some P. Here we may assume that P is in f-normal form,
because by Lemma 3.6, P has a §-normal form, say P’, and
P —, N (by the Church-Rosser theorem for Sy and
Theorem 3.5). Then by the leftmost reduction theorem for
(Theorem 2.8), we can write M = M| —-L+ﬂ M, —’—>ﬂ M, —i»l,

NN s M, = P for some m > 0. On the other hand, clearly
one can obtain N from P by a leftmost #z-reduction,
say P=Po—>, P,-5 P,-5 ...—5 P, =N (where -,
stands for a one-step leftmost »#-reduction). Note that the
leftmost p-reduction from P to N is also a leftmost
pn-reduction, since each P; is in f-normal form.

We now prove the theorem by induction on m + p, the
ength lM —» P ——»—» N| of the reduction sequence
M ——» P -—» N Ifm + p= 0 there is nothing to prove. So
assume otherw1se and let M ——» M '. Then by applying the
previous corollary to M’ <—~ M —» P, we get either

o M'~, Pwith |M' —5, P| <|M —», P|=m, or

o M'—tn, P\( Ly P)with [M'—>, P\ |=m

In the first case we have

! Pl !
M'—’ﬁvM —HﬁP'_»rlN

with |M' s, P~ N|<m+p,

while in the second case

{
M-, M
with

—>—>ﬂP‘—I»”N
IM' L P s N|<m+p.

643/118/1-9
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In both cases, by the induction hypothesis we have
M’ —», N, and hence M -, N. |
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