
Chapter 18

Proof-Assistants Using

Dependent Type Systems

Henk Barendregt

Herman Geuvers

Contents

1 Proof
he
king . 1151

2 Type-theoreti
 notions for proof
he
king . 1153

2.1 Proof
he
king mathemati
al statements . 1153

2.2 Propositions as types . 1156

2.3 Examples of proofs as terms . 1157

2.4 Intermezzo: Logi
al frameworks . 1160

2.5 Fun
tions: algorithms versus graphs . 1164

2.6 Subje
t Redu
tion . 1166

2.7 Conversion and Computation . 1166

2.8 Equality . 1168

2.9 Conne
tion between logi
 and type theory . 1175

3 Type systems for proof
he
king . 1180

3.1 Higher order predi
ate logi
 . 1181

3.2 Higher order typed �-
al
ulus . 1185

3.3 Pure Type Systems . 1196

3.4 Properties of Pure Type Systems . 1199

3.5 Extensions of Pure Type Systems . 1202

3.6 Produ
ts and Sums . 1202

3.7 �-types . 1204

3.8 Indu
tive Types . 1206

4 Proof-development in type systems . 1211

4.1 Ta
ti
s . 1212

4.2 Examples of Proof Development . 1214

4.3 Autarki
 Computations . 1220

5 Proof assistants . 1223

5.1 Comparing proof-assistants . 1224

5.2 Appli
ations of proof-assistants . 1228

Bibliography . 1230

Index . 1235

Name index . 1238

HANDBOOK OF AUTOMATED REASONING

Edited by Alan Robinson and Andrei Voronkov

 2001 Elsevier S
ien
e Publishers B.V. All rights reserved

Proof-Assistants Using Dependent Type Systems 1151

1. Proof
he
king

Proof
he
king
onsists of the automated veri�
ation of mathemati
al theories by

�rst fully formalizing the underlying primitive notions, the de�nitions, the axioms

and the proofs. Then the de�nitions are
he
ked for their well-formedness and the

proofs for their
orre
tness, all this within a given logi
. In this way mathemati
s

is represented on a
omputer and also a high degree of reliability is obtained.

After a
ertain logi
 is
hosen (e.g.
lassi
al logi
 or intuitionisti
 logi
; �rst-,

se
ond- or higher-order logi
) there are still several ways in whi
h a theory
an

be developed. The Cantor-Hilbert-Bourbaki style is to use set-theory, say Zermelo-

Fraenkel set-theory with the axiom of
hoi
e formalized in �rst-order
lassi
al logi

(ZFC)

1

. Indeed, the great attra
tion of set-theory is the fa
t that in prin
iple it

an be used to formalize most mathemati
al notions. But set-theory has as essential

problem that it
annot
apture
omputations very well. Computations are needed

for appli
ations of theories and|as we will see later|also for providing proofs. In

both
ases we want, say for a fun
tion f : IN!IN, that for numbers n;m2IN su
h

that f(n) = m, we
an �nd a formal proof of f(n) = m, where the underlinings

stand for representations in the theory. Although this is theoreti
ally possible for

set-theory, in pra
ti
e this may not be feasible. This is be
ause a
omputation has

to be
oded in set-theory as a sequen
e of sets being a formal des
ription of a

omputation path (
onse
utive states) a

ording to some
omputational model.

Type theory presents a powerful formal system that
aptures both the notion of

omputation (via the in
lusion of fun
tional programs written in typed �-
al
ulus)

and of proof (via the so
alled `propositions-as-types embedding', where types are

viewed as propositions and terms as proofs). As a matter of fa
t there are various

type theories,
apturing various notions of
omputation (e.g. primitive re
ursion,

re
ursion over higher types) and various logi
al systems (e.g. �rst order, higher

order). In this arti
le we will not attempt to des
ribe all the di�erent possible

hoi
es of type theories. Instead we want to dis
uss the main underlying ideas, with

a spe
ial fo
us on the use of type theory as the formalism for the des
ription of

theories in
luding proofs.

On
e a theory is formalized, its
orre
tness
an be veri�ed by a small program, the

proof
he
ker. But in order to make the formalization pro
ess feasible, an intera
tive

proof-development system is needed. This is a proof environment that stands next

to the proof-
he
ker and helps the human to develop the proofs. The
ombination

of a proof-development system and a proof
he
ker is
alled a proof-assistant. Su
h

a
ombination is di�erent form a `theorem prover'. This is a
omputer system that

allows the user to
he
k the validity of mathemati
al theorems by generating them

automati
ally. Of
ourse, for proof-assistants the end goal is also to prove theorems.

But this is not done by implementing a number of smart algorithms (like resolution

or binary de
ision diagrams), but by letting the user generate a proof, intera
tively

with the system. So, the user of proof-assistants is very mu
h in
ontrol: by means

1

Or perhaps some stronger versions with large
ardinals, e.g. for the formalization of
ategory

theory

1152 Henk Barendregt and Herman Geuvers

of `ta
ti
s' (that are input to the system) a so-
alled `proof-term' is
reated that

losely
orresponds to a standard mathemati
al proof (in natural dedu
tion style).

For ma
hine assisted theorem proving (via automated theorem proving or via

intera
tive proof generation or a
ombination of the two) the main goal is to in-

rease the reliability of mathemati
al results

2

. Roughly there are two reasons why

mathemati
al results may be diÆ
ult to verify. The �rst is
omplexity: the problem

is very big, the number of
ases to be distinguished being very large, et
etera. This

is a situation that one often en
ounters in
omputer s
ien
e, where, e.g. in a pro-

to
ol one has to go through all possible states of a system. The se
ond problem is

depth: the problem is very deep, very
ompli
ated. This is a situation that is more

often en
ountered in pure mathemati
s, e.g. Fermat's last theorem is an example.

In
ase of
omplexity, we may expe
t help from an automated reasoning tool, e.g.

to go through a huge number of
ases that ea
h by themselves is easily veri�ed. In

ase of depth, an automated reasoning tool will be of little use, but we may expe
t

some help from a proof assistant that does the bookkeeping and prevents us from

overseeing details. In the latter
ase, we might also want to use the proof assistant

as a tool for exploring new �elds. At this moment however, there is not yet a user-

friendly system that provides ma
hine assistan
e for doing mathemati
al resear
h.

But the potential is there.

Proof assistants based on type theory present a general spe
i�
ation language to

de�ne mathemati
al notions and formulas. Moreover, it allows to
onstru
t algo-

rithms and proofs as �rst
lass
itizens. The advantages are that a user
an de�ne

his or her own stru
tures in a very
exible way, in
luding the (exe
utable) fun
tions

that are part of these stru
tures. Furthermore|and this is what distinguishes the

type theoreti
 approa
h to theorem proving from most of the other ones|presented

in this style, theorem proving
onsists of the (intera
tive)
onstru
tion of a proof-

term, whi
h
an be easily
he
ked independently. These issues will be dis
ussed in

more detail below. Again we want to point out that type theory presently does not

provide a fast tool for automated theorem proving: there is (in general) not mu
h

automation and the fa
t that expli
it proof-terms are
onstru
ted slows down the

implementation. Also as a resear
h tool proof-assistants are not yet mature. How-

ever, they provide a very high reliability, both be
ause of the expli
it proof-terms

and their well-understood meta-theory. Another good point is their expressive
ex-

ibility. For further reading on these issues, beyond the s
ope of this Chapter, we

advise [Luo 1994℄ or [Nordstr�om, Petersson and Smith 1990℄.

Another possible (future) appli
ation of ma
hine assisted theorem proving is the

�eld of
omputer mathemati
s. Right now,
omputers are used in various parts of

mathemati
s, notably for
omputer algebra and numeri
al methods. Ea
h of su
h

appli
ations requires the formalization of a spe
i�
 part of mathemati
s,
overing

the domain of the appli
ation. To have various systems intera
t with ea
h other and

with the user would require a formalization of substantial parts of mathemati
s.

2

There are systems, like JAPE [1997℄, Mathpert [1997℄ and Hyperproof, see [Barwise and

Et
hemendy 1995℄, that have mainly an edu
ational goal and are not geared towards proving

large mathemati
al theorems. However these systems are
omparable sin
e they want to prevent

their users from erroneous reasoning.

Proof-Assistants Using Dependent Type Systems 1153

For example the language OpenMath [1998℄ is aiming at providing an intermediate

level between su
h mathemati
al
omputer appli
ations. Rea
hing even further is

the idea, laid down the QED-manifesto (see [Bundy 1994℄), of
reating an ele
-

troni
 library of
ompletely formalized and
he
ked mathemati
al results, that one

an refer to, browse through, use and extend. For this it is ne
essary that the proof-

assistants be
ome mu
h more user-friendly. This would �rst of all require a very

general and
exible mathemati
al verna
ular by means of whi
h ordinary mathe-

mati
ians
an do the work of formalizing and intera
t with the library. We believe

that type theory
an provide su
h a language. As it stands, only the Mizar proje
t

(see [Mizar 1989℄) has
reated and maintains a large
olle
tion of mathemati
al

results. There is, however, no obvious way of transferring a result from the Mizar

theorem prover to another proof-assistant and also it is hard to �nd results in the

Mizar library.

2. Type-theoreti
 notions for proof
he
king

The type systems that are used as a foundational theory are in
uen
ed by several

people. We mention them here and name their important
ontribution. Brouwer

and Heyting for intuitionisti
 logi
; Russell for the notion of type and for the use

of higher order quanti�
ation to de�ne logi
al operations; Gentzen and Prawitz

for natural dedu
tion; Chur
h and Curry for typed lambda terms; Howard for the

propositions-as-types interpretation; de Bruijn for introdu
ing dependent types and

for type
onversion for Æ- and �-redu
tion; S
ott for indu
tive types; Martin-L�of

for the use of indu
tive types to de�ne the logi
al operations, thereby
ompleting

the propositions-as-types interpretation, and for type
onversion for iota-redu
tion;

Girard for higher order type systems and their normalization; Coquand and Huet

for building a type system that in
orporates all the previous notions.

Besides this we mention the following people. M
Carthy [1962℄ for his idea of

proof
he
king, in
luding symboli

omputing. He did not, however,
onsider repre-

senting proofs in natural dedu
tion form, nor did he have the use of higher types for

making appropriate abstra
tions. De Bruijn for his vigorous plea for proof
he
king

and revitalizing type systems for this purpose. Martin-L�of for his emphasis on reli-

ability (by requiring a
lear phenomenologi
al semanti
s) and
onsequent proposal

to restri
t to predi
ative type systems.

2.1. Proof
he
king mathemati
al statements

Mathemati
s is usually presented in an informal but pre
ise way. One speaks about

`informal rigor'. A typi
al result in mathemati
s is presented in the following form.

In situation � we have A.

Proof. p:

Informal mathemati
s

1154 Henk Barendregt and Herman Geuvers

Here � is an informally des
ribed set of assumptions and A is an informally given

statement. Also the proof p is presented informally. In logi
 the statements �; A be-

ome formal obje
ts and so does the notion of provability. Proofs still are presented

in an informal way, but theoreti
ally they
an be formalized as a derivation-tree

(following some pre
isely given set of rules).

� `

L

A

Proof. p:

Mathemati
s formalized in logi

It turns out that there are several natural ways to translate propositions as types

(for the moment one may think of these as `sets') and proofs as terms inhabiting

(`elements of') these types. The intuitive di�eren
e between sets and types is that

an obje
t
an be in several di�erent sets, but only in one type. Moreover, a type is a

rather `simple' kind of set: whether a term is of a
ertain type is usually de
idable,

due to the fa
t that `being of a type' is a synta
ti

riterion. In the
ontext of type

theory, membership of a term a to the type A is denoted by a:A rather than a2A.

Writing the translation of proposition A as [A℄ and of a proof p as [p℄ one has

` A using proof p , ` [p℄ : [A℄;

and hen
e

A is provable , [A℄ is inhabited:

Therefore the formalization of mathemati
s in type theory be
omes the following

(we do not write the [℄ but identify a proposition or proof with its translation).

� `

T

p : A

Mathemati
s formalized in type theory

Now all of �; A and p are formalized linguisti
 obje
ts. The statement � `

T

p : A

is equivalent to

Type

�

(p) = A

Proof
he
king

Here, Type (�) is a fun
tion that �nds for p a type in the given
ontext �. The

de
idability of type-
he
king follows from:

� Type

�

(p) generates a type of p in
ontext � or returns `false' (if p has no su
h

type).

� The equality = is de
idable.

The story is a little bit more
ompli
ated. First there are several possible logi
s

(e.g. �rst or se
ond order logi
; intuitionisti
 or
lassi
al logi
). This will give rise

to several type theories. Se
ondly the equality = in the last statement depends on

the type theory: it is a
onversion relation generated from a spe
i�
 set of elementary

redu
tions.

In the pra
ti
e of an intera
tive proof assistant based on type theory, the proof-

terms are generated intera
tively between the user and the proof development sys-

tem. The user types in so
alled ta
ti
s, guiding the proof development system to

Proof-Assistants Using Dependent Type Systems 1155

onstru
t a proof-term. At the end, this term is type
he
ked and the type is
om-

pared with the original goal. In
onne
tion to proof
he
king, de
idability problems

that we
an distinguish.

� `

T

M : A? TCP, Type Che
king Problem;

� `

T

M : ? TSP, Type Synthesis Problem;

� `

T

? : A TIP, Type Inhabitation Problem.

If we think of A as a formula andM as its proof, then the TCP asks to verify whether

an alleged proof M indeed proves A. TSP asks to verify whether the alleged proof M

is a proof at all. TIP asks to verify whether A is provable. It will be
lear that TIP

is unde
idable for any type theory that is of interest for formalizing mathemati
s

(i.e. for any T in whi
h enough �rst order predi
ate logi

an be done). Whether

TCP and TSP are de
idable depends in general on the rules of the type theory

and espe
ially on how mu
h type-information is added in the term M . In all of the

systems that we dis
uss, both TCP and TSP are de
idable. De
idability of TCP

and TSP
onforms with the intuition that, even though we may not be able to �nd

a proof of a given formula ourselves, we
an re
ognize a proof if presented to us.

Software (like our proof development system) is a priori not reliable, so why

would one believe a system that says it has veri�ed a proof? This is a good question.

The pioneer of
omputer veri�ed proofs, N.G. de Bruijn, has given a satisfa
tory

answer. We should take
are that the verifying program (the type
he
ker) is a

very small program; then this program
an be veri�ed by hand, giving the highest

possible reliability to the proof
he
ker. This is the so
alled de Bruijn
riterion.

A proof assistant satis�es the de Bruijn
riterion if it generates `proof-

obje
ts' (of some form) that
an be
he
ked by an `easy' algorithm.

In the late sixties de Bruijn made an impressive start with the te
hnology of proof

he
king. He designed formal systems for the eÆ
ient representation of proofs al-

lowing a verifying algorithm that
an be
oded in 200 lines of imperative
ode.

These systems were given the
olle
tive name Automath, see [Nederpelt, Geuvers

and de Vrijer 1994℄ for an up to date survey. As to the point of reliability, de

Bruijn has remarked that one
annot obtain absolute
ertainty. There always
an

be some kind of ele
troni
 failure that makes a proof-assistant a

ept a wrong proof

(a
tually this is very unlikely; there is a bigger
han
e that a
orre
t proof is not

a

epted). But formalized proofs provide results with the highest possible reliability.

The reliability of ma
hine
he
ked proofs
an be summarized as follows.

Proof-obje
ts may be large, possibly several Mb; but they are self-evident.

This means that a small program
an verify them; the program just follows

whether lo
ally the
orre
t steps are being made.

We
an summarize the type theoreti
 approa
h to intera
tive theorem proving as

follows.

1156 Henk Barendregt and Herman Geuvers

provability of formula A = `inhabitation' of the type A

proof
he
king = type
he
king

intera
tive theorem proving = intera
tive
onstru
tion of a term of

a given type.

So the de
idability of type
he
king is at the
ore of the type-theoreti
 approa
h to

theorem proving.

2.2. Propositions as types

It is possible to represent proofs in a di�erent and more eÆ
ient way as formal

terms. The intuition behind this is inspired by intuitionisti
 (
onstru
tive) logi
.

In this philosophy a proof of an impli
ation A � B is a method that transforms a

proof of A into a proof of B. A proof of A & B is a pair hp; qi su
h that p is a proof

of A and q one of B. A proof of A _ B is a pair hb; pi, where b is either 0 or 1 and

if b = 0, then p is a proof of A; if b = 1 then p is a proof of B. There is no proof of

?, the false proposition. A proof of 8x2X:Ax is a method p that transforms every

element a2A into a proof of Aa. Finally a proof of 9x2X:Ax is a pair ha; pi su
h

that a2A and p is a proof of Aa. Here, �;&;_;?;8 and 9 are the usual logi
al

onne
tives and quanti�ers. Negation is de�ned as :A = A � ?.

The propositions as types interpretation intuitively
an be de�ned as follows. A

senten
e A is interpreted as [A℄, de�ned as the
olle
tion of proofs of A. Then,

a

ording to the intuitionisti
 interpretation of the logi
al
onne
tives one has

[A � B℄ = [A℄! [B℄

[A & B℄ = [A℄� [B℄

[A _ B℄ = [A℄ [[B℄

[?℄ = ;

[8x2X:Ax℄ = �x:X:[Ax℄

[9x2X:Ax℄ = �x:X:[Ax℄

The operations !;� and [are respe
tively the formation of fun
tions spa
es,

Cartesian produ
ts and disjoint unions. Intuitively this means the following.

P ! Q = ff j 8p:P:f(p) : Qg;

P �Q = fhp; qi j p:P and q:Qg;

P [Q = fh0; pi j p:Pg [fh1; qi j q:Qg:

Proof-Assistants Using Dependent Type Systems 1157

Furthermore, ; is the empty type. Finally, the (Cartesian) produ
t and sum of a

family fPxg

x:A

of types are intuitively de�ned as

�x:A:Px = ff :(A! [

x:A

Px) j 8x:A (fx : Px)g

�x:A:Px = f(x; p) j x:A and p:(Px)g:

Now, a statement A is provable if [A℄ is inhabited, i.e. if there is a p su
h that p : A

holds in type theory.

2.3. Examples of proofs as terms

To get an idea of what proof-obje
ts really look like and how type
he
king works,

we look at an example: we
onstru
t a proof-obje
t and type-
he
k it. This example

should be understandable without any further knowledge of the typing rules: some

basi
 `programmers' intuition of types should suÆ
e.

The �rst non-trivial example in predi
ate logi
 is the proposition that a binary

antisymmetri
 relation is irre
exive.

Let X be a set and let R be a binary relation on X . Suppose

8x; y2X:Rxy � :Ryx:

Then 8x2X::Rxx.

We want to formalize this. In the type theory we have two universes , Set and

Prop. The idea is that a termX of type Set, notationX :Set, is a type that represents

a domain of the logi
. (In logi
 one also speaks of sorts or just sets.) A term A:Prop,

is a type that represents a proposition of the logi
, the idea being that A is identi�ed

with the type of its proofs. So A is provable if we
an �nd a term p : A.

Based on this idea, a predi
ate on X(: Set) is represented by a term P : X!Prop.

This
an be understood as follows.

t(:X) satis�es the predi
ate P i� the type Pt is inhabited,

i.e. there is a proof-term of type Pt. So the
olle
tion of predi
ates over X is

represented as X!Prop and similarly, the
olle
tion of binary relations over X is

represented as X!(X!Prop).

One of the basi
 operations of mathemati
s (even though it is not formally treated

in ordinary logi
!) is de�ning. This is formally
aptured in type theory via a kind

of `let'
onstru
tion. Let us give some de�nitions.

Rel := �X :Set:X!(X!Prop);

AntiSym := �X :Set:�R:(RelX):8x; y:X:(Rxy) � ((Ryx) � ?);

Irre
 := �X :Set:�R:(RelX):8x:X:(Rxx) � ?:

These de�nitions are formal
onstru
tions in type theory with a
omputational be-

havior, so-
alled Æ-redu
tion, by whi
h de�nitions are unfolded. Rel takes a domain

1158 Henk Barendregt and Herman Geuvers

X and returns the domain of binary relations on X :

(RelX) !

Æ

(�X :Set:X!(X!Prop))X

!

�

X!(X!Prop):

So by one de�nition unfolding and one �-step we �nd that (RelX) =

X!(X!Prop). Similarly, for X : Set and Q : X!(X!Prop),

(AntiSymXQ) = 8x; y:X:(Qxy) � ((Qyx) � ?);

(Irre
XQ) = 8x:X:(Qxx) � ?:

The type of AntiSym is �X :Set:(X!(X!Prop))!Prop, the type of operators that,

given a set X and a binary relation over this X , return a proposition. Here we

en
ounter a dependent type, i.e. a type of fun
tions f where the range-set depends

on the input value. See the previous Se
tion for a set-theoreti
 understanding.

The formula 8x; y:X:(Qxy) � ((Qyx) � ?) is translated as the dependent fun
tion

type

�x; y:X:(Qxy)!((Qyx)!?):

(For now, we take? to be some �xed
losed term of type Prop.) Given the (informal)

explanation of the �-type given before, we observe the following two rules for term-

onstru
tion related to the dependent fun
tions type.

� If F : �x:A:B and N : A, then FN : B[N=x℄, (B with N substituted for x).

� If M : B under the assumption x : A (where x may possibly o

ur in M or B),

then �x:A:M : �x:A:B

Let's now try to prove that anti-symmetry implies irre
exivity for binary relations

R. So, we try to �nd a proof-term of type

�X :Set:�R:(RelX)(AntiSymXR)!(Irre
XR):

We
laim that the term

�X :Set:�R:(RelX):�h:(AntiSymXR):�x:X:�q:(Rxx):hxxqq

is a term of this type. We have en
ountered a TCP; the veri�
ation of our
laim is

performed by the type-
he
king algorithm. Most type-
he
king algorithms work as

follows:

1. First solve the TSP

(
ompute a type C of the term

�X :Set:�R:(RelX):�h:(AntiSymXR):�x:X:�q:(Rxx):hxxqq),

2. Then
ompare the
omputed type with the given type

(
he
k if C =

�Æ

�X :Set:�R:(RelX)(AntiSymXR)!(Irre
XR)).

So a TCP is solved by solving a TSP and
he
king an equality. Note that this

method is only
omplete if types are unique up to equality: if M has type A and

type B, then A =

�Æ

B. For the algorithm to terminate we must assure that TSP

and equality
he
king are de
idable.

For our example we solve the TSP step by step; there are two main steps

Proof-Assistants Using Dependent Type Systems 1159

1. For a �-abstra
tion �x:X:M , we �rst
ompute the type of M , under the extra

ondition that x has type X . Say we �nd B as type for M . Then �x:X:M

re
eives the type �x:X:B.

2. For an appli
ation FN , we �rst
ompute the type of N . Say we �nd A as type

for N . Then we
ompute the type of F , say C. Now we
he
k whether C redu
es

to a term of the form �x:D:B. If so, we
he
k if D =

�Æ

C. If this is the
ase,

FN re
eives the type B[N=x℄.

If a
he
k fails, we return `false', meaning that the term has no type.

For our example term �X :Set:�R:(RelX):�h:(AntiSymXR):�x:X:�q:(Rxx):hxxqq,

we
ompute the type

�X :Set:�R:(RelX):�h:(AntiSymXR):�x:X:�q:(Rxx):C;

with C the type of hxxqq under the
onditions X :Set, R:(RelX), h:(AntiSymXR),

x:X and q:(Rxx). Now, h : (AntiSymXR), whi
h should be applied to x, of type

X . We redu
e (AntiSymXR) until we obtain �x; y:X:(Rxy)!((Ryx)!?). So, hx

re
eives the type �y:X:(Rxy)!((Ryx)!?). The term hx has a �-type with the

right domain (X), so it
an be applied to x, obtaining

hxx : (Rxx)!((Rxx)!?):

This again
an be applied to q (twi
e), obtaining hxxqq : ?, so TSP �nds as type

�X :Set:�R:(RelX):�h:(AntiSymXR):�x:X:�q:(Rxx):?:

We easily verify that this type is �Æ-
onvertible with the desired type and
on
lude

that indeed

�X :Set:�R:(RelX):�h:(AntiSymXR):�x:X:�q:(Rxx):hxxqq :

�X :Set:�R:(RelX):(AntiSymXR)!(Irre
XR):

By
onvention, 8 and � will often be used as synonymous, and similarly � and !.

>From this example, one
an get a rough idea of how type synthesis works:

the stru
ture of the term di
tates the form of the type that is synthesized. For

the type synthesis algorithm to terminate we need the
onvertibility =

�Æ

to be

de
idable. This is usually established by proving that �Æ-redu
tion is Normalizing

(every term M �Æ-redu
es to a normal form) and Con
uent (if M �Æ-redu
es to

both P

1

and P

2

, then there is a Q su
h that both P

1

and P

2

�Æ-redu
e to Q).

Then the question \M=

�Æ

N?"
an be de
ided by redu
ing both M and N to

normal form and
omparing these terms lexi
ally. It should be pointed out here

that
omparing normal forms is often a very ineÆ
ient pro
edure for
he
king

onvertibility. (See [Coquand 1991℄ for a di�erent approa
h to
he
king
onversion

in a dependent type theory.) Therefore, the
onvertibility
he
king algorithm will

redu
e only if ne
essary. (There is always a `worst
ase' where we really have to go all

the way to the normal forms.) In parti
ular, this means that de�nitions are unfolded

as little as possible: although the real
omplexity of =

�Æ

is in the �-redu
tions,

1160 Henk Barendregt and Herman Geuvers

the de�nitions `hide' most of the �-redexes. This
an be seen from the fa
t that

proof-terms are almost always in �-normal form (but
ertainly not in Æ-normal

form). See [COQ 1999℄ and [van Benthem Jutting, M
Kinna and Polla
k 1994℄

for more information on type-
he
king and
he
king
onvertibility in dependent

type theories. In Se
tion 3.2 we dis
uss in detail a type-
he
king algorithm for one

spe
i�
 type system.

2.4. Intermezzo: Logi
al frameworks

What has been des
ribed in the previous two Se
tions is sometimes
alled the di-

re
t en
oding of logi
 in type theory. The logi
al
onstru
tions (
onne
tives) ea
h

have a
ounterpart in the type theory, impli
ation, for example, is mirrored by the

arrow type in type theory. Moreover, the elimination and introdu
tion rules for a

onne
tive also have their
ounterpart in type theory (�-abstra
tion mirrors impli-

ation introdu
tion and appli
ation mirrors impli
ation elimination). In the rest of

this paper we restri
t ourselves to this dire
t en
oding. There is, however, a se
-

ond way of interpreting logi
 in type theory, whi
h is
alled the logi
al frameworks

en
oding or also the shallow en
oding. As the name already indi
ates, the type

theory is then used as a logi
al framework, a meta system for en
oding a spe
i�

logi
 one wants to work with. The en
oding of a logi
 L is done by
hoosing an

appropriate
ontext �

L

, in whi
h the language of L (in
luding the
onne
tives)

and the proof rules are de
lared. This
ontext is usually
alled a signature. In the

dire
t en
oding, a
ontext is used for de
laring variables (e.g. de
laring that the

variable x is of domain A) or for making assumptions (by de
laring z : ', for '

a proposition, we assume '). In logi
al frameworks, the
ontext is used also to

`de
lare' the logi
 itself. One of the reasons that (even rather simple) type systems

provide a very powerful logi
al framework is that type theory is very a

urate in

dealing with variables (binding, substitution, �-
onversion). Hen
e, when en
oding

a logi
, all issues dealing with variables
an be left to the type theory: the logi
al

framework is used as the underlying
al
ulus for substitution and binding. How

this works pre
isely is illustrated by three small examples. For further details on

logi
al frameworks we refer to [Pfenning 2001℄ (Chapter 17 of this Handbook) or to

[Harper, Honsell and Plotkin 1993, Pfenning 1991, de Bruijn 1980℄. It should also

be remarked here that, even though we do not treat the te
hni
al details of logi
al

frameworks based on type theory and the en
oding of logi
s in them, mu
h of our

dis
ussions also apply to these type systems, notably the issue of type
he
king. We

now re
apitulate the main di�eren
es between the two en
odings.

Dire
t en
oding Shallow en
oding

One type system � One logi
 One type system � Many logi
s

Logi
al rules � type theoreti
 rules Logi
al rules � Context de
larations

The en
oding of logi
s in a logi
al framework based on type theory will be shown

by giving three examples

Proof-Assistants Using Dependent Type Systems 1161

1. The f�g-fragment of minimal propositional logi
,

2. The f�;8g-fragment of minimal predi
ate logi
,

3. The untyped �-
al
ulus.

Minimal propositional logi

The formulas are built up from atomi
 ones using impli
ation (�) as only logi
al

operator. In order to translate propositions as types, one postulates the `signature':

prop : type (2.1)

imp : prop!prop!prop (2.2)

Now de�ne the en
oding of propositions [�℄ as follows.

[A � B℄ = imp[A℄[B℄:

Then one has for example [A � A℄ = imp[A℄[A℄ and [A � A � B℄ =

imp[A℄(imp[A℄[B℄). The type prop
an be seen as the type of `names' of propositions:

a term of type prop is not a proposition itself, be
ause it
an not be inhabited (i.e.

proved), as it is not a type. In order to state that e.g. [A � A℄ is valid, one intodu
es

the following map:

T : prop!type: (2.3)

The intended meaning of Tp is `the
olle
tion (type) of proofs of p', so T maps a

`name' of a proposition to the type of its proofs. Therefore it is natural to interpret

`p is valid' by `Tp is inhabited'. In order to show now that tautologies like A � A

are valid in this sense (after translation), one postulates

imp intr : �p; q : prop:(Tp!Tq)!T(imp p q); (2.4)

imp el : �p; q : prop:T(imp p q)!Tp!Tq: (2.5)

Then indeed the translation of e.g. A � A, whi
h is imp[A℄[A℄, be
omes valid:

imp intr[A℄[A℄(�x:T[A℄:x) : T(imp[A℄[A℄);

sin
e
learly (�x:T[A℄:x) : (T[A℄!T[A℄). Similarly one
an
onstru
t proofs for

other tautologies (e.g. (A � A � B) � A � B. In fa
t one
an show by an easy

indu
tion on derivations in the logi
 L that

`

PROP

A) �

PROP

; a

1

:prop; : : : ; a

n

:prop ` p : T[A℄; for some p:

Here fa

;

: : : ; a

n

g is the set of basi
 proposition symbols in A and �

PROP

is the

signature of our minimal propositional logi
 PROP, i.e. the set of de
larations (1-5).

Property (6) is
alled adequa
y or soundness of the en
oding. The
onverse of it,

faithfulness (or
ompleteness), is also valid, but more involved to prove.

1162 Henk Barendregt and Herman Geuvers

Minimal predi
ate logi

We
onsider the f�;8g-fragment of (one-sorted) predi
ate logi
. Suppose we have

a logi
al signature with one
onstant, one unary fun
tion and one binary relation.

This amounts to the following (�rst part of the) type theoreti
 signature.

prop : type; (2.6)

A : type; (2.7)

 : A; (2.8)

f : A!A; (2.9)

R : A!A!prop; (2.10)

imp : prop!prop!prop; (2.11)

imp intr : �p; q : prop:(Tp!Tq)!T(imp p q); (2.12)

imp el : �p; q : prop:T(imp p q)!Tp!Tq: (2.13)

This
overs the language and the impli
ational part (
opied from the logi
 PROP).

Now one has to en
ode 8, whi
h is done by observing that 8 takes a fun
tion from

A to prop, 8 : (A!prop)!prop. The introdu
tion and elimination rules for 8 are

then remarkably straightforward.

forall : (A!prop)!prop; (2.14)

forall intr : �P :A!prop:(�x:A:T(Px))!T(forallP); (2.15)

forall elim : �P :A!prop:T(forallP)!�x:A:T(Px): (2.16)

Now we translate universal quanti�
ation as follows.

[8x:A:Px℄ = forall(�x:A:[Px℄):

The proof of an impli
ation like

8z:A(8x; y:A:Rxy) � Rzz

is now mirrored by the proof-term

forall intr[℄(�z:A:imp intr[℄[℄(�h:T([8x; y:A:Rxy℄):forall elim[℄(forall elim[℄hz)));

where we have repla
ed { for readability { the instantiations of the �-type by [℄.

This term is of type

forall(�z:A:imp(forall(�x:A:(forall(�y:A:Rxy))))(Rzz)):

Again one
an prove adequa
y

`

PRED

') �

PRED

; x

1

:A; : : : ; x

n

:A ` p : T ['℄; for some p;

where fx

1

; : : : ; x

n

g is the set of free variables in ' and �

PRED

is the signature

onsisting of the de
larations (6{16). Faithfulness
an be proved as well.

Proof-Assistants Using Dependent Type Systems 1163

Untyped �-
al
ulus

Perhaps more unexpe
ted is that untyped �-
al
ulus
an be modeled in a rather

simple type theory (the same as for PRED and PROP). The needed signature

�

lambda

now is

D : type; (2.17)

app : D!(D!D); (2.18)

abs : (D!D)!D: (2.19)

Now every variable x in the �-
al
ulus is represented by the variable x : D in the

type system. The translation of untyped �-terms is de�ned as follows.

[x℄ = x;

[PQ℄ = app [P ℄ [Q℄;

[�x:P ℄ = abs (�x:D:[P ℄):

We now have to express that e.g. (�x:x)y = y, and then we have to prove that this

equality is valid. As to the statement of equalities, one de
lares a term

eq:D!D!type: (2.20)

The �-
al
ulus equation P = Q is now translated as the type eq [P ℄ [Q℄. The

validity of this equation is by de�nition equivalent to the inhabitation of this type.

In order to ensure this we need the following axioms.

re
 : �x:D:eq x x; (2.21)

sym : �x; y:D:eq x y!eq y x; (2.22)

trans : �x; y; z:D:eq x y!eq y z!eq x z; (2.23)

mon : �x; x

0

; z; z

0

:D:eqxx

0

!eqzz

0

!eq(app z x)(app z

0

x

0

); (2.24)

xi : �F;G:D!D:(�x:D:eq(Fx)(Gx))!eq(abs F)(abs G); (2.25)

beta : �F :D!D:�x:D:eq(app(abs F)x)(Fx): (2.26)

Now one
an proof the adequa
y

P =

�

Q) �

lambda

; x

1

:D; : : : ; x

n

:D ` p : eq [P ℄ [Q℄; for some p:

Here, x

1

; : : : ; x

n

is the list of free variables in PQ and �

lambda

is the signature for

untyped �-
al
ulus,
onsisting of de
larations (17{26). Again the opposite impli
a-

tion, faithfulness, also holds.

The three examples show that using type theories as logi
al framework is
exible,

but somewhat tiresome. Everything has to be spelled out. Of
ourse, in a
on
rete

implementation this
an be over
ome by having some of the arguments inferred

automati
ally. Note that for ea
h formalization the faithfulness has to be proved

separately.

1164 Henk Barendregt and Herman Geuvers

2.5. Fun
tions: algorithms versus graphs

In type theory there is a type of fun
tions A!B, forA and B types. Whi
h fun
tions

there are depends on the derivation rules that tell us how to
onstru
t fun
tions.

Usually (
ertainly for the systems in this paper) we see three ways of
onstru
ting

fun
tions.

� Axiomati
ally de
lare f : A!B for a new symbol f .

� Given that M : B in a
ontext
ontaining x : A (and no other dependen
ies on

x in the
ontext), we
onstru
t, using the �-rule,

�x:A:M : A!B:

� Via primitive re
ursion: given b : B and f : nat!B!B we
an
onstru
t

Re
 b f : nat!B:

These fun
tions also
ompute: there are redu
tion rules asso
iated to them, the �

and � rules:

(�x:A:M)N !

�

M [N=x℄;

Re
 b f 0 ! � b;

Re
 b f (S

+

x) ! � f x (Re
 b f x):

So, terms of type A!B denote algorithms, whose operational semanti
s is given by

the redu
tion rules. In this view we
an see a de
laration f : A!B as an `unknown'

algorithm.

At the same time the set-theoreti

on
ept of a fun
tion as a graph is also present

in type theory. If R : A!B!Prop (R is a binary relation over A and B) and we

have a proof-term of type 8x:A:9!y:B:Rxy, then we
an of
ourse view this R as

a fun
tion (graph) in the set-theoreti
 way. Note, however, that we have no way

of really talking about the `R-image' of a given a : A, be
ause we
an't give it

a name (like f(a)). In terms of formal logi
, the only way to use it is under an

9-elimination, where we have given the y a name { lo
ally { and we know it to be

unique. So the set-theoreti

on
ept of `fun
tion' doesn't give us an algorithm that

omputes. To remedy this situation one
an add a
onstant { Chur
h [1940℄ uses

the � for this { that extra
ts a `witness' from a predi
ate. In Chur
h's higher order

logi
, if P is a predi
ate over A (i.e. P : A!Prop in type-theoreti
al terms), then

�P : A and there is an axiom saying 8P :A!Prop(9!x:A:Px) ! P (�P). So, if there

is a unique element for whi
h P holds, then �P denotes this element, otherwise �P is

an arbitrary unspe
i�ed element. Obviously, the latter aspe
t of the � is not so ni
e,

espe
ially in a system with indu
tive types like nat, where we now will en
ounter

losed terms of type nat (e.g. �(� 0)) that are not in
onstru
tor form, i.e. equal to

S

n

0 for some n2IN.

In
onstru
tive systems, there is a di�erent way to obtain a `witness' from a proof

of an existential statement: if 8x:A9y:B:Rxy holds
onstru
tively, then there is a

Proof-Assistants Using Dependent Type Systems 1165

fun
tion (algorithm) that
omputes the y from the x. (This
ould almost be taken

as a de�nition of what it means for a logi
 to be
onstru
tive.)

If p is a
losed proof-term of type 8x:A9y:B:Rxy, then p
ontains a term

f :A!B and a proof-term of type 8x:A:Rx(fx).

Note that this is a meta-theoreti
 property of
onstru
tive systems: there is not

(ne
essarily) a fun
tion inside the system that extra
ts the f :A!B from the proof-

term p. In some systems, most notably the
onstru
tive type theories of Martin-L�of

([Martin-L�of 1984℄, [Nordstr�om et al. 1990℄), this property has been internalised

by interpreting an existential fomula 9y:B:' as a �-type �y:B:',
onsisting of

pairs hb; qi with b : B and q : '[b=x℄. So, the only way to
onstru
t a term of

the �-type �y:B:' is by giving a b : B for whi
h '[b=x℄ holds. From a term t :

�y:B:', one
an extra
t the two
omponents by proje
tions: �

1

t : B and �

2

t :

'[�

1

t=x℄. These are the �-introdu
tion and the �-elimination rules, respe
tively.

This implies that from a proof-term p : 8x:A9y:B:Rxy, we
an immediately extra
t

the fun
tion f : A!B de�ned by �x:A:�

1

(px) and we
an prove for this f that

8x:A:Rx(fx) holds. (The proof-term is �x:A:�

2

(px).) The extra
ted fun
tion also

has a proper
omputational behavior: a
losed proof-term p : 8x:A9y:B:Rxy has

the form �x:A:ht; qi; the fun
tion extra
ted from this p is (indeed) �x:A:t.

The internalisation of the (
onstru
tive) existen
e property via a �-type may

seem a neat way to solve the problem of `fun
tional-relations-not-being-fun
tions'.

However, every advantage has its disadvantage, in this
ase that we loose the imme-

diate
onne
tion between type theory and logi
. The reason is that with the �-type

we
an
onstru
t obje
ts that depend on proofs, a feature alien to ordinary logi
.

The simplest example is where we have a proof p of �x:nat:A, from whi
h we get

the obje
t �

1

p : nat. Ordinary logi
 is built up in stages, where

� in the �rst stage one de�nes what the domains and the terms of the domains

are;

� in the se
ond stage one de�nes the formulas (or one singles out the formulas

from the
olle
tion of terms);

� in the third stage one de�nes what a proof is.

This built-up makes it impossible for obje
ts to depend on proofs, for the simple

reason that the obje
ts were already there before we even thought about proofs.

Note that Chur
h' approa
h, using the � operator,
onforms with the
on
eption

of ordinary logi
 that we have just sket
hed: the obje
t �P does not depend on

the proof of 9!y:A:Px, but only on the obje
t P . Choosing a type theory in whi
h

obje
ts do not depend on proofs has some
lear advantages if we want to explain

and understand the system in terms of ordinary logi
. We
ome ba
k to this later in

2.9. Here we just remark that if a type theory is to be used as a basis for a theorem

prover, a
lear
onne
tion to some well-known standard logi
 is desirable.

We
on
lude that, if we look at fun
tions in type theory, there is a
lear dis-

tin
tion between algorithms (f : A!B) and graphs (R : A!B!Prop su
h that

8x:A:9!y(Rxy) holds). Even if we allow to extra
t from a proof of 8x:A:9!y(Rxy) an

f : A!B, there is still a
lear distin
tion: the proof is not the same as the fun
tion.

1166 Henk Barendregt and Herman Geuvers

2.6. Subje
t Redu
tion

The property of Subje
t Redu
tion (SR)
an be seen as the `sine qua non' of type

theory. It states that the set of typed terms of a given type A is
losed under

redu
tion. More formally: if M : A and M !! N , then N : A. For A representing a

data type, we
an understand this as saying that A is
losed under evaluation. The

rules for evaluation are �, Æ and � that we have already en
ountered. We illustrate

the use of redu
tion by an example.

Suppose we have as de�nition plus := �x; y:nat:Re
 x(�z:nat:S

+

)y: Then the

`value' of the expression plus 1 0 is
omputed by �rst unfolding the plus (one Æ-

redu
tion step), then performing two �-steps and then one �-step, to obtain 1. The

Subje
t Redu
tion property says that all expressions in this
omputation are of

type nat.

In a proof-term, redu
tion
aptures the well-known proof-theoreti
al notion of

ut-elimination. A
ut in a proof is a situation where an introdu
tion rule (I) for

a
onne
tive is immediately followed by an elimination rule (E) for that
onne
-

tive. It is then possible to make a `short
ut', eliminating the
onse
utive appli
a-

tion of the (I) rule and the (E) rule. (Note that this may not always make the

proof literally shorter.) Suppose we have the proof-term �h:A!A!B:�z:A:hzz :

(A!A!B)!(A!B),
orresponding to the standard natural dedu
tion proof of

this fa
t, ending with an introdu
tion rule. Now, if we also have a proof q : A!A!B

we
an eliminate the impli
ation obtaining (�h:A!A!B:�z:A:hzz)q : A!B. If we

do one �-step we eliminate the
ut obtaining the proof-term �z:A:qzz : A!B. So,

for proof-terms,

the Subje
t Redu
tion property states that
ut-elimination is
orre
t in

the sense that if p is a proof of A and we obtain p

0

by eliminating some

uts from p, then also p

0

is a proof of A.

In pra
ti
e, we seldom wish to perform �-redu
tion on proof-terms: on
e we have

proved a result (i.e. we have
onstru
ted a term p : A), we are mainly interested in

its statement (the type A) and the fa
t that there is some proof (inhabitant) of it.

The proof is only inspe
ted if we want to study its stru
ture (e.g. to try to reuse it

for proving similar statements). The a
tual situation is that on
e we have proved

a lemma, say we have
onstru
ted �h:A!A!B:�z:A:hzz : (A!A!B)!(A!B)

as above, we will save this lemma under a name, say lemma

1

, and we will only

refer to this `name' lemma

1

. In type theory, what happens is that we introdu
e a

de�nition lemma

1

:= �h:A!A!B:�z:A:hzz and we use lemma

1

as a
onstant of

type (A!A!B)!(A!B). It is a de�ned
onstant, but in implementations it will

be opaque, meaning that it will never be unfolded by Æ.

2.7. Conversion and Computation

We have already en
ountered three notions of
omputation: �-, �- and Æ-redu
tion.

For most type theories these redu
tion relations together are
on
uent and normal-

Proof-Assistants Using Dependent Type Systems 1167

izing, yielding a de
idable
onversion relation =

��Æ

on the set of well-typed terms.

This de
idability also makes the type
he
king algorithm work, see Se
tion 2.1. We

will look more
losely at the use of
onversion.

Suppose again we have the de�nition of plus as given above and we want to

prove 2 > 0 from p : 8x; y; z:nat:(x > (plusyz)) ! (x > z) and q : 2 > 1. Now

p 2 1 0 : (2 > (plus 1 0)) ! (2 > 0) and we want to apply this proof to q to obtain

the proof-term p 2 1 0 q : (2 > 0). The appli
ation
an only work if we �rst redu
e

the type (2 > (plus 1 0)) ! (2 > 0) to (2 > 1) ! (2 > 0), whi
h is done by one

Æ-redu
tion (unfolding the de�nition of plus), two �-steps and a �-step. We
an

depi
t this in a dedu
tion as follows.

p : 8x; y; z:nat:(x > (plusyz))! (x > z)

===============================

p 2 1 0 : (2 > (plus 1 0))! (2 > 0)

(
onv)

p 2 1 0 : (2 > 1)! (2 > 0) q : (2 > 1)

p 2 1 0 q : (2 > 0)

Here we see an appli
ation of the
onversion rule:

(
onv)

M : ' : Prop

M :

if ' =

��Æ

In the example above, M is p 2 1 0, ' is (2 > (plus 1 0)) ! (2 > 0) and is

(2 > 1) ! (2 > 0). The proof-term M is left un
hanged under the transition

from ' to . This poses no problem for the type
he
king algorithm, be
ause the

onversion =

��Æ

is de
idable. (So, if we are given a term M and we want to
he
k

whether M is of type we only have to
he
k whether M has a type and if so,

verify whether it's
onvertible with .) In
ase the equality in the side-
ondition

to the
onversion rule is not de
idable (whi
h is the situation in the type theory

of Nuprl, [Constable et al. 1986℄), the
onversion from type ' to would have to

leave a `tra
e' in the term M in order to make type
he
king de
idable. (The tra
e

ould be the redu
tion sequen
e from ' to .) One
ould also leave a tra
e of the

onversion in order to help the type
he
king algorithm, but this is usually not

done: it makes proof-terms unne
essarily
ompli
ated. Moreover we want to follow

the so-
alled Poin
ar�e prin
iple, whi
h
an be stated intuitively as follows.

There is a distin
tion between
omputations and proofs and
omputations

do not require a proof.

This implies, for example, that the equality of plus 1 0 and 1 does not require a

proof: plus 1 0 and 1 are
omputationally equal, so plus 1 0 = 1 follows trivially

(from the re
exivity of =). The power of the Poin
ar�e prin
iple depends on the

expressivity of the type theory in terms of algorithms that
an be written. Imagine

the situation where we have a
lass of formulas that
an be en
oded synta
ti
ally in

our type system. That is, we have a (indu
tive) type `Class-of-Form' together with

a `de
oding fun
tion' De
 : Class-of-Form!Prop su
h that every formula T : Prop

1168 Henk Barendregt and Herman Geuvers

in our
lass has a synta
ti
 representation t : Class-of-Form with De
 t =

��Æ

T .

Suppose that we
an write a de
ision algorithm in our type system, i.e. we have

a term Che
k : Class-of-Form!Prop su
h that if Che
k t =

��Æ

>, then t en
odes a

provable formula from our
lass. (> is the proposition with one unique proof, true.)

In more pre
ise type-theoreti
 terms: suppose we have a proof-term ok with

ok : 8t:Class-of-Form:(Che
k t)! (De
 t):

Then, to prove that a formula T : Prop from our
lass is provable, we only have to

�nd its en
oding t : Class-of-Form and then

ok t true : T:

if T is indeed provable (inhabited), whi
h
an be veri�ed by the type
he
ker. In this

example, the main task of the type
he
ker is to exe
ute the algorithm Che
k. This

use of the Poin
ar�e prin
iple shows how automated theorem proving
an be done

(safely) inside type theory. This te
hnique is usually
alled re
e
tion (re
e
ting

(part of) the language in itself). The origins date ba
k to Howe [1988℄. It has

been used su

esfully in the Coq system to write a ta
ti
 for de
iding equality in

ring-stru
tures. See also [Barthe, Ruys and Barendregt 1996℄ { where it is
alled

the `two-level approa
h' { and [Oostdijk and Geuvers 2001℄. To get really fast

automated theorem proving, it is advisable to use a spe
ial purpose automated

theorem prover, whi
h has the extra adavantage that one doesn't have to program

(and prove
orre
t!) the de
ision pro
edures oneself. If one uses re
e
tion (and the

Poin
ar�e prin
iple) one obtains a medium fast des
ision pro
edure but very reliable

proof-terms, whi
h
an be
he
ked independently.

2.8. Equality

Note that we have not in
luded �-redu
tion in the
onversion rule, but just �, Æ

and �. This may seem remarkable, be
ause for the untyped �-
al
ulus, many ni
e

results of �-redu
tion (like
on
uen
e) extend to ��. This is however not the
ase

for typed �-
al
ulus. The snag lies in the fa
t that our typed terms have a type

atta
hed to the bound variable in the �-abstra
tion (�x:A:M). This information

is
ru
ial for the type
he
king algorithm (without it, type
he
king in dependent

type theory is unde
idable [Dowek 1993℄), but it
ompli
ates the
ombination of �

and �. For example
onsider �x:A:(�y:B:y)x,

�x:A:(�y:B:y)x !

�

�x:A:x

�x:A:(�y:B:y)x !

�

�y:B:y

The terms on the right hand side have a
ommon redu
t only if A and B do.

This
ompli
ation of � was already known to the Automath
ommunity [Nederpelt

1973℄; Con
uen
e and Normalization for types systems from the Automath family

was proved by Daalen [1980℄. For a study and proof of the general situation see

Proof-Assistants Using Dependent Type Systems 1169

[Geuvers 1992℄, [Geuvers 1993℄. For a study of type theory with �-terms without

types atta
hed to the bound variables, see [Barthe and S�rensen 2000℄, where it is

shown that the type
he
king (notably its unde
idability) is not
ompletely hopeless.

In [Magnusson 1994℄, an implementation of a proof assistant based on su
h a type

theory (without types atta
hed to the bound variables) is des
ribed.

There are several other ways of extending the equality in the
onversion rule.

A prominent example is the extensional equality on fun
tions. In mathemati
s, if

f; g : A!B, the f and g would be
onsidered to be equal if they have the same

graph, i.e. f = g i� 8x:A(f x = g x). If we want to view the fun
tions not so mu
h

as algorithms, but more abstra
tly as graphs, the in
lusion of extensional equality

in the
onvertibility (as side
ondition in the
onversion rule) would be very natural.

If we want to do this, it is required that we introdu
e an equality judgment of the

form

� `M = N : A:

Before dis
ussing extensionality further, we �rst fo
us on the di�erent notions of

equality.

Equality as a judgment or as a type

As rules for deriving an equality judgment we would have �, Æ and � plus the normal

rules for making it an equivalen
e relation (re
exivity, symmetry, transitivity) plus

rules for making the equality
ompatible with the term-
onstru
tions. For example,

we would have

(�)

� ` �x:A:M : �x:C:B � ` N : C

� ` (�x:A:M)N =M [N=x℄ : B[N=x℄

(Æ)

�

1

;
 :=M : A;�

2

`
 : B

� `
 =M : B

(re
)

� `M : B

� `M =M : B

(trans)

� `M = N : B � ` N = P : B

� `M = P : B

(app-
omp)

� `M = N : �x:A:B � ` P = Q : A

� `MP = NQ : B[P=x℄

(abs-
omp)

�; x:A `M = N : B � ` A = C : D

� ` �x:A:M = �x:D:N : �x:A:B

The
onversion rule then takes the following form

(
onv)

� `M : A � ` A = B

� `M : B

1170 Henk Barendregt and Herman Geuvers

The addition of extensionality would amount to the rule

(ext)

� `M;N : A!B � ` p : �x:A:(Mx = Nx)

� `M = N : A!B

In the (ext) rule, the equality in the premise (=

B

)is an equality that
an be proved;

we
ould
all it a logi
al equality, but in type-theory it is usually
alled book equality,

as it is thought of as the user-de�ned equality in `the book'. (In Automath systems,

the notion `book' has a very pre
ise formal meaning; it
orresponds roughly to

the user-de�ned
ontext that represents some spe
i�
 theory.) The equality in the

on
lusion of the (ext) rule is the `internal equality' of the type system, usually

alled the de�nitional equality. This de�nitional equality
an be represented by

a judgment itself (as above), but often it is represented as a `
onvertibility side

ondition', like in 2.7. In the latter
ase, the
onvertibility A =

�Æ�

B is understood

as an equality on a set of `pseudo terms', in
luding the well-typed ones. Let us

summarize the di�erent equalities.

1. De�nitional equality. The `underlying equality' of the type system. Captures �,

Æ and, if present, also �. Can be judgemental (i.e. built into the formal system)

or a
onvertibility side
ondition.

2. Book equality. The `equality provable' inside the type system. If M =

A

N is

a book equality, then it is a type (M =

A

N : Prop for M;N : A) and we
an

try to �nd a proof-term inhabiting it (p : M =

A

N). Su
h an equality
an be

de�ned by the user.

Book equality
omes in various
avours, depending not only on the user's
hoi
e,

but also on the type theory, be
ause most type theories (and
ertainly their im-

plementations) have a `built-in' or `preferred' equality. We give a short overview of

some options. First of all, we want the following from a book-equality.

� The equality should be an equivalen
e relation on the
arrier type: for A : Set,

=

A

: A!(A!Prop) should be an equivalen
e relation.

� Substitution property. We want to repla
e `equal terms in a proposition'. In

type theoreti
al terminology, we want the following rule to be derivable (for

some term
onstru
tion S(;)).

� ` N : A(t) � ` e : t =

A

q

� ` S(N; e) : A(q)

To a
hieve this we distinguish the following three treatments of equality.

1. Leibniz equality, de�ned in higher order logi
. We want to say (following Leib-

niz) that t =

A

q if for all predi
ates P over A, P holds for t i� P holds for q.

In type theory:

t =

A

q := �P :A!Prop(P t)!(P q):

Note that this equality looks asymmetri
; however, it
an be shown that =

A

is

symmetri
.

Proof-Assistants Using Dependent Type Systems 1171

2. Indu
tively de�ned equality. Equality =

A

: A!(A!Prop) is the `smallest' re-

exive relation on A, i.e. the `smallest' relation R on A for whi
h 8x:(R x x)

holds. In type theoreti
 syntax this would look like

Indu
tive Eq

A

: A!A!Prop :=

Re
 : �x:A:(Eq x x):

This spe
i�
 form of de�nition, to be treated in more detail in Se
tion 3.8, says

that Re
 is the only
onstru
tor for the indu
tively de�ned relation Eq. This is

made pre
ise by an indu
tion prin
iple that
omes along with this de�nition.

3. Spe
ial type with spe
ial rules, roughly re
e
ting the indu
tivity of =

A

, as in 2.

In Martin-L�of's type theory (see [Martin-L�of 1984℄, [Nordstr�om et al. 1990℄),

equality is taken as a basi
 type
onstru
tor:

� ` A : Set

�; x; y:A ` (Id

A

x y) : Set

� `M : A

� ` (Re

A

M) : (Id

A

MM)

We don't give the full elimination (indu
tion) prin
iple, but only one of its

instan
es:

� ` P : A!Set � ` q : (Pa) � ` e : (Id

A

ab)

� ` (idre
 qe) : (Pb)

Note that in the third approa
h, the identity type (Id

A

ab) is of type Set, and not of

type Prop. This is not a pe
uliar aspe
t of Martin-L�of's approa
h to equality, but

a
onsequen
e of his approa
h to logi
 in general: there is no distin
tion between

sets and propositions; both `live' in the universe Set (and hen
e there is no universe

Prop).

There are some
lear di�eren
es, e.g. Leibniz equality requires impredi
ativity to

be de�nable, while the indu
tively de�ned equality requires indu
tive types. How-

ever, ea
h of these approa
hes to equality yields an equivalen
e relation for whi
h

the substitution property holds. Let us dis
uss one example where the di�erent

equalities diverge. Suppose we have de�ned (indu
tively) a map Fin : nat!Set su
h

that (Finn) represents the n-element type. Then one would like (Finn) and (Finm)

to be isomorphi
 if n and m are equal. So we want (at least) the following to be

derivable (for some some term
onstru
tion E(;)).

� ` t : (Finn) � ` e : n =

nat

m

� ` E(t; e) : (Finm)

For Leibniz equality ((1) above), we
an not
onstru
t su
h a term E(t; e), be
ause

it allows elimination `over Prop' only. For the indu
tive equality, it depends on the

elimination rules that are allowed in the type system (e.g. the type system of COQ

[1999℄ does not allow it). For Martin-L�of's type theory, the above rule is obviously

derivable, be
ause Prop and Set are the same universe, and one
an eliminate over

it.

1172 Henk Barendregt and Herman Geuvers

Extensionality versus intensionality

The de�nitional equality
an be intensional or extensional. In the �rst
ase, we

do not have a derivation rule (ext), and hen
e equality of fun
tions is equality of

algorithms. In the se
ond
ase, we have a derivation rule (ext), and hen
e equality

of fun
tions is equality of graphs.

It follows from our dis
ussion of TCP and TIP in 2.2 that the addition of the

rule (ext) renders TCP unde
idable. Viz. suppose H : (A!B)!Prop and we know

x : (H f); then x : (H g) i� there is a term of type �x:A:f x = g x. So for this

TCP to be solvable, we need to solve a TIP.

The �rst type systems by Martin-L�of (see [Martin-L�of 1984℄) were extensional.

Later he reje
ted extensionality, be
ause of the implied unde
idability of type
he
k-

ing. The intera
tive theorem prover Nuprl of Constable et al. [1986℄ is based on

extensional type theory. It is
lear that from a more
lassi
al view on mathemati
s

(identifying fun
tions with graphs in set-theoreti
 way), extensionality is very de-

sirable. Re
ently, work has been done (mainly by Hofmann [1994℄) showing how to

en
ode (or explain) extensional equality in an intensional type theory. The idea is

to translate an extensional type to a pair
onsisting of an intensional type and an

equivalen
e relation on it. Here, the equivalen
e realtion is a user-de�ned (book)

equality, built up a

ording to the type
onstru
tions from basi
 equalities, whi
h

are the indu
tively de�ned one for indu
tive types and an axiomati
ally de
lared

one for basi
 variable types.

Setoids

A pair [A;=℄ with A : Set, = : A!(A!Prop) su
h that = is an equivalen
e rela-

tion on A is
alled a setoid. In the translation of extensional types to setoids (in

intensional type theory) one has to also translate
ompound types, like A!B and

�x:A:B, this amounts to de�ning the fun
tion spa
e and the dependent fun
tion

spa
e between setoids. To give the idea we treat the fun
tion spa
e here. Given two

setoids [A;=

A

℄ and [B;=

B

℄, we de�ne the fun
tion spa
e setoid [A

s

!B;=

A

s

!B

℄ by

A

s

!B := �f :A!B:(�x; y:A:(x =

A

y)!((f x) =

B

(f y)));

f =

A

s

!B

g := �x:A:(�

1

f x) =

B

(�

1

g x):

Note that, f =

A

s

!B

g is equivalent to �x; y:A:(x =

A

y)!(�

1

f x) =

B

(�

1

g x),

be
ause we require f and g to preserve =

A

. Given A with equality =

A

and B with

equality =

B

, this is the `
anoni
al equality' on A!B. Note that the
arrier set A

s

!B

is not just A!B, but the `subset' of those f : A!B that respe
t the equalities R

A

and =

B

. Su
h an f is also
alled a setoid fun
tion from [A;=

A

℄ to [B;=

B

℄. In type

theory, su
h a subset (of setoid fun
tions) is represented by a �-type,
onsisting of

pairs hf; p; i with (in this
ase) f : A!B, p : �x; y:A:(x =

A

y)!((f x) =

B

(f y)).

The equivalen
e relation =

A

s

!B

ignores the proof-terms, so hf; pi =

A

s

!B

hf; qi holds

for all elements of the
arrier set A

s

!B.

The
anoni
al equality on A!B is the extensional equality of fun
tions. There-

fore, the interpretation of extensional type theory in intensional type theory is

Proof-Assistants Using Dependent Type Systems 1173

sound. (Of
ourse, the other type
onstru
tions still have to be veri�ed; see

[Hofmann 1994℄ for details.) It has been observed that setoids present a general

and pra
ti
al way of dealing with extensional equality and with mathemati
al
on-

stru
tions in general. If, in mathemati
s one speaks informally of a `set', we en
ode

this in type theory by a `setoid'. To show the
exibility we show how a quotient

and a subset
an be represented using setoids.

Given a setoid [A;=

A

℄ and an equivalen
e relation Q over this setoid, we de�ne

the quotient-setoid [A;=

A

℄=Q. Note that the fa
t that Q is an equivalen
e relation

over the setoid [A;=

A

℄ means that

� Q : A!(A!Prop) is an equivalen
e relation,

� =

A

� Q, i.e. 8x; y:A:(x =

A

y)!(Q x y).

We de�ne the quotient setoid [A;=

A

℄=Q simply as [A;Q℄. It is an easy exer
ise

to show how a setoid fun
tion f from [A;=

A

℄ to [B;=

B

℄ that respe
ts Q (i.e.

8x; y:A:(Q x y)!((f x) =

B

(f y))) indu
es a setoid fun
tion from [A;=

A

℄=Q to

[B;=

B

℄.

Given a setoid [A;=

A

℄ and a predi
ate P on A, we de�ne the sub-setoid [A;=

A

℄jP

as the pair [�x:A:(P x);=

A

jP ℄, where =

A

jP is =

A

restri
ted to P , i.e. for q; r :

�x:A:(P x),

q (=

A

jP) r := (�

1

q) =

A

(�

1

r):

In de�ning a subsetoid, we do not require the predi
ate P to respe
t the equality

=

A

. (That is, we do not require 8x; y:A(x = y ^ Px)!Py to hold.) So, in taking a

subsetoid we may remove elements from the =-equivalen
e
lasses. This is natural,

be
ause we are not interested in the elements of A, but in the =-equivalen
e
lasses.

Consider the following example where this appears rather naturally. Let A := int�

nat be the type of pairs of an integer and a natural number. To represent the

rationals we de�ne, for hx; pi; hy; qi:A,

hx; pi =

A

hy; qi := x(q + 1) = y(p+ 1):

Now
onsider the predi
ate P on A de�ned by

P hx; pi := g
d(x; p+ 1) = 1:

The subsetoid [A;=

A

℄jP is isomorphi
 to [A;=

A

℄ itself, but all equivalen
e
lasses

have been redu
ed to a one element set.

Subtypes and
oer
ions

When using setoids to formalize the notion of set, one en
ounters a typing problem.

Suppose we have the setoid [A;=

A

℄. Now, A : Set, but the setoid [A;=

A

℄ is not of

type Set, but of type �A:Set:A!(A!Prop) Hen
e we
an not de
lare a variable

x : [A;=

A

℄ (be
ause we
an only de
lare a variable x : B if B : Set or B : Prop).

Similarly, if a : A, then a is not of type [A;=

A

℄.

As a matter of fa
t, a setoid
onsists of a triple

[A;=

A

; eq rel proof℄ : �A:Set:�R:A!(A!Prop):(Is eq rel AR);

1174 Henk Barendregt and Herman Geuvers

where eq rel proof is a proof of (Is eq rel AR), stating that =

A

is an equivalen
e

relation over A. If we formalize the type of equivalen
e relations over a �xed A as

Eq Rel

A

:= �R:A!(A!Prop):(Is eq rel AR);

then, if R : Eq Rel

A

and a; a

0

: A, one would like to write Raa

0

, but this is not a

proposition. (The R is really a pair
onsisting of a binary relation and a proof.)

If we look at the formalization of subsets as subsetoids, we en
ounter a similar

problem. If [A;=

A

℄jP is a subsetoid of [A;=

A

℄, then an `element' of this subsetoid

is given by a pair ha; pi, where a : A and p : Pa, but this is not an `element' of

[A;=

A

℄. Indeed, if F : A!B and x : [A;=

A

℄jP , we
an not write Fx, as x itself is

not of type A.

The problem lies in the fa
t that our terms are very expli
it, whereas we would

like to be more impli
it. This situation is also en
ountered in mathemati
s, where

one de�nes, for example a `group' as a tuple A = hA; Æ; inv; ei, where A is a set,

Æ a binary operation, inv a unary operation and e an element of A, satisfying the

group axioms. Then one speaks of `elements of the group A', where one really

means `elements of the (
arrier) set A'. So, one (deliberately) mixes up the group

A and its
arrier set A. This is not sloppiness, but
onvenien
e: some of the details

are deliberately omitted, knowing that one
an �ll them in if ne
essary. This is

sometimes
alled `informal rigor'.

As was �rst noted by A
zel, one would like to have a similar me
hanism in type

theory, for being able to use informal rigor. A way to do this is by
reating a level

on top of the type theory, where one
an use more informal language, whi
h is

then translated to the formal level. This requires that the informal expressions are

expanded in su
h a way that they be
ome well-formed in the underlying formal

type theory. It turns out that in this expansion, the type synthesis algorithm is

very useful, as it generates the missing information. This
an be made formally

pre
ise by introdu
ing the notion of
oer
ion.

Some of the problemati
 examples that we gave above
an be seen as instan
es

of the sub-typing problem. In type theory as we have dis
ussed until now, there

is no notion of subtype: we
an not say that A � B, with as intended meaning

that if a : A then also a : B. It turns out that if one adds su
h a sub-typing

relation, the de
idability of type
he
king be
omes rather problemati
. Moreover,

there are various ways in whi
h the sub-typing relation
an be lifted along the type

onstru
tions (like � and !). On the other hand, some of the problems dis
ussed

above
an be solved using sub-typing:

If �A:Set:A!(A!Prop) � Set; then x : [A;=

A

℄
an be de
lared;

If Eq Rel

A

� A!(A!Prop); then R : Eq Rel

A

; a; a

0

: A ` Raa

0

: Prop;

If [A;=

A

℄jP � [A;=

A

℄; then F : A!B; a : [A;=

A

℄jP ` Fa : B:

Note, however that this does not solve all problems: if a : A, we
an not write

a : [A;=

A

℄ (the � needs to be reversed). Furthermore, the meaning of [A;=

A

℄jP �

[A;=

A

℄ is not so
lear, as both are not themselves types.

Proof-Assistants Using Dependent Type Systems 1175

A related but di�erent solution
an be found by making the in
lusions A � B

expli
it by a
oer
ion map. Then we have e.g.

�

1

: �A:Set:A!(A!Prop) � Set;

�

1

: Eq Rel

A

� A!(A!Prop):

We have no map from [A;=

A

℄jP to [A;=

A

℄, as these are not types. The maps here

are just de�nable terms and we
an repla
e the � by an !. But then we are ba
k

to the original formulations where we have to give all terms expli
itly everywhere.

The idea is to de
lare the
oer
ions as spe
ial maps, to be used by the type
he
ker

to type expressions. So the user does not have to insert these maps, but the type

he
ker will do so to
ompute a type. Essentially, there are three ways in whi
h a

type
he
king algorithm
an use a
oer
ion map.

 : A � Set

(or
 : A � Prop)

)

the de
laration x : A is expanded to x : (
A):

G : D

 : D � A!B

a : A

9

>

=

>

;

Ga is expanded to
Ga of type B:

F : A!B

 : D � A

a : D

9

>

=

>

;

F a is expanded to F (
 a) of type B:

It should also be possible to use multiple
oer
ion maps: if there are
oer
ions

1

: A � B and

2

: B � C, then there is a
oer
ion �x:A:

2

(

1

x) : A � C. So

the
oer
ions are really just de�nable �-terms that
an be
omposed. Of
ourse,

there should be only one
oer
ion between two types A and B and there should be

no
oer
ion from a type A to itself. This has to be
he
ked by the system at the

moment a
oer
ion is de
lared: it should go through the `
oer
ion graph' to verify

that it is still a tree. For more on
oer
ions see [Barthe 1996℄ or [Luo 1999℄. Another

approa
h to subtypes is to treat them as real subsets: if M : A and A is a subtype

of B, then M : B (without
oer
ion). We will not dis
uss this possibility here; for

a possible set of typing rules for subtypes we refer to [Zwanenburg 1999℄.

2.9. Conne
tion between logi
 and type theory

When doing formal proofs with the help of some
omputer system, one may wonder

what one is really proving. Or, to put it di�erently,

what is the semanti
s of the formal obje
ts that the system (and the user)

is dealing with?

1176 Henk Barendregt and Herman Geuvers

The systems that we are
on
erned with here are based on type theory, whi
h moves

the semanti
s-question from the level of the
omputer system to the level of the

formal system:

what do the expressions of the type theory mean?

Note that this only gives a satisfa
tory answer in
ase the
omputer system is a

faithful implementation of the type theory. The a
tual situation is as follows: the

intera
tive proof development system (where the proof-terms are
reated) is not

fully explained in terms of the type theory; however, the proof
he
ker (whi
h is

exe
uted after the proof-term has been
ompleted) is
ompletely faithful to the type

theory.

So, we will
on�ne ourselves to the question what the expressions of the type

theory mean. This question
an be dealt with in di�erent ways. First we
an look

at some (preferred) model, M, of a pie
e of mathemati
s and ask what the type

theoreti
al expressions mean in M. Se
ond, we
an look at some logi
 L and ask

what the meaning of the type theoreti
al expressions in L is. This results in the

following questions.

� What is the interpretation of the expressions in the model M and is there a

soundness and/or
ompleteness result? For A : Prop,

M j= A i� 9p(` p : A)?

� What is the interpretation of the expressions in the logi
 L and, for A : Prop,

is A provable in L i� A is inhabited?

`

L

A i� 9p(` p : A)?

As type theory is generi
, we are mainly interested in the se
ond question. The
on-

ne
tion with logi
 is even more relevant as type theory seeks to represent proofs as

terms; these proof-terms then better have some relation to a proof in logi
. Follow-

ing the Curry-Howard-de Bruijn propositions-as-types-embedding, formulas of logi

are interpreted as types, and at the same time, (natural dedu
tion) derivations are

interpreted as proof-terms. So, the answer to the question whether proof-terms in

type theory represent proofs is aÆrmative: proof-terms represents natural dedu
-

tion proofs. Of
ourse, the situation is more
ompli
ated: there are a lot of logi
s

and a lot of type theories. But if we
hoose, given our logi
 in natural dedu
tion

style L, an appropriate type theory S(L), we have the following

Soundness of the propositions-as-types embedding:

`

�

L

') � `

S(L)

[[�℄℄ : ';

where � denotes the dedu
tion of ' in L and [[�℄℄ its en
oding as a term in S(L). �

is a
ontext in whi
h the relevant variables are de
lared. In Se
tion 3.2, we des
ribe

the propositions-as-types embedding in more detail for higher order predi
ate logi

and its
orresponding type system.

Proof-Assistants Using Dependent Type Systems 1177

The other way around, we may wonder whether, if ' is inhabited in S(L), then

' is derivable in L (where ' : Prop).

Completeness of the propositions-as-types embedding:

� `

S(L)

M : '

?

) `

L

';

where � is again a
ontext in whi
h the relevant variables are de
lared. If we take

into a

ount that a term M : ' is intended to represent a natural dedu
tion proof,

we may strengthen our
ompleteness by requiring an embedding [℄ from proof-terms

to dedu
tions.

Strong Completeness of the propositions-as-types embedding:

� `

S(L)

M : '

?

) `

[M ℄

L

':

Completeness is not in all
ases so easy. Consider for example the Martin-L�of's

type theories, where there is no distin
tion between `sets' and 'propositions' { both

are of type Set. We have already dis
ussed this situation in Se
tion 2.5, where we

pointed out that in ordinary logi
 there is a sharp distin
tion between Prop and

Set from the very start. It is just the way logi
 is de�ned, in stages, where one

�rst de�nes the terms (in
luding the domains), then the formulas and then the

derivations. That means that for Martin-L�of's type theories, it is not so easy to

de�ne a mapping ba
k to the logi
 (in this
ase �rst order intuitionisti
 logi
). For

example, look at the
ontext

A:Set; a:A;P :A!Set; h:(Pa); Q:(Pa)!Set; f :(P a)!A:

If we try to interpret this in �rst order intuitionisti
 logi
, we
an view A as a

domain, a as an element of A, P as a predi
ate on A and h as the assumption that

(P a) holds (h is an assumed proof of (P a)). But then Q
an only be understood

as a predi
ate on the set of proofs of (P a)

3

, and f as a map from the proofs of

(P a) to the domain A. It will be
lear that there are many types X :Set in the type

theory that have no interpretation, neither as a `domain' nor as a `proposition',

in �rst order intuitionisti
 logi
. As a
onsequen
e, Strong Completeness fails for

Martin-L�of's type theory. It has been shown { but the proof is really intri
ate, see

[Swaen 1989℄ { that
ompleteness (the weaker variant) holds. However, if we extend

these type theories to higher order, we obtain either an in
onsistent system (if we

interpret the higher order 9 as a �-type, see [Coquand 1986℄), or (if we interpret the

higher order 9 impredi
atively) a system for whi
h
ompleteness fails with respe
t

to
onstru
tive higher order predi
ate logi
; see [Berardi 1990℄, [Geuvers 1993℄.

Summarizing, we observe the following possible points of view: (1) �rst order

predi
ate logi
 is in
omplete, as it does not allow obje
ts to depend on proofs,

whereas both are just `
onstru
tions'; (2) the idea of unifying the Prop and the Set

universe into one (Set) is wrong, as it
reates obje
ts depending on proofs, a feature

alien to ordinary logi
. We tend to have the se
ond view, although the situation is

3

A { proof-theoreti
ally { interesting predi
ate on proofs may be `to be
ut-free'. However, a

predi
ate
an not distinguish between �-equal terms, so this predi
ate
an not be expressed.

1178 Henk Barendregt and Herman Geuvers

not so easy, as
an be seen from the two examples below, where we apply the idea

of letting obje
ts depend on proofs.

With respe
t to the interpretation of the
onstru
tive existential quanti�er, there

are also two possible positions: (I) interpret 9 by the �-type, whi
h does not

work well for higher order logi
, (but higher-order logi
 is often
onsidered as non-

onstru
tive { be
ause impredi
ative { anyway); (II) interpret it in a di�erent way

(e.g. using a higher order en
oding or an indu
tive en
oding) that avoids the pro-

je
tions of proofs to obje
ts. Obviously, position (I) on the existential quanti�er

interpretation goes well with position (1) on the Prop-Set-issue above. Similarly

(II) goes well with (2) above.

Con
luding this dis
ussion on the pre
ise
hoi
e of the type theoreti
al rules

to interpret the logi
, we note the following. The build up of logi
 in stages, as

des
ribed before, is very mu
h related to a Platonist view of the world, where

the obje
ts are just there and logi
 is a means of deriving true properties

about these obje
ts.

So an obje
t is not a�e
ted by our reasoning about it. In the
onstru
tive view,

both obje
ts and proofs are
onstru
tions and the only obje
ts that exist

are the ones that
an be
onstru
ted.

Then a formula is identi�ed with the set of its proofs and there is a priori no

problem with
onstru
ting an element of one set (say the set nat) out of another

set (say a formula A). So, if we take the
onstru
tive view as a starting point, the

dependen
y of obje
ts on proofs is no problem. Note that this still leaves a
hoi
e

of really identifying the universe of sets and propositions (then A : Set for sets A

and A : Set for formulas A) or keeping the distin
tion (then A : Set for sets A and

A : Prop for formulas A). In this arti
le we start from type systems where obje
ts

do not depend on proofs.

If one
hooses a type theory that remains quite
losely to the original
onstru
tive

logi
 (in natural dedu
tion style), it is not so diÆ
ult (although laborious) to prove

Strong Completeness of the propositions-as-types embedding. See [Geuvers 1993℄

for some detailed proofs and examples.

Examples of obje
ts depending on proofs

In the dis
ussion above, we promoted the idea of not letting obje
ts depend on

proofs. Although this solves some of the
ompleteness questions in a relatively easy

way, this position is not so simple to be maintained. If one really starts formalizing

mathemati
s in type systems, obje
ts depending on proofs o

ur quite naturally.

Consider a A : Set that we want to show to be a �eld. That means that we have

to de�ne all kinds of obje
ts (0, 1) and fun
tions (mult; : : :) on A and to prove that

together they satisfy the �eld-axioms. Now what should the type of the re
ipro
al

be, given that the re
ipro
al of 0 is not de�ned? An option is to let re
ip : A!A

with the property that 8x:A:x 6= 0! multx(re
ip x) = 1. However, this is not very

Proof-Assistants Using Dependent Type Systems 1179

ni
e: re
ip0 should be unde�ned (whereas now it is an `unspe
i�ed' element of A).

In type theory there is a di�erent solution to this:
onstru
t

re
ip : (�x:A:x 6= 0)! A:

Then re
ip is only de�ned on the subset of elements that are non-zero: it re
eives

a pair ha; pi with a : A and p : a 6= 0 and returns re
ipha; pi : A. But how should

one understand the dependen
y of this obje
t (of type A) on the proof p in terms

of ordinary mathemati
s?

A possible solution is provided by the setoids approa
h (see also the previous

Se
tion). We take as the
arrier of a �eld a setoid [A;=

A

℄, so A : Set and =

A

is an

equivalen
e relation on A. The operations on the �eld are now taken to be setoid

fun
tions, so e.g. mult has to preserve the equality: if a =

A

a

0

and b =

A

b

0

, then

(multab) =

A

(multa

0

b

0

). Similarly, all the properties of �elds are now denoted using

the setoid equality =

A

instead of the general equality =. For the re
ipro
al, this

amounts to

re
ip : [A;=

A

℄j(�x:A:x 6=

A

0)! [A;=

A

℄;

a setoid fun
tion from the subsetoid of non-zeros to [A;=

A

℄ itself. In this
ase, re
ip

still takes a pair of an obje
t and a proof ha; pi, with a : A and p : a 6=

A

0, and

returns re
ipha; pi : A. The di�eren
e however is that re
ip now is a setoid fun
tion,

whi
h implies the following.

If a; a

0

: A with a =

A

a

0

; p : a 6=

A

0; q : a

0

6=

A

0; then re
ipha; pi =

A

re
ipha

0

; qi:

So, the value of re
ipha; pi does not depend on the a
tual p; the only thing to

as
ertain is that su
h a term exists (i.e. that a 6=

A

0 is true).

We
onje
ture that if the obje
ts that depend on proofs only o

ur in the
on-

text of setoids, as above, we
an make sense of these obje
ts in terms of standard

mathemati
s. The general prin
iple that for an obje
t t(p) : A, where p : ' denotes

a sub-term of t,

t(p) = t(q) for all p; q : '

is
alled the prin
iple of Proof Irrelevan
e. It states that the a
tual proof p of '

is irrelevant for the value of t(p). The setoid equality dis
ussed before obeys this

prin
iple, due to the way the setoid equality is promoted to subsetoids.

Another example of obje
ts depending on proofs o

urs for example in the de�-

nition of the absolute value in an ordered �eld. Suppose

p : �x:F:(x � 0 _ x � 0):

Then de�ne the absolute value fun
tion abs as follows.

abs := �x:F:
ase (p x) of

(inl)) x

(inr)) �x

This fun
tion distinguishes
ases a

ording to the value of px. If it is of the form

inl r (with r : x � 0), we take x; if it is of the form inr r (with r : x � 0), we take

1180 Henk Barendregt and Herman Geuvers

�x. Now, for a : F , the term (abs a)
ontains a proof-term p. We want to prove

that the values of abs do not depend on the a
tual value of p. In the
ontext of

setoids, this means that if we have two de�nitions of the absolute value fun
tion,

abs

p

and abs

q

, one de�ned using the proof p : �x:F:x � 0 _ x � 0 and one using

the proof q of the same type, we have to prove

�x; x

0

:F:(x =

F

x

0

)! (abs

p

x) =

F

(abs

q

x

0

):

Note that it may be the
ase that for some x, the value of p x is inl , while the

value of q x is inr . Then abs

p

x has value x and abs

q

x has value �x. One then has

to prove that in this overlapping
ase x =

F

�x, whi
h holds, as it only o

urs if

x =

F

0.

3. Type systems for proof
he
king

As we see it, there is not one `right' type system. The widely used theorem provers

that are based on type theory all have indu
tive types. But then still there are

other important parameters: the
hoi
e of allowed quanti�
ation and the
hoi
e

of redu
tion relations to be used in the type
onversion rule. We have already

mentioned the possibility of allowing impredi
ative quanti�
ation or not. Also, we

mentioned the �, Æ, � and � rules as possible redu
tion rules. A very powerful

extension of the redu
tion relation is obtained by adding a �xed-point-operator

Y :�A:Set:(A!A)!A satisfying

Yf!

Y

f(Yf):

With this addition the redu
tion of the type system does not satisfy strong nor-

malization and proof-obje
ts are potential ones. It has been shown in [Geuvers,

Poll and Zwanenburg 1999℄ that under mild
onditions the Y-rules are
onservative

over the ones without a Y . A similar extension of type theory with �xed points is

dis
ussed in [Audebaud 1991℄, where the �xed points are used to de�ne re
ursive

data types.

It is outside the s
ope of this arti
le to dis
uss the te
hni
al details of various

di�erent type systems. However, we do want to give some of the underlying theory,

to show the sound theoreti
al base of type theoreti
al theorem provers and to make

on
rete some of the issues that were dis
ussed in the previous Se
tions. Therefore

we start o� by
onsidering one spe
i�
 type system in detail. We de�ne a type

theory for higher order predi
ate logi
, �HOL and show how mathemati
al notions

an be interpreted in it. To make the latter pre
ise, we �rst look into higher order

predi
ate logi
 itself. Then we study the formal interpretation from higher order

predi
ate logi
 into �HOL, both as a motivation for the de�nition of �HOL and as

an illustration of how pre
isely mathemati
s is dealt with in type theory. Then we

de�ne a more general
lass of type systems. We dis
uss the essential properties and

how type systems are used to
reate an intera
tive theorem prover. For �HOL itself

we give|in detail|the type
he
king algorithm, whi
h is at the
ore of every type

theoreti
al theorem prover.

Proof-Assistants Using Dependent Type Systems 1181

By examples,we give some possible extensions of �HOL with other type
onstru
-

tions, like indu
tive types. The type systems that we dis
uss here all adhere to the

prin
iple that obje
ts do not depend on proofs and that there is a distin
tion be-

tween sets and formulas. This is mainly done to keep the `logi
al' explanation
lear;

see also the dis
ussion in Se
tion 2.9. We also give no formal treatment of de�ni-

tions here (the Æ-rule for unfolding de�nitions et
., see Se
tion 2.8). De�nitions are

very prominent in a theorem prover and we believe that (hen
e) de�nitions are an

important formal notion, but we want to restri
t to the main issues here. See [Severi

and Poll 1994℄ for the extension of type systems with a formal notion of de�nition.

3.1. Higher order predi
ate logi

If we want to do proof
he
king, we �rst have to make a
hoi
e for a logi
. There

are various possibilities: �rst order, se
ond order, higher order. It is also possible to

hoose between either
lassi
al or intuitionisti
 logi
, or between natural dedu
tion

and sequent
al
ulus.

For
he
king formal proofs in a system based on type theory, it turns out that a

al
ulus of intuitionisti
 natural dedu
tion is the most adequate. Although it is not

diÆ
ult to add
lassi
al reasoning, type theory is more tailored towards
onstru
tive

reasoning. Furthermore, typed �-terms are a faithful term representation of natural

dedu
tions. (In sequent
al
ulus there is mu
h more `bureau
ra
y'.) The
hoi
e

between �rst order, se
ond order or higher order
an be made by adapting the rules

of the type system; we will
ome to that later. So, to set our logi
al system we

hoose
onstru
tive higher order predi
ate logi
 in natural dedu
tion style.

3.1. Definition. The language of HOL is de�ned as follows.

1. The set of domains , D is de�ned by

D ::= B j
 jD!D;

where B represents a basi
 domain (we assume that there are
ountably many

basi
 domains) and
 represents the domain of propositions.

2. For every �2D, the set of terms of type �, Term

�

is indu
tively de�ned as

follows. (As usual we write t : � to denote that t is a term of type �.)

(a) the
onstants

�

1

;

�

2

; : : : are in Term

�

,

(b) the variables x

�

1

; x

�

2

; : : : are in Term

�

,

(
) if ' :
 and x

�

is a variable, then (8x

�

:') :
,

(d) if ' :
 and :
, then (')) :
,

(e) if M : �!� and N : �, then (MN) : � ,

(f) if M : � and x

�

is a variable, then (�x

�

:M) : �!� .

3. The set of terms of HOL, Term, is de�ned by Term := [

�2D

Term

�

.

4. The set of formulas of HOL, form , is de�ned by form := Term

.

1182 Henk Barendregt and Herman Geuvers

We adapt the well-known notions of free and bound variable, substitution, �-

redu
tion and �-
onversion to the terms of this system.

There are no `produ
t' domains (D � D) in our logi
. We present fun
tions of

higher arity by Currying: a binary fun
tion on D is represented as a term in the

domain D!(D!D). A predi
ate is represented as a fun
tion to
, following the

idea (probably due to Chur
h; it appears in [Chur
h 1940℄) that a predi
ate
an

be seen as a fun
tion that takes a value as input and returns a formula. So, a

binary relation over D is represented as a term in the domain D!(D!
). (If

R : D!(D!
) and t; q : D, then ((Rt)q) :
.) The logi
al
onne
tives are just

impli
ation and universal quanti�
ation. Due to the fa
t that we have higher order

universal quanti�
ation, we
an express all other quanti�ers using just) and 8.

See 3.6 for more details.

3.2. Note. We �x the following notational
onventions.

� Outside bra
kets are omitted.

� In the domains we omit the bra
kets by letting them asso
iate to the right, so

D!D!
 denotes D!(D!
).

� In terms we omit bra
kets by asso
iating them to the left, so Rtq denotes (Rt)q.

Note that in ordinary mathemati
s, this is usually written as R(t; q).

� If we write Rab, we always mean ((R a) b), so R applied to a, and then this

applied to b. If we want to introdu
e a name (as an abbreviation), we will use

the sans serif font, e.g. in writing trans as an abbreviation of the transitivity

property.

3.3. Example. Before giving the logi
al rules of HOL, we treat some examples of

terms and formulas that
an be written down in this language. Let the following be

given: domains IN and A, the relation-
onstant>: IN!IN!
, the relation-variables

R;Q : A!A!
 and the fun
tion-
onstants 0 : IN and S : IN!IN.

1. The predi
ate `being larger than 0' is expressed by the term �x

IN

:x > 0 : IN!
.

2. Indu
tion over IN
an be expressed by the (se
ond order) formula ind de�ned

as

8P

IN!

:(P0)) (8x

IN

:(Px) P (Sx)))) 8x

IN

:Px:

3. The formula trans(R), de�ned as 8x

A

y

A

z

A

(Rxy) Ryz) Rxz) denotes

the fa
t that R is transitive. So, trans : (A!A!
)!
. Note that we write

8x

A

y

A

z

A

as a shorthand for 8x

A

:8y

A

:8z

A

.

4. The term �: (A!A!
)!(A!A!
)!
 is de�ned by

R � Q := 8x

A

y

A

:(Rxy) Qxy):

(We informally use the in�x notation R � Q to denote �RQ.)

5. The term �x

A

y

A

:(8Q

A!A!

:(trans(Q)) (R � Q)) Qxy)) is of type

A!A!
. It denotes the transitive
losure of R. We use �x

A

y

A

as a shorthand

for �x

A

:�y

A

.

The derivation rules of HOL are given in a natural dedu
tion style.

Proof-Assistants Using Dependent Type Systems 1183

(axiom)

� ` '

if '2�

() -introdu
tion)

� [' `

� ` ')

() -elimination)

� ` ' � ` ')

� `

(8-introdu
tion)

� ` '

� ` 8x

�

:'

if x

�

=2 FV(�)

(8-elimination)

� ` 8x

�

:'

� ` '[t=x

�

℄

if t : �

(
onversion)

� ` '

� `

if ' =

�

Figure 1: Dedu
tion rules of HOL

3.4. Definition. The notion of provability , � ` ', for � a �nite set of formulas

(terms of type form) and ' a formula, is de�ned indu
tively by the rules in Fig. 1

3.5. Remark. The rule (
onversion) is an operationalization of the Poin
ar�e prin-

iple dis
ussed in Se
tion 2.8. The rule says that we don't want to distinguish

between �-equal propositions.

3.6. Example. A well-known fa
t about this logi
 is that the
onne
tives &;_;?;:

and 9 are de�nable in terms of) and 8. (This is due to [Russell 1903℄.) For

'; :
, de�ne

'& := 8x

:(')) x)) x;

' _ := 8x

:(') x)) () x)) x;

? := 8x

:x;

:' := ') ?;

9x

�

:' := 8z

:(8x

�

:(') z))) z:

It's not diÆ
ult to
he
k that the intuitionisti
 elimination and introdu
tion rules

for these
onne
tives are sound.

1184 Henk Barendregt and Herman Geuvers

Equality between terms of a �xed type � is de�nable by saying that two terms

are equal if they share the same properties. This equality is usually
alled Leibniz

equality and is de�ned by

t =

A

t

0

:= 8P

A!

:(Pt) Pt

0

); for t; t

0

: A:

It is not diÆ
ult to see that this equality is re
exive and transitive. It is also

symmetri
: LetQ be a predi
ate variable overA (soQ : A!
). Take �y

A

:Qy) Qt

for P . The dedu
tion is as follows. (At the left we apply the (8-elim) rule followed

by the (
onv) rule.)

� ` 8P

A!

(Pt) Pt

0

)

� ` (Qt) Qt)) (Qt

0

) Qt)

�; Qt ` Qt

� ` Qt) Qt

� ` Qt

0

) Qt

� ` 8Q

A!

:(Qt

0

) Qt)

Impredi
ativity In the de�nition of the
onne
tives (Example 3.6) and in the de�-

nition of equality, one makes use of impredi
ativity, that is

the possibility of
onstru
ting a term of a
ertain domain by abstra
ting

over that same domain or over a domain of the same `order'.

E.g. in Example 3.6 one
onstru
ts the proposition '& by abstra
ting (using

the universal quanti�er) over the
olle
tion of all propositions. Similarly in the

de�nition of Leibniz equality one de�nes a binary relation on A by abstra
ting over

the
olle
tion of all predi
ates on A. Both are domains of se
ond order. (The basi

domains are of �rst order.) The fa
t that this logi
 is higher order allows us to make

these impredi
ative
onstru
tions.

The notion of order was �rst introdu
ed by Russell (see [Whitehead and Russell

1910, 1927℄) in his rami�ed type theory, to prevent the paradoxes arising from a

naive
on
eption of the notion of set. Later it was noted by Ramsey [1925℄ that

the simple types suÆ
e to avoid the synta
ti
 paradoxes. The semanti
 paradoxes

an be avoided by making a
lear distin
tion between syntax (formal system) and

semanti
s (models). In [Whitehead and Russell 1910, 1927℄ this distin
tion was not

made and the rami�
ation was used to prevent the semanti
al paradoxes.

Impredi
ativity is often seen as `non-
onstru
tive': an impredi
ative de�nition

an not really be understood as a
onstru
tion, but only as a des
ription of an

obje
t whose existen
e we assume on other grounds. For example, the de�nition of

Leibniz equality des
ribes a binary relation by quantifying over the
olle
tion of all

predi
ates. This is not a
onstru
tion, as that would require that the
olle
tion of all

predi
ates had already been
onstru
ted, before we
onstru
t this binary relation.

Therefore, impredi
ativity is seen as alien to
onstru
tive logi
. We will still
all our

logi

onstru
tive, as it la
ks the double negation law (and hen
e it is not
lassi
al).

Moreover, the logi
 enjoys the disjun
tion property (if ` '_ , then ` ' or `) and

Proof-Assistants Using Dependent Type Systems 1185

the existen
e property (if ` 9x:A:', then ` '[a=x℄ for some a : A) that we know

from
onstru
tive logi
s. If we
hara
hterize a logi
 as
onstru
tive if it satis�es

the disjun
tion and the existen
e property, then our higher order predi
ate logi
 is

onstru
tive.

3.2. Higher order typed �-
al
ulus

In type theory, one interprets formulas and proofs via the well-known `propositions-

as-types' and `proofs-as-terms' embedding, originally due to Curry, Howard and de

Bruijn. (See [Howard 1980, de Bruijn 1970℄.) Under this interpretation, a formula is

viewed as the type of its proofs. It turns out that one
an de�ne a typed �-
al
ulus

�HOL that represents HOL in a very pre
ise way. What very pre
ise means will

not be de�ned here, but see e.g. [Barendregt 1992℄ or [Geuvers 1993℄. Here, we just

de�ne the system �HOL, using the intuitions of HOL. In order to get a better

understanding we note a few things.

1. The language of HOL as presented in 3.1 is a typed language already. This

language will be a part of �HOL

2. In �HOL, formulas like ') and 8x

A

:' will be
ome types. However, these

`propositional' types are not the same as the `set' types like e.g. IN. Hen
e

there will be two `universes': Prop,
ontaining the `propositional' types, and

Type,
ontaining the `set' types. Prop itself is a `set' type.

3. The dedu
tions are represented as typed �-terms. The dis
harging of hypotheses

is done by �-abstra
tion. The modus ponens rule is interpreted via appli
ation.

The derivable judgments of �HOL are of the form

� `M : A;

where � is a
ontext and M and A are terms. A
ontext is of the form

x

1

:A

1

; : : : ; x

n

:A

n

, where x

1

; : : : ; x

n

are variables and A

1

; : : : ; A

n

are terms. The

variables that o

ur in M and A are given a type in a
ontext. If, in the judgment

� ` M : A, the term A is a `propositional type' (i.e. � ` A : Prop), we view M as

a proof of A. If the term A is a `set type' (i.e. � ` A : Type), we view M as an

element of the set A.

3.7. Definition. The typed �-
al
ulus �HOL, representing higher order predi
ate

logi
, is de�ned as follows. The set of pseudo terms T is de�ned by

T ::= Prop jType jType

0

j V j (�V :T :T) j (�V :T :T) j T T :

Here, V is a set of variables. The set of sorts, S is fProp;Type;Type

0

g .

The typing rules, that sele
t the well-typed terms from the pseudo terms, are

given in Figure 2. Here, s ranges over the set of sorts S.

In the rules (var) and (weak) it is always assumed that the newly de
lared variable

is fresh, that is, it has not yet been de
lared in �. The equality in the
onversion

rule (
onv) is the �-equality on the set of pseudo terms T .

1186 Henk Barendregt and Herman Geuvers

(axiom) ` Prop : Type ` Type : Type

0

(var)

� ` A : s

�; x:A ` x : A

(weak)

� ` A : s � `M : C

�; x:A `M : C

(�)

� ` A : s

1

�; x:A ` B : s

2

� ` �x:A:B : s

2

if (s

1

; s

2

)2 f (Type;Type);

(Prop;Prop);

(Type;Prop) g

(�)

�; x:A `M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x℄

(
onv)

� `M : A � ` B : s

� `M : B

if A =

�

B

Figure 2: Typing rules for �HOL

We see that there is no distin
tion between types and terms in the sense that the

types are formed �rst and then the terms are formed using the types. A pseudo term

A is well-typed if there is a
ontext � and a pseudo term B su
h that � ` A : B

or � ` B : A is derivable. The set of well-typed terms of �HOL is denoted by

Term(�HOL). A
ontext � is well-formed if it appears in some derivable statement,

i.e. if there are some M and A su
h that � `M : A is derivable.

The only type-forming operator in this language is the �, whi
h
omes in three

avors, depending on the type of the domain (the A in �x:A:B) and the type of the

range (the B in �x:A:B). Intuitively, a �-type should be read as a set of fun
tions.

If we depi
t the o

urren
es of x in B expli
itly by writing B(x), the intuition is:

�x:A:B(x) �

Y

a2A

B(a) = ff j 8a2A[f a2B(a)℄g:

So, �x:A:B is the dependent fun
tion type of fun
tions taking a term of type A

as input and delivering a term of type B in whi
h x is repla
ed by the input. We

Proof-Assistants Using Dependent Type Systems 1187

therefore immediately re
over the ordinary fun
tion type as a spe
ial instan
e.

3.8. Remark. In
ase x =2 FV(B), we write A!B for �x:A:B. We
all this a

non-dependent fun
tion type.

As examples we list all instan
es of the �-type that
an be en
ountered in �HOL.

3.9. Example.

1. Using the
ombination (Type,Type), we
an form the fun
tion type A!B for

A;B:Type. This also
omprises the types of unary predi
ates and binary rela-

tions: A!Prop and A!A!Prop. Furthermore, it also extends to higher order

predi
ate types like (A!A!Prop)!Prop.

If � ` A : Type and �; x:A ` B : Type, then x =2 FV(B) in �HOL, so all types

formed by (Type,Type) are non-dependent fun
tion types.

2. Using (Prop,Prop), we
an form the propositional type '! for '; :Prop. This

is to be read as an impli
ational formula.

If � ` ' : Prop and �; x:' ` : Prop, then x =2 FV() in �HOL, so all types

formed by (Prop,Prop) are non-dependent types.

3. Using (Type,Prop), we
an form the dependent propositional type �x:A:'

for A:Type, ':Prop. This is to be read as a universally quanti�ed for-

mula. This quanti�
ation
an also range over higher order domains, like in

�P :A!A!Prop:'.

If � ` A : Type and �; x:A ` ' : Prop, then it
an happen that x2FV(') in

�HOL.

We do not de�ne formal interpretations from HOL to �HOL and ba
k. See e.g.

[Barendregt 1992℄ for details. Instead, we motivate the interpretation by some (sug-

gestive) examples. Then we dis
uss the main assets of the interpretation and moti-

vate its
ompleteness.

For a good reading of the examples below, we re
all the notational
onventions

introdu
ed in 3.2: Rab denotes ((R a) b), so R applied to a and that together

applied to b. Moreover, appli
ation binds strong, soRab!Rb
 denotes (Rab)!(Rb
)

and �x:Rab:M denotes �x:(Rab):M . As usual, arrow asso
iate to the right, so

A!A!Prop denotes A!(A!Prop).

3.10. Example.

1. IN:Type; 0:IN; >:IN!IN!Prop ` �x:IN:x>0 : IN!Prop. Here we see the use of

�-abstra
tion to de�ne predi
ates.

2. IN:Type; 0:IN; S:IN!IN ` �P :IN!Prop:(P0)!

(�x:IN:(Px!P (Sx)))!�x:IN:Px : Prop:

This is the formula for indu
tion written down in �HOL as a term of type Prop.

3. A:Type; R:A!A!Prop ` �x; y; z:A:Rxy!Ryz!Rxz : Prop. (Transitivity of

R)

4. A:Type ` �R;Q:A!A!Prop:�x; y:A:Rxy!Qxy :

(A!A!Prop)!(A!A!Prop)!Prop. (In
lusion of relations)

1188 Henk Barendregt and Herman Geuvers

5. A:Type ` �x; y:A:�P :A!Prop:(Px!Py) : A!A!Prop.

This is `Leibniz equality' and is usually denoted by =

A

, mentioning the domain

type expli
itly.

6. A:Type; x; y:A ` �r:(x =

A

y):�P :A!Prop:r(�z:A:Pz!Px)(�q:Px:q) :

(x =

A

y)!(y =

A

x). The proof of the fa
t that Leibniz equality is symmetri
.

Just as in HOL, it is possible to de�ne the ordinary
onne
tives &, _, ?, : and

9 in �HOL. For '; :Prop, de�ne

'& := ��:Prop:('! !�)!�;

' _ := ��:Prop:('!�)!(!�)!�;

? := ��:Prop:�;

:' := '!?;

9x:A:' := ��:Prop:(�x:A:('!�))!�:

To form these propositions (terms of type Prop), the rules (Prop,Prop) (for all the

arrows) and (Type,Prop) (for all the �-types) are used.

The logi
al rules for these
onne
tives
an be derived. For example, for '& ,

we have terms �

1

: ('&)!' and �

2

: ('&)! (the proje
tions) and a term

h�;�i : '! !('&) (the pairing
onstru
tor). One
an easily verify that if we

take

�

1

:= �p:('&):p'(�x:':�y: :x);

�

2

:= �p:('&):p (�x:':�y: :y);

h�;�i := �x:':�y: :��:Prop:�h:('! !�):hxy;

then these terms are of the right type. Hen
e the introdu
tion and elimination rules

for the
onne
tive & are de�nable. They also have the
orre
t redu
tion behavior,

orresponding to
ut-elimination in the logi
:

�

1

ht

1

; t

2

i !!

�

t

1

;

�

2

ht

1

; t

2

i !!

�

t

2

:

Similarly for the other
onne
tives, the introdu
tion and elimination rules
an be

de�ned.

Note that on the Type level, it is not possible to de�ne data types, like the produ
t

type. A produ
t type is equivalent to the
onjun
tion (&), but the
onstru
tion

above for &
an only be done at the Prop level.

Propositions-as-types for higher order predi
ate logi

The propositions-as-types interpretation from higher order predi
ate logi
 HOL

into �HOL maps a formula to a type and a proof (a derivation in natural dedu
tion)

Proof-Assistants Using Dependent Type Systems 1189

of a formula ' to a term (i.e. a typed �-term) of the type asso
iated with ':

�

7! [[�℄℄ : [()℄

where [(�)℄ denotes the interpretation of formulas as types and [[�℄℄ denotes the in-

terpretation of derivations as �-terms. In a derivation, we use expressions from

the logi
al language (e.g. to instantiate the 8), whi
h may
ontain free variables,

onstants and domains (e.g. in f(�x:A:
)). In type theory, in order to make sure

that all terms are well-typed, the basi
 items (like variables and domains) have

to be de
lared expli
itly in the
ontext. Also, a derivation will in general
ontain

non-dis
harged assumptions ('

1

; : : : ; '

n

) that will appear as variable de
larations

(z

1

: '

1

; : : : ; z

n

: '

n

) in the type theoreti

ontext. So the general pi
ture is this.

'

1

: : : '

n

�

7! �

�

; z

1

: '

1

; : : : ; z

n

: '

n

` [[�℄℄ : [()℄;

where �

�

is the
ontext that de
lares all domains,
onstants and free variables that

o

ur in �.

As an example we treat the derivation of irre
exivity from anti-symmetry for a

relation R. The derivation is as follows. (� denotes 8x

A

y

A

Rxy) Ryx) ?, �

0

denotes �; Rxx.)

�

0

` 8x

A

y

A

:Rxy) Ryx) ?

�

0

` 8y

A

:Rxy) Ryx) ?

�

0

` Rxx) Rxx) ? �

0

` Rxx

�

0

` Rxx) ? �

0

` Rxx

�

0

` ?

� ` Rxx) ?

� ` 8x

A

:Rxx) ?

This derivation is mapped to the typed �-term �x:A:�q:(Rxx):zxxqq. This term is

well-typed in the
ontext A : Type; R : A!A!Prop; z : �x; y:A:(Rxy!Ryx!?),

yielding the following judgment, derivable in �HOL if we take for � the
ontext � =

fA:Type; R:A!A!Prop; z:�x; y:A:(Rxy!Ryx!?)g.

� ` �x:A�q:(Rxx):zxxqq : (�x:A:Rxx!?):

The
ontext �

�

here
onsists of A : Type; R : (A!A!Prop).

1190 Henk Barendregt and Herman Geuvers

Now one may wonder if the type system �HOL is really faithful to higher order

predi
ate logi
 HOL. Put di�erently, one
an ask the question of
ompleteness:

given a proposition of HOL su
h that �

'

` M : [(')℄ in �HOL, is ' derivable in

HOL? It turns out that this is the
ase. Even though the number of rules of

�HOL is limited (where one rule serves several di�erent purposes, e.g. the (�)-rule

allows to form both fun
tions, proofs of an impli
ation and proofs of a universal

quanti�
ation) and there seems to be hardly any distin
tion in treatment between

the propositions (terms of type Prop) and the sets (terms of type Type), we
an

ompletely disambiguate the syntax. This is stated by the following Lemma.

3.11. Lemma (Disambiguation Lemma). Given a judgment � ` M : A in �HOL,

there is a �HOL-
ontext �

D

;�

L

;�

P

su
h that

1. �

D

;�

L

;�

P

is a permutation of �,

2. �

D

;�

L

;�

P

`M : A

3. �

D

onsists only of de
larations A : Type,

4. �

L

onsists only of de
larations x : A with �

D

` A : Type,

5. �

P

onsists only of de
larations z : ' with �

D

;�

L

` ' : Prop.

Moreover the following are the
ase.

� If � ` A : Type, then �

D

` A : Type and A � B

1

!� � �!B

n

(n � 1) and

�

D

` B

i

: Type for all i.

� If � `M : A where � ` A : Type, then �

D

;�

L

`M : A.

� If � ` �x:A:B : Prop where � ` A : Prop, then x =2 FV(B) (and so �x:A:B �

A!B, representing a real impli
ation).

The Disambiguation Lemma really states that �HOL represents HOL very

losely. Note that it says|among other things|that proof-terms (terms M with

M : ' for some ' : Prop) do not o

ur in obje
t-terms (terms t : A with for some

A : Type). Using the Lemma, one
an de�ne a mapping ba
k from �HOL to HOL

that
onstru
ts a derivation out of a proof-term. Let a with � ` : Prop be

given.

� `M : 7!

'

1

: : : '

n

[M ℄

Here the '

1

: : : '

n

are
omputed from �, using Lemma 3.11, in su
h a way that

�

P

= z

1

: '

1

; : : : ; z

n

: '

n

.

The mapping ba
k from �HOL to HOL proofs the
ompleteness of the

propositions-as-types interpretation: if � ` M : ', then ' is derivable in HOL

from the assumptions listed in �

P

.

Type Che
king

An important property of a type system is
omputability of types, i.e. given �

and M
ompute an A for whi
h � ` M : A holds, and if there is no su
h A,

Proof-Assistants Using Dependent Type Systems 1191

return `false'. This is usually
alled the type synthesis problem, TSP or the type

inferen
e problem. In this Se
tion, a type synthesis algorithm for the system �HOL

is given, whi
h is quite reminis
ent for type synthesis algorithms in general. Before

dis
ussing the details we brie
y re
apitulate some generalities on type synthesis

and type
he
king. See also Se
tions 2.2, 2.3.

A problem related to type synthesis is de
idability of typing, i.e. given �, M and

A, de
ide whether � `M : A holds. This is usually
alled the type
he
king problem,

TCP. Both problems are very mu
h related, be
ause in the pro
ess of type
he
king,

one has to solve type synthesis problems as well: for example when
he
king whether

MN : C, one has to infer a type for N , say A, and a type for M , say D, and then

to
he
k whether for some B, D =

�

�x:A:B with B[N=x℄ =

�

C. It should be

lear from this
ase that type synthesis and type
he
king are
losely entwined.

(See Se
tion 2.3 for an extended example.) The
ru
ial algorithm to
onstru
t is an

algorithm Type (�), that takes a
ontext � and a term M su
h that

Type

�

(M) =

�

A , � `M : A:

Hen
e, one will need an algorithm for �-equality
he
king to de
ide typing.

There are two important properties that solve the de
idability of �-equality
he
k-

ing: Con
uen
e for �-redu
tion and Strong Normalization for �-redu
tion. (This is

a well-known fa
t from rewriting: if a rewriting relation is
on
uent and strongly

normalizing, then the indu
ed equality relation is de
idable: to determineM =

�

N ,

one redu
es M and N to normal form and
ompares these normal forms.)

3.12. Proposition (Con
uen
e). On the set of pseudo terms T , �-redu
tion is

on
uent i.e. for all M;N

1

; N

2

2T , if M !!

�

N

1

and M !!

�

N

2

, then there exists

a P2T su
h that N

1

!!

�

P and N

2

!!

�

P .

Con
uen
e for �
an be proved by following the well-known proofs for
on
u-

en
e for the untyped �-
al
ulus. Another important property of �HOL is Subje
t

Redu
tion.

3.13. Proposition (Subje
t Redu
tion). The set of well-typed terms of a given

type is
losed under redu
tion. That is, for � a
ontext and M;N , A in T , if

� `M : A and M !!

�

N , then � ` N : A.

See Se
tion 2.6 for a dis
ussion on Subje
t Redu
tion and Se
tion 3.3 for a

list of properties for �HOL (among whi
h Subje
t Redu
tion). The following is a

onsequen
e of
on
uen
e on T and Subje
t Redu
tion.

3.14. Corollary (Con
uen
e on well-typed terms). On the set of well-typed terms

of �HOL, �-redu
tion is
on
uent. That is, for M well-typed, if M !!

�

N

1

and

M !!

�

N

2

, then there exists a well-typed term P su
h that N

1

!!

�

P and N

2

!!

�

P .

Moreover, N

1

and N

2

are well-typed.

1192 Henk Barendregt and Herman Geuvers

3.15. Proposition (Strong Normalization). For any termM well-typed in �HOL,

there are no in�nite �-redu
tion paths starting from M . (Put di�erently: all redu
-

tions starting from a well-typed term terminate.)

The proof of this Proposition is rather involved. See [Barendregt 1992℄ for refer-

en
es to proofs.

The type synthesis algorithm Type (�) attempts to apply the typing rules in the

reverse dire
tion. For example,
omputing Type

�

(�x:A:M) is done by
omputing

Type

�;x:A

(M), and if this yields B,
omputing Type

�

(�x:A:B). If this returns a

s2fProp;Typeg, then we return �x:A:B as result of Type

�

(�x:A:M). So, we read

the (�)-rule in the reverse dire
tion.

There is a potential problem in this way of
onstru
ting the Type (�) algorithm

by reversing the rules: a
on
lusion � ` �x:A:M : C need not have been obtained

from the (�)-rule. (It
ould also be a
on
lusion of the (weak)-rule or the (
onv)-

rule. This situation is usually referred to as the `non-syntax-dire
tedness' of the

derivation rules. A set of derivation rules is
alled syntax-dire
ted if, given a
ontext

� and a term M , at most one rule
an have as
on
lusion � ` M : C (for some

C). See [Polla
k 1995℄ and [van Benthem Jutting et al. 1994℄ for more on syntax-

dire
ted sets of rules for type systems and their advantages. We will treat the

(potential) problem of non-syntax-dire
tedness later when we dis
uss the soundness

and
ompleteness of the Type (�) algorithm.

Another part of the algorithm that needs some spe
ial attention is the variable

ase. The result of Type

�

(x) should be A if x:A o

urs in � and `false' otherwise.

But, if � is not a well-formed
ontext, we want to return `false' as well! So we have to

he
k the well-formedness of �. A type synthesis algorithm
onsists of two mutually

dependent re
ursive fun
tions: Type (�), the real type synthesis algorithm, and the

ontext
he
king algorithm Ok(�). The latter takes as input a
ontext and returns

`true' if and only if the
ontext is well-formed (and `false' otherwise).

3.16. Definition. We de�ne the algorithms Ok(�), taking a
ontext and returning

`true' or `false', and Type (�), taking a
ontext and a term and returning a term

or `false', as follows. Here x denotes a variable.

Ok(<>) = `true' (the empty
ontext);

Ok(�; x:A) = Type

�

(A)2fProp;Type;Type

0

g;

Type

�

(x) = if Ok(�) and x:A2�then A else `false';

Type

�

(Prop) = if Ok(�)then Type else `false';

Type

�

(Type) = if Ok(�)then Type

0

else `false';

Type

�

(Type

0

) = `false';

Type

�

(MN) = if Type

�

(M) = C and Type

�

(N) = D

then if C !!

�

�x:A:B and A =

�

D

then B[N=x℄ else `false'

else `false';

Proof-Assistants Using Dependent Type Systems 1193

Type

�

(�x:A:M) = if Type

�;x:A

(M) = B

then if Type

�

(�x:A:B)2fProp;Type;Type

0

g

then �x:A:B else `false'

else `false';

Type

�

(�x:A:B) = if Type

�

(A) = s

1

and Type

�;x:A

(B) = s

2

and s

1

; s

2

2fProp;Type;Type

0

g

then if (s

1

; s

2

)2f (Type;Type); (Prop;Prop);

(Type;Prop) g

then s

2

else `false'

else `false';

The intuition behind the type synthesis algorithm being
lear, we want to prove

that it is sound and
omplete. This means proving the following.

3.17. Definition. The type synthesis algorithm Type (�) is sound if for all � and

M ,

Type

�

(M) = A) � `M : A:

The type synthesis algorithm Type (�) is
omplete if for all �, M and A,

� `M : A) Type

�

(M) =

�

A:

Note that
ompleteness of Type (�) implies that if Type

�

(M) = `false', then

M is not typable in �. The de�nition of
ompleteness only makes sense if we have

uniqueness of types:

If � `M : A and � `M : B; then A =

�

B:

This property holds for �HOL. Without uniqueness of types, we would have to let

Type (�) generate a set of possible types, for otherwise it
ould happen that a valid

type A for M in � is not
omputed (up to =

�

) by Type

�

(M).

Besides soundness and
ompleteness, we want to know that Type (�) terminates

on all inputs, i.e. it should be a total fun
tion. (A sound and
omplete algorithm

may still not terminate on some non-typable term.) We will deal with soundness,

termination and
ompleteness now.

3.18. Proposition (Soundness of Type (�)). The type synthesis algorithm and

the
ontext
he
king algorithm, Type (�) and Ok(�), are sound, i.e. if Type

�

(M) =

A, then � `M : A and if Ok(�) = `true', then � is well-formed.

The proof of soundness of Type (�) and Ok(�) is simultaneously, by indu
tion on

the number of evaluation-steps required for the algorithm to terminate. (Soundness

states a property only for those inputs for whi
h the algorithm terminates.) The

1194 Henk Barendregt and Herman Geuvers

only interesting
ase is Type

�

(MN), where one has to use the Subje
t Redu
tion

property and Con
uen
e.

The termination of Type (�) and Ok(�) should also be proved simultaneously, by

devising a measure that de
reases with every re
ursive
all. We de�ne the measure

m for a
ontext � or a pair of a
ontext � and a term M as follows.

m(�) := #fsymbols in �g;

m(�;M) := #fsymbols in �;Mg:

Now, m de
reases for every re
ursive
all of Type (�) or Ok(�), ex
ept for the
ase

of Type

�

(�x:A:M), where m(�;�x:A:B) may be larger than m(�; �x:A:M) (if B

is longer thenM). So, the only problem with termination is in the side-
ondition of

the (�)-rule, where we have to verify whether �x:A:B is a well-typed type. This is

a situation en
ountered very generally in type synthesis algorithms for dependent

type theory. See [Polla
k 1995℄ and [Severi 1998℄ for some general solutions to this

problem and a dis
ussion. In the
ase of �HOL, there is a rather easy way out: we

an repla
e the side-
ondition � ` �x:A:B : s in the (�)-rule by an equivalent but

simpler one.

3.19. Lemma. Let �; x:A be a
ontext and B be a term. Suppose �; x:A ` M : B

for some M . Then the following holds.

� ` �x:A:B : s , if B � C

0

!� � �!C

n

for some n2IN with

(C

n

� Prop _ (C

n

� z for some zwith (z:Type)2�))

then � ` A : Type

else if B 6� Type;Type

0

then � ` A : Prop

When applying the type synthesis algorithm to a �-abstra
tion, we will repla
e

the part ` if Type

�

(�x:A:B)2fProp;Type;Type

0

g' by the equivalent
ondition given

in the Lemma.

3.20. Definition. The new type synthesis algorithm Type (�) and the
ontext

he
king algorithm Ok(�) are de�ned by repla
ing in the
ase Type

�

(�x:A:B) the

part

if Type

�

(�x:A:B)2fProp;Type;Type

0

g by

if B � C

0

!� � �!C

n

for some n2INwith

(C

n

� Prop _ (C

n

� z for some zwith z:Type2�))

then Type

�

(A) = Type

else if B 6� Type;Type

0

then Type

�

(A) = Prop

Note that the algorithm only veri�es this
ondition when the premise in the

Lemma is satis�ed. The new
ondition may look rather
ompli
ated, but it is de-

idable and now all the re
ursive
alls are done to inputs with a smallest measure.

We remark that, this slight variation of the type synthesis algorithm is still sound.

Proof-Assistants Using Dependent Type Systems 1195

To establish termination, we have to verify that all side
onditions are de
idable.

Here the only work is in the appli
ation
ase: in
omputing Type

�

(MN), we have

to
he
k a �-equality and we have to
he
k whether a term redu
es to a �-type.

In general,
he
king �-equality on pseudo terms is not de
idable be
ause we have

the full expressive power of the untyped �-
al
ulus. However, due to the soundness

of the algorithm (Proposition 3.18), we know that the intermediate results in the

omputation of Type

�

(MN), C and D, are typable terms. Now, �-equality is de-

idable for typable terms, due to Strong Normalization and Con
uen
e. Hen
e all

side
onditions are de
idable. To make the algorithm fully deterministi
 we sear
h

the �x:A:B (in C !!

�

�x:A:B) by
omputing the weak-head-normal-form (whi
h

exists, due to Strong Normalization).

3.21. Proposition. The algorithms Type (�) and Ok(�) terminate on all inputs.

Now we
ome to the
ompleteness of the algorithms. Usually this is proved by

de�ning a di�erent set of derivation rules (1) that is equivalent to the original one

(i.e. they have the same set of derivable statements � ` M : A), (2) for whi
h the

ompleteness of the algorithm are easy to prove. In order to a
hieve (2), we de�ne

a derivation system that is
lose to the type synthesis algorithm.

3.22. Definition. The modi�ed derivation rules of �HOL are to derive two forms

of judgment: � `

t

M : A and � `

t

ok. They are given by the original rules of

�HOL, ex
ept that

� The rules (ax), (weak), (var) and (
onv) are removed,

� The following rules are added.

(empty) hi `

t

ok

(proj)

� `

t

ok

� `

t

x : A

if (x:A)2�

(sort)

� `

t

ok

� `

t

Prop : Type

� `

t

ok

� `

t

Type : Type

0

(
ontext)

� `

t

A : s

�; x:A `

t

ok

� The (app) rule is repla
ed by

(app)

� `

t

M : C � `

t

N : D

� `

t

MN : B[N=x℄

if C !!

�

�x:A:B and D =

�

A

We state the following properties for the modi�ed derivation rules.

1196 Henk Barendregt and Herman Geuvers

3.23. Proposition. 1. Soundness of the modi�ed rules

� `

t

M : A) � `M : A

2. Completeness of the modi�ed rules

� `M : A) 9A

0

[A

0

=

�

A & � `M : A

0

℄

3. Completeness of the modi�ed rules w.r.t Type (�) and Ok(�)

� `

t

M : A) Type

�

(M) =

�

A;

� `

t

ok) Ok(�) = `true':

All
ases in the proof of this Proposition are by an easy indu
tion.

3.3. Pure Type Systems

The system �HOL is just an instan
e of a general
lass of typed �
al
uli, the so-

alled `Pure Type Systems' or PTSs. These were �rst introdu
ed by Berardi [1988℄

and Terlouw [1989℄, under di�erent names and with slightly di�erent de�nitions,

as a generalization of the so
alled �-
ube, see [Barendregt 1992℄. The reason for

de�ning the
lass of PTSs is that many known systems are (or better:
an be seen

as) PTSs. This makes it fruitful to study the general properties of PTSs in order

to obtain many spe
i�
 results for spe
i�
 systems as immediate instan
es. In what

follows we will mention a number of these properties. Another advantage is that

the PTSs
an be used as a framework for
omparing type systems and for de�ning

translations between them.

Pure Type Systems are an immediate generalization of �HOL if we just note the

following parameters in the de�nition of �HOL.

� The set of `sorts' S
an be varied. (In �HOL: Prop;Type;Type

0

.)

� The relation between the sorts
an be varied. (In �HOL: f Type : Type

0

;Prop :

Typeg.)

� The
ombinations of sorts for whi
h we allow the
onstru
tion of �-types
an

be varied. (In �HOL: (Type;Type); (Prop;Prop); (Type;Prop).)

3.24. Definition. For S a set (the set of sorts), A � S � S (the set of ax-

ioms)and R � S � S � S (the set of rules), the Pure Type System �(S;A;R)

is the typed �-
al
ulus with the dedu
tion rules given in Figure 3. If s

2

� s

3

in

a triple (s

1

; s

2

; s

3

)2R, we write (s

1

; s

2

)2R. In the derivation rules, the expressions

are taken from the set of pseudo terms T de�ned by

T ::= S j V j (�V :T :T) j (�V :T :T) j T T :

The pseudo term A is well-typed if there is a
ontext � and a pseudo term B su
h

that � ` A : B or � ` B : A is derivable. The set of well-typed terms of �(S;A;R)

is denoted by Term(�(S;A;R)).

Proof-Assistants Using Dependent Type Systems 1197

(sort) ` s

1

: s

2

if (s

1

; s

2

)2A

(var)

� ` A : s

�; x:A ` x : A

if x =2 �

(weak)

� ` A : s � `M : C

�; x:A `M : C

if x =2 �

(�)

� ` A : s

1

�; x:A ` B : s

2

� ` �x:A:B : s

3

if (s

1

; s

2

; s

3

)2R

(�)

�; x:A `M : B � ` �x:A:B : s

� ` �x:A:M : �x:A:B

(app)

� `M : �x:A:B � ` N : A

� `MN : B[N=x℄

(
onv)

� `M : A � ` B : s

� `M : B

A =

�

B

Figure 3: Typing rules for PTS

It is instru
tive to de�ne some PTSs to see how
exible the notion is. In the

following, we des
ribe a PTS by just listing the sort, the axioms and the rules in a

box. For �HOL this amounts to the following.

�HOL

S Prop;Type;Type

0

A Prop : Type;Type : Type

0

R (Prop;Prop); (Type;Type); (Type;Prop)

To de�ne �rst order predi
ate logi
 as a PTS, we have to make a synta
ti
al

distin
tion between `�rst order domains' (over whi
h one
an quantify) and `higher

order domains' (over whi
h quanti�
ation is not allowed). Therefore, a sort Set is

introdu
ed, the sort of �rst order domains, and asso
iated with that a sort Type

s

,

the type of Set. The Pure Type System �PRED, representing �rst order predi
ate

1198 Henk Barendregt and Herman Geuvers

logi
, is de�ned as follows.

�PRED

S Set;Type

s

;Prop;Type

A Set : Type

s

;Prop : Type

R (Set; Set); (Set;Type); (Prop;Prop); (Set;Prop)

We brie
y explain the rules. The rule (Prop;Prop) is the usual for forming the

impli
ation. With (Set;Type) one
an form A!Prop : Type and A!A!Prop : Type,

the domains of unary predi
ates and binary relations. The rule (Set;Prop) allows

the quanti�
ation over Set-types: one
an form �x:A:' (A : Set and ' : Prop,

whi
h is to be read as a universal quanti�
ation). Using (Set; Set) one
an de�ne

fun
tion types like the type of binary fun
tions: A!A!A, but also (A!A)!A,

whi
h is usually referred to as a `higher order fun
tion type'. So note that �PRED

is �rst order only in the logi
al sense, i.e. quanti�
ation over predi
ate domains

(like A!A!Prop) is not allowed.

The system �PRED, as des
ribed above,
aptures quite a lot of �rst order pred-

i
ate logi
. As a matter of fa
t it pre
isely
aptures minimal �rst order predi
ate

logi
 with higher order fun
tions. The minimality means that there are only two

onne
tives: impli
ation and �rst order universal quanti�
ation. As we are in a �rst

order framework, the other
onne
tives
an not be de�ned. This makes the express-

ibility rather low, as one
an not write down negative formulas. On the other hand,

we do have higher order fun
tion types. It is possible to de�ne a PTS that
ap-

tures minimal �rst order predi
ate logi
 exa
tly (i.e. �PRED without higher order

fun
tions). See [Barendregt 1992℄ for details.

To regain all
onne
tives, �PRED
an be extended to the se
ond order or higher

order predi
ate logi
 (where all
onne
tives are de�nable). We only treat the exten-

sion to higher order predi
ate logi
 (�PRED!) here and
ompare it with �HOL.

�PRED!

S Set;Type

s

;Prop;Type

A Set : Type

s

;Prop : Type

R (Set; Set); (Set;Type); (Type;Type); (Prop;Prop);

(Set;Prop); (Type;Prop)

The rule (Type, Prop) allows quanti�
ation over domains of type Type, whi
h are

A!Prop, A!A!Prop et
etera. The addition of (Type, Type) implies that now also

(A!Prop)!Prop : Type and ((A!Prop)!Prop)!Prop : Type. Quanti�
ation is

over Type, whi
h
overs all higher order domains.

Other well-known typed �-
al
uli that
an be des
ribed as a PTS are simple typed

�-
al
ulus, polymorphi
 typed �-
al
ulus (also known as system F, [Girard 1972℄,

[Girard, Lafont and Taylor 1989℄), higher order typed �-
al
ulus (also known as

F!, [Girard 1972℄). All these systems
an be seen as subsystems of the Cal
ulus of

Constru
tions, [Coquand 1985℄, [Coquand and Huet 1988℄. We de�ne the Cal
ulus

Proof-Assistants Using Dependent Type Systems 1199

of Constru
tions (CC) as the following PTS.

CC

S �;2

A � : 2

R (�; �); (�;2); (2; �); (2;2)

The aforementioned subsystems
an be obtained from this spe
i�
ation by restri
t-

ing the set of rules R. This de
omposition of the Cal
ulus of Constru
tions is

also known as the
ube of typed �-
al
uli, see [Barendregt 1992℄ for further details.

In view of higher order predi
ate logi
, one
an understand CC as the system ob-

tained by smashing the sorts Prop and Set into one, �. Hen
e, higher order predi
ate

logi

an be done inside the Cal
ulus of Constru
tions. We des
ribe the map from

�PRED! to CC later in this Se
tion in detail.

3.4. Properties of Pure Type Systems

As has already been mentioned, an important motivation for the de�nition of the

general framework of Pure Type Systems is the fa
t that many important properties

an be proved for all PTSs at on
e. Here, we list the most important properties

and dis
uss them brie
y. Proofs
an be found in [Geuvers and Nederhof 1991℄ and

[Barendregt 1992℄. In the following, unless expli
itly stated otherwise, ` refers to

derivability in an arbitrary PTS. As in �HOL, we de�ne a
ontext � to be well-

formed if � `M : A for some M and A.

Two basi
 properties are Thinning, saying that typing judgments remain valid in

an extended
ontext, and Substitution, saying that typing judgments remain valid

if we substitute well-typed terms.

3.25. Proposition (Thinning). For � a
ontext, �

0

a well-formed
ontext and M

and A in T , if � `M : A and � � �

0

, then �

0

`M : A. Here, � � �

0

denotes that

all de
larations that o

ur in �, also o

ur in �

0

.

3.26. Proposition (Substitution). For �

1

; x:B;�

2

a
ontext, and M , N and A in

T , if �

1

; x:B;�

2

` M : A and �

1

` N : B, then �

1

;�

2

[N=x℄ ` M [N=x℄ : A[N=x℄.

Here, M [N=x℄ denotes the substitution of N for x in M , whi
h is straightforwardly

extended to
ontexts by substituting in all types in the de
larations.

Two other properties we want to mention here are Strengthening, saying that

variables that do not appear in the terms
an be omitted from the
ontext, and

Subje
t Redu
tion, saying that typing is
losed under redu
tion.

3.27. Proposition (Strengthening). For �

1

; x:B;�

2

a
ontext, and M;A in T ,

�

1

; x:B;�

2

`M : A & x =2 FV(�

2

;M;A)) �

1

;�

2

`M : A:

1200 Henk Barendregt and Herman Geuvers

This property, though intuitively very plausible, is diÆ
ult to prove and requires a

deep analysis of the typing judgment (see [van Benthem Jutting 1993℄). (Note that

Strengthening is not an immediate
onsequen
e of Substitution, be
ause types may

not be inhabited, i.e. there may not be an N su
h that �

1

` N : B.)

3.28. Proposition (Subje
t Redu
tion). For � a
ontext and M;N and A in T ,

if � `M : A and M !!

�

N , then � ` N : A.

There are also many (interesting) properties that hold for spe
i�
 PTSs or spe
i�

lasses of PTSs. We mention some of these properties, but �rst we introdu
e a new

notion.

3.29. Definition. A PTS �(S;A;R) is fun
tional, also
alled singly sorted, if the

relations A and R are fun
tions, i.e. if the following two properties hold

8s

1

; s

2

; s

0

2

2S(s

1

; s

2

); (s

1

; s

0

2

)2A) s

2

= s

0

2

;

8s

1

; s

2

; s

3

; s

0

3

2S(s

1

; s

2

; s

3

); (s

1

; s

2

; s

0

3

)2R) s

3

= s

0

3

All the PTSs that we have en
ountered so far are fun
tional. In general it is hard

to �nd a `natural' PTS that is not fun
tional. Fun
tional PTSs share the following

ni
e property.

3.30. Proposition (Uniqueness of Types). This property holds for fun
tional

PTSs only. For � a
ontext, M , A and B in T , if � `M : A and � `M : B, then

A =

�

B.

One
an sometimes relate results of two di�erent systems by de�ning an embed-

ding between them. There is one very simple
lass of embeddings between PTSs.

3.31. Definition. For T = �(S;A;R) and T

0

= �(S

0

;A

0

;R

0

) PTSs, a PTS-

morphism from T to T

0

is a mapping f : S ! S

0

that preserves the axioms and rules.

That is, for all s

1

; s

2

2S, if (s

1

; s

2

)2A then (f(s

1

); f(s

2

))2A

0

and if (s

1

; s

2

; s

3

)2R

then (f(s

1

); f(s

2

); f(s

3

))2R

0

.

A PTS-morphism f from �(S;A;R) to �(S

0

;A

0

;R

0

) extends immediately to a

mapping f on pseudo terms and
ontexts. Moreover, this mapping preserves re-

du
tion in a faithful way: M !

�

N i� f(M) !

�

f(N). We have the following

property.

3.32. Proposition. For T and T

0

PTSs and f a PTS-morphism from T to T

0

, if

� `M : A in T , then f(�) ` f(M) : f(A) in T

0

.

Not all PTSs are Strongly Normalizing. We have the following well-known theo-

rem.

3.33. Theorem. The Cal
ulus of Constru
tions, CC, is Strongly Normalizing.

Proof-Assistants Using Dependent Type Systems 1201

The proof is rather involved and
an be found in [Geuvers and Nederhof 1991, Co-

quand and Gallier 1990, Berardi 1990℄. More general approa
hes to proving strong

normalization for type systems with dependent types
an be found in [Mellies and

Werner 1998, Geuvers 1995℄.

As a
onsequen
e we �nd that many other PTSs are Strongly Normalizing as

well. This
omprises all the sub-systems of CC and also all systems T for whi
h

there is a PTS-morphism from T to CC. (Note that a PTS-morphism preserves

in�nite redu
tion paths.)

3.34. Corollary. The following PTSs are all Strongly Normalizing. All subsys-

tems of CC; �PRED; �PRED!.

A well-known example of a PTS that is not Strongly Normalizing is ��. This

generalizes the Cal
ulus of Constru
tions to the extent where � and 2 are uni�ed,

or put di�erently, the sort of types, �, is itself a type.

��

S �

A � : �

R (�; �)

This PTS is also in
onsistent in the sense that all types are inhabited (whi
h means,

if we view|following the propositions-as-types embedding|the type system as a

logi
, that all propositions are provable). The original proof of in
onsisten
y of ��

is in [Girard 1972℄; a very
lear exposition
an be found in [Coquand 1986℄, while

[Hurkens 1995℄ has improved and shortened the in
onsisten
y proof
onsiderably.

From the in
onsisten
y it easily follows that the system is not normalizing. The

PTS �� is also the terminal obje
t in the
ategory of PTSs with PTS-morphisms

as arrows.

As a matter of fa
t, we now have two formalizations of higher order predi
ate

logi
 as a PTS: �HOL and �PRED!. We employ the notion of PTS-morphism to see

that they are equivalent. >From �PRED! to �HOL,
onsider the PTS-morphism f

given by

f(Prop) = Prop;

f(Set) = Type;

f(Type) = Type;

f(Type

s

) = Type

0

:

One veri�es immediately that f preserves A and R, hen
e we have

� `

�PRED!

M : A) f(�) `

�HOL

f(M) : f(A):

The inverse of f
an almost be des
ribed as a PTS-morphism, but not quite. De�ne

the PTS-morphism g from �PRED! to �HOL as follows.

g(Prop) = Prop;

1202 Henk Barendregt and Herman Geuvers

g(Type) = Set;

g(Type

0

) = Type

s

(In �HOL the sort Type

0

an not appear in a
ontext nor in a term on the left side

of the `:'.) We extend g to derivable judgments of �HOL in the following way.

g(� `M : A) = g(�) ` g(M) : g(A); if A 6= Type;

g(� `M : Type) = g(�) ` g(M) : Set; if M � � � �!�; (� a variable);

g(� `M : Type) = g(�) ` g(M) : Type; if M � � � �!Prop:

By easy indu
tion one proves that g preserves derivations. Furthermore, f(g(� `

M : A)) = � ` M : A and g(f(� ` M : A)) = � ` M : A. Hen
e, �PRED! and

�HOL are equivalent systems. This equivalen
e implies that the system �HOL is

Strongly Normalizing as well.

3.5. Extensions of Pure Type Systems

Several features are not present in PTSs. For example, it is possible to de�ne data

types (in a polymorphi
 sort, e.g. Prop in �HOL or � in CC), but one does not

get indu
tion over these data types for free. (It is possible to de�ne fun
tions by

re
ursion, but indu
tion has to be assumed as an axiom.) Therefore, `indu
tive

types' an extra feature. The way we present them below, they were �rst de�ned in

[Coquand and Paulin-Mohring 1990℄. (See also [Paulin-Mohring 1994℄.) Indu
tive

types are present in all widely used type-theoreti
 theorem provers, like [COQ 1999,

LEGO 1998, Agda 2000℄.

Another feature that we will dis
uss is the notion of produ
t and (strong) �-type.

A �-type is a `dependent produ
t type' and therefore a generalisation of produ
t

type in the same way that a �-type is a generalisation of arrow type: �x:A:B

represents the type of pairs (a; b) with a : A and b : B[a=x℄. (If x =2 FV(B), we

just end up with A � B.) Besides a pairing
onstru
tion to
reate elements of a

�-type, we have proje
tions to take a pair apart: if t : �x:A:B, then �

1

t : A and

�

2

t : B[�

1

t=x℄. �-types are very natural for doing abstra
tion over theories, as was

�rst explained in [Luo 1989℄. Produ
ts
an be de�ned inside the system if one has

polymorphism, but �-types
annot.

3.6. Produ
ts and Sums

We have already seen how to de�ne
onjun
tion and disjun
tion in �HOL. These

are very
lose to produ
t-types and sum-types. In Figure 4 the desired rules for a

produ
t-type are given. In presen
e of polymorphism, these
onstru
tions are all

de�nable. For example in �HOL we have produ
ts in the sort Prop. Let A

1

; A

2

: Prop

and de�ne

A

1

�A

2

:= ��:Prop:(A

1

!A

2

!�)!�;

Proof-Assistants Using Dependent Type Systems 1203

(produ
ts)

� ` A

1

: s � ` A

2

: s

� ` A

1

�A

2

: s

(proje
tion)

� ` p : A

1

�A

2

� ` �

i

p : A

i

(pairing)

� ` t

1

: A

1

� ` t

2

: A

2

� ` ht

1

; t

2

i : A

1

�A

2

omputation rule: �

i

ht

1

; t

2

i ! t

i

Figure 4: Rules for produ
t types

�

1

:= �p:(A

1

�A

2

):pA

1

(�x:A

1

:�y:A

2

:x);

�

2

:= �p:(A

1

�A

2

):pA

2

(�x:A

1

:�y:A

2

:y);

h�;�i := �x:A

1

:�y:A

2

:��:Prop:�h:(A

1

!A

2

!�):hxy;

For sum-types one would like to have the rules of Figure 5. This
an also be

(sums)

� ` A

1

: s � ` A

2

: s

� ` A

1

+A

2

: s

(inje
tion)

� ` p : A

i

� ` in

i

p : A

1

+A

2

(
ase)

� ` f

1

: A

1

!C � ` f

2

: A

2

!C

� `
ase(f

1

; f

2

) : (A

1

+A

2

)!C

omputation rule:
ase(f

1

; f

2

)(in

i

p)! f

i

p

Figure 5: Rules for sum types

de�ned in a polymorphi
 sort (inspired by the _-
onstru
tion). Let in �HOL, A

1

; A

2

and C be of type Prop, f

1

: A

1

!C and f

2

: A

2

!C.

A

1

+A

2

:= ��:Prop:(A

1

!�)!(A

2

!�)!�;

in

1

:= �p:A

1

:��:Prop:�h

1

:(A

1

!�):�h

2

:(A

2

!�):h

1

p;

in

2

:= �p:A

2

:��:Prop:�h

1

:(A

1

!�):�h

2

:(A

2

!�):h

2

p;

1204 Henk Barendregt and Herman Geuvers

ase(f

1

; f

2

) := �x:(A

1

+A

2

):xCf

1

f

2

:

3.7. �-types

In mathemati
s one wants to be able to reason about abstra
t notions, like the

theory of groups. Therefore, in the formalization of mathemati
s in type theory, we

have to be able to form something like the `type of groups'. As an example, let us

see what a group looks like in �HOL. Given A : Type, a group over A is a tuple

onsisting of the terms

Æ : A!A!A

e : A

inv : A!A

(the group-stru
ture) su
h that the following types are inhabited (we use in�x-

notation for readability).

�x; y; z:A:(x Æ y) Æ z = x Æ (y Æ z);

�x:A:e Æ x = x;

�x:A:(inv x) Æ x = e:

For the type of the group-stru
ture we
an use the produ
t: the type of group-

stru
tures over A, Group-Str(A), is (A!A!A)� (A� (A!A)). If t : Group-Str(A),

then �

1

t : A!A!A, �

1

(�

2

t) : A, et
etera. However, this does not yet
apture the

axioms of group-theory. For this we
an use the �-type: the type of groups over A,

Group(A), is de�ned by

Group(A) := � Æ :A!A!A:�e:A:�inv:A!A: (�x; y; z:A:(x Æ y) Æ z = x Æ (y Æ z))^

(�x:A:e Æ x = x)^

(�x:A:(inv x) Æ x = e).

Now, if t : Group(A), we
an extra
t the elements of the group stru
ture

by proje
tions as before: �

1

t : A!A!A, �

1

(�

2

t) : A, et
etera. One
an

also extra
t proof-terms for the group-axioms by proje
tion: �

1

(�

2

(�

2

(�

2

t))) :

�x; y; z:A:�

1

t(�

1

txy)z = �

1

tx(�

1

tyz), representing the asso
iativity of the oper-

ation �

1

t.

Similarly, if f : A!A!A, a : A and h : A!A with p

1

; p

2

; p

3

and p

4

proof-terms

of the asso
iated group-axioms, then

hf; ha; hh; hp

1

; hp

2

; hp

3

; p

4

iiiiii : Group(A):

The pre
ise rules of the �-types in �HOL are as in Figure 6.

These rules allow the formation of the `dependent tuples' we need for formalizing

notions like Group and Ring. An even more general approa
h towards the theory

Proof-Assistants Using Dependent Type Systems 1205

(�)

� ` A : Type �; x:A ` ' : Prop

� ` �x:A:' : Type

(h�;�i)

� ` a : A � ` p : '[a=x℄ � ` �x:A:' : Type

� ` ha; pi : �x:A:'

(�

1

)

� ` t : �x:A:'

� ` �

1

t : A

(�

2

)

� ` t : �x:A:'

� ` �

2

t : '[�

1

t=x℄

omputation rules: �

1

ha; pi ! a

�

2

ha; pi ! p

Figure 6: Rules for �-types

of groups would be to also abstra
t over the
arrier type, obtaining

Group := �A:Type:� Æ :A!A!A:�e:A:�inv:A!A:

(�x; y; z:A:(x Æ y) Æ z = x Æ (y Æ z))^

(�x:A:e Æ x = x)^

(�x:A:(inv x) Æ x = e):

This
an be done by an easy extension of the rules, allowing to form �x:A:B also

for A : Type

0

:

(�

0

)

� ` A : Type

0

�; x:A ` B : Type

� ` �x:A:B : Type

However, if we want the system to remain
onsistent, it is not possible to allow

�x:Type:B : Type. We must put �x:Type:B : Type

0

. This implies that Group : Type

0

,

whi
h may not be desirable.

We may observe that the �-type behaves very mu
h like an existential quanti�er.

Apart from the fa
t that �x:A:' is not a proposition, but a type, we see that a

(proof)term of type �x:A:' is
onstru
ted from a term a of type A for whi
h '[a=x℄

holds. The other way around, from a (proof)term t of type �x:A:' one
an
onstru
t

the witness �

1

t and the proof that for this witness ' holds. This very
losely re
e
ts

the
onstru
tive interpretation of the existential quanti�er (`if 9x:A:' is derivable,

then there exists a term a for whi
h '[a=x℄ is derivable'). The use of �-types for

the existential quanti�er requires that �x:A:' : Prop (not of type Type) in �HOL.

1206 Henk Barendregt and Herman Geuvers

In order to a
hieve this we
ould modify the �-rule as follows.

(�)

� ` A : Type �; x:A ` ' : Prop

� ` �x:A:' : Prop

However, the addition of this rule to �HOL makes the system in
onsistent. In the

ase of �PRED!, it is possible to add a �-type that represents the existential quan-

ti�er, while remaining
onsistent, but only for A : Set. On the other hand, one may

wonder whether a �-type is the
orre
t formalization of the
onstru
tive existential

quanti�er, be
ause it
reates set-terms that depend on proof-terms. For example,

if we put z : �x:A:' in the
ontext where �x:A:' is a proposition (�x:A:' : Prop),

then �

1

z : A (A : Set). So we have an element-expression (�

1

z) that depends on a

proof (z), a feature alien to ordinary predi
ate logi
, where the expression-language

is built up independently of the proofs.

3.8. Indu
tive Types

A basi
 notion in logi
 and set theory is indu
tion: when a set is de�ned indu
tively,

we understand it as being `built up from the bottom' by a set of basi

onstru
tors.

Elements of su
h a set
an be de
omposed in `smaller elements' in a well-founded

manner. This gives us the prin
iples of `proof by indu
tion' and `fun
tion de�nition

by re
ursion'.

If we want to add indu
tive types to our type theory, we have to add a de�nition

me
hanism that allows us to introdu
e a new indu
tive type, by giving the name and

the
onstru
tors of the indu
tive type. The theory should automati
ally generate

a s
heme for proof-by-indu
tion and a s
heme for primitive re
ursion. It turns out

that this
an be done very generally in type theory, in
luding very many instan
es of

indu
tion. Here we shall use a variant of the indu
tive types that are present in the

system COQ [1999℄ and that were �rst de�ned in Coquand and Paulin-Mohring

[1990℄. Another approa
h to indu
tive types is to en
ode them as `well-ordering

types', also
alled W -types. The W -type
an be used to en
ode arbitrary indu
tive

types, but only if we are in extensional type theory. As we are in an intensional

framework, we do not pursue that thread; see e.g. [Goguen and Luo 1993℄ for details.

We illustrate the rules for indu
tive types in �HOL by �rst treating the (very

basi
) example of natural numbers nat. We would like the user to be able to write

something like

Indu
tive nat : Type :=

0 : nat

j S : nat!nat:

Proof-Assistants Using Dependent Type Systems 1207

to obtain the following rules.

(elim

1

)

� ` A : Type � ` f

1

: A � ` f

2

: nat!A!A

� ` Re

nat

f

1

f

2

: nat!A

(elim

2

)

� ` P : nat!Prop � ` f

1

: P0 � ` f

2

: �x:nat:Px!P (Sx)

� ` Re

nat

f

1

f

2

: �x:nat:Px

The rule (elim

1

) allows the de�nition of fun
tions by primitive re
ursion. The rule

(elim

2

) allows proofs by indu
tion. To make sure that the fun
tions de�ned by

(elim

1

)
ompute Re

nat

has the following redu
tion rule.

Re

nat

f

1

f

2

0 !

�

f

1

Re

nat

f

1

f

2

(St) !

�

f

2

t(Re

nat

f

1

f

2

t)

It is understood that the additional �-redu
tion is also in
luded in the
onversion-

rule (
onv), where we now have `A =

��

B' as a side-
ondition. The subs
ript in

Re

nat

will be omitted, when
lear from the
ontext.

An example of the use of (elim

1

) is in the de�nition of the `double' fun
tion d,

whi
h is de�ned by

d := Re

nat

0(�x:nat:�y:nat:S(S(y))):

Now, d0 !!

��

0 and d(Sx) !!

��

S(S(dx)). The predi
ate of `being even', even(�),

an also be de�ned by using (elim

1

):

even(�) := Re

nat

(>)(�x:nat:��:Prop::�):

We obtain indeed that

even(0) !!

��

>;

even(Sx) !!

��

:even(x)

An example of the use of (elim

2

) is the proof of �x:nat:even(dx). Say that true is

some
anoni
al inhabitant of type >. Using even(d(Sx)) =

��

::even(dx) we �nd

that �x:nat:�h:even(dx):�z::even(dx):zh is of type �x:nat:even(dx)!even(d(Sx)).

So we
on
lude that

` Re

nat

true(�x:nat:�h:even(dx):�z::even(dx):zh) : �x:nat:even(dx):

Another well-known example is the type of lists over a domain D. It is de�ned

as follows.

Indu
tive List : Type :=

Nil : List

j Cons : D!List!List

1208 Henk Barendregt and Herman Geuvers

with the following rules.

(elim

1

)

� ` A : Type � ` f

1

: A � ` f

2

: D!List!A!A

� ` Re

List

f

1

f

2

: List!A

(elim

2

)

� ` P : List!Prop � ` f

1

: PNil � ` f

2

: �d:D:�x:List:Px!P (Cons dx)

� ` Re

List

f

1

f

2

: �x:List:Px

The rule (elim

1

) allows the de�nition of fun
tions by primitive re
ursion, while the

rule (elim

2

) allows proofs by indu
tion. To make sure that the fun
tions
ompute

in the
orre
t way, Re

List

has the following redu
tion rule.

Re

List

f

1

f

2

Nil !

�

f

1

Re

List

f

1

f

2

(Cons dt) !

�

f

2

dt(Re

List

f

1

f

2

t)

An example of the use of Re

List

is in the de�nition of the `map' fun
tion that takes

a fun
tion f : D!D and returns the fun
tion (of type List!List) that applies f to

all elements of the list. De�ne

map := �f :D!D:�l:List:Re

List

Nil(�d:D:�k:List:�h:List:Cons (fd)h)

: (D!D)!List!List:

Then map f(Cons dt) =

��

Cons (fd)map ft:

Of
ourse, there is a more general pattern behind these two examples. The ex-

tension of �HOL with indu
tive types is de�ned by adding the following s
heme.

Indu
tive � : Type :=

onstr

1

: �

1

1

(�)!� � ��

1

m

1

(�)!�

.

.

.

j
onstr

n

: �

n

1

(�)!� � ��

n

m

n

(�)!�

where the �

i

j

(�) are all `type s
hemes with a stri
tly positive o

urren
e of �', i.e.

ea
h �

i

j

(�) is of the form A

1

!� � �A

n

!X with no o

urren
e of � in the A

k

and

either X � � or � not in X . This de
laration of � introdu
es � as a de�ned type

and it generates the
onstru
tors
onstr

1

; : : : ;
onstr

n

plus the asso
iated elimination

rules and the redu
tion rules. For a general pi
ture on indu
tive types we refer to

[Paulin-Mohring 1994℄.

To illustrate the generality of indu
tive types, we give an example of an indu
tive

type that is more
ompli
ated than nat and List. We want to de�ne the type Tree

of
ountably bran
hing trees with labels in D. (So a term of type Tree represents a

tree where the nodes and leaves are labelled with a term of type D and where at

every node there are
ountably many subtrees.) The de�nition of Tree is as follows.

Indu
tive Tree : Type :=

Leaf : D!Tree

j Join : D!(nat!Tree)!Tree

Proof-Assistants Using Dependent Type Systems 1209

Here, Leaf
reates a tree
onsisting of just a leaf, labelled by a term of type D.

The
onstru
tor Join takes a label (of type D) and an in�nite (
ountable) list of

trees to
reate a new tree. The (elim

1

) rule is as follows.

(elim

1

)

� ` A : Type � ` f

1

: D!A � ` f

2

: D!(nat!Tree)!(nat!A)!A

� ` Re

Tree

f

1

f

2

: Tree!A

Re

Tree

has the following redu
tion rule.

Re

Tree

f

1

f

2

(Leafd) !

�

f

1

d

Re

Tree

f

1

f

2

(Join d t) !

�

f

2

dt(�x:nat:Re

Tree

f

1

f

2

(tx))

It is an interesting exer
ise to de�ne all kinds of standard fun
tions on Tree, like

the fun
tion that takes the nth subtree (if it exists and take Leafa otherwise) or

the fun
tion that de
ides whether a tree is in�nite (or just a single leaf).

For Tree, we have the following (elim

2

) rule.

(elim

2

)

� ` P : Tree!Prop � ` f

1

: �d:D:P (Leafd)

� ` f

2

: �d:D:�t:nat!Tree:(�n:nat:P (tn))!P (Join d t)

� ` Re

Tree

f

1

f

2

: �x:Tree:Px

Another interesting example of indu
tive types are indu
tively de�ned propo-

sitions. An example is the
onjun
tion, whi
h has one
onstru
tor (the pairing).

Given ' and of type Prop, it
an be de�ned as follows.

Indu
tive ' ^ : Prop :=

Pair : '! !(' ^)

As we do not have the (Prop;Type) rule in �HOL, we
an only
onsider the se
ond

elimination rule, whi
h will only appear in the
ase where P is a
onstant of type

Prop. (So P : Prop instead of P : '^ !Prop.) The elimination rule (elim

2

) rule is

then as follows.

(elim

2

)

� ` P : Prop � ` f

1

: '! !P

� ` Re

^

f

1

: (' ^)!P

By taking ' (respe
tively) for P and �x:':�y: :x (respe
tively �x:':�y: :y)

for f

1

, one easily re
overs the well-known proje
tion from ' ^ to ' (respe
tively

). The logi
al operators _ and 9
an similarly be de�ned indu
tively.

More general indu
tive de�nitions

Above we have restri
ted ourselves to a spe
i�

lass of indu
tive types. This
lass

is very general,
overing all the so
alled `algebrai
 types', but it still
an be ex-

tended. There are three main extensions that we dis
uss brie
y by some motivating

examples. They are

1. Parametri
 Indu
tive Types

1210 Henk Barendregt and Herman Geuvers

2. Indu
tive Types with Dependent Constru
tors

3. Indu
tive Predi
ates

Many of these extensions o

ur together in more interesting examples.

Probably the most well-known situation of a `parametri
 type' is the type of `lists

over a type D'. Here the type D is just a parameter: primitive re
ursive operations

on lists do not depend on the spe
i�

hoi
e for D. A possible way for de�ning the

type of parametri
 lists would be the following.

Indu
tive List : Type!Type :=

Nil : �D:Type:(ListD)

j Cons : �D:Type:D!(ListD)!(ListD):

Whi
h would generate the following elimination rules and redu
tion rule.

(elim

1

)

� ` D : Type � ` A : Type � ` f

1

: A � ` f

2

: D!(ListD)!A!A

� ` Re

List

f

1

f

2

: (ListD)!A

(elim

2

)

� ` D : Type

� ` P : (ListD)!Prop

� ` f

1

: P (NilD)

� ` f

2

: �d:D:�x:(ListD):Px!P (Cons Ddx)

� ` Re

List

f

1

f

2

: �x:(ListD):Px

Re

List

f

1

f

2

(NilD) !

�

f

1

Re

List

f

1

f

2

(Cons Ddt) !

�

f

2

dt(Re

List

f

1

f

2

t)

To be able to write down the type of the
onstru
tors Nil and Cons, we need the

rule (Type

0

;Type) in �HOL, whi
h makes the system in
onsistent. Therefore, this

extension works mu
h better in a system like �PRED!, where we
an
onsistently

allow quanti�
ation over Set. We will not be
on
erned with these pre
ise details

here however.

In the example of parametri
 lists we have already seen
onstru
tors that have

a dependent type. It turns out that this situation o

urs more often. With respe
t

to the general s
heme, the extension to in
lude dependent typed
onstru
tors is a

straightforward one: all de�nitions
arry through immediately. We treat an interest-

ing example of an indu
tive type (the �-type), whi
h is de�ned using a
onstru
tor

that has a dependent type. Let B : Type and Q : A!Prop and suppose we have

added the rule (Prop;Type) to our system.

Indu
tive � : Type :=

In : �z:B:(Qz)!�:

Proof-Assistants Using Dependent Type Systems 1211

(elim

1

)

� ` A : Type � ` f

1

: �z:B:(Qz)!A

� ` Re

�

f

1

: �!A

(elim

2

)

� ` P : �!Prop � ` f

1

: �z:B:�y:(Qz):P (Inzy)

� ` Re

�

f

1

: �x:�:(Px)

The �-redu
tion rule is

Re

�

f

1

(Inbq) !

�

f

1

bq

Now, taking in (elim

1

) B for A and �z:B:�y:(Qz):z for f

1

, we �nd that

Re
 (�z:B:�y:(Qz):z)(Inbq)!! b:

Hen
e, we de�ne �

1

:= Re
 (�z:B:�y:(Qz):z). Now, taking �x:�:Q(�

1

x) for

P in (elim

2

) and �z:B:�y:(Qz):y for f

1

, we �nd that Re
 (�z:B:�y:(Qz):y) :

�z:�:Q(�

1

z). Furthermore, Re
 (�z:B:�y:(Qz):y)(Inbq) !! q. Hen
e, we de�ne

�

2

:= Re
 (�z:B:�y:(Qz):y) and we remark that � together with In (as pairing

onstru
tor) and �

1

and �

2

(as proje
tions) represents the �-type.

An example of an indu
tively de�ned predi
ate is the equality, whi
h
an be

de�ned as follows.

Indu
tive Eq : D!D!Prop :=

Re
 : �x:D:(Eqxx):

Just like in the example for the
onjun
tion, we only have the se
ond elimination

rule for the non-dependent
ase (i.e. P only depends on x; y:D but not on a proof

of Eqxy). So we have

(elim

2

)

� ` P : D!D!Prop � ` f

1

: �x:D:(Pxx)

� ` Re

Eq

f

1

: �x; y:D:(Eqxy)!(Pxy)

The �-redu
tion rule is

Re

Eq

xxf

1

(Re
x) !

�

f

1

x

4. Proof-development in type systems

In this se
tion we will show how a
on
rete proof-assistant works. First we show

in what way the human has to intera
t with the system. Then a small proof-

development is partially shown (most proof-obje
ts are omitted). Finally it is shown

how
omputations
an be
aptured in formalized theories.

1212 Henk Barendregt and Herman Geuvers

4.1. Ta
ti
s

In Se
tion 2.1 and Se
tion 4.3 examples will be given of an easy, and a more involved

theorem with full proofs. Even before these examples are given, the reader will

probably realize that
onstru
ting fully formalized proofs (the proof-obje
ts) is rel-

atively involved. Therefore tools have been developed|so-
alled proof-assistants|

that make this task more easy. A proof assistant
onsists of a proof
he
ker and an

intera
tive proof-development system. We have depi
ted the situation graphi
ally

in Figure 7. In the proof-development system one
hooses a
ontext and formu-

proof-development system

proof-

checker

proof-

object

certified

statement

tactics

current context

current goal

�����

�����

�����

�����

�����

proof assistant

Figure 7: A proof-assistant and its
omponents

lates a statement to be proved relative to that
ontext. This statement is
alled the

goal. Rather than
onstru
ting the required proof-obje
t dire
tly, one uses so-
alled

ta
ti
s that give a hint to the ma
hine as to what the proof-obje
t looks like. For

example, if one wants to prove

8x:A:(Px) Qx)

in
ontext A : Set; P;Q : A!Prop, then there is a ta
ti
 (`Intros') that
hanges

the
ontext by pi
king a fresh (`arbitrary') x:A and assumes Px, the goal now be-

oming Qx. To be more pre
ise, we give some extra
ts of Coq sessions. In Coq,

the �-abstra
tion and the �-abstra
tion are represented by bra
kets: (x:A)B de-

notes �x:A:B and [x:A℄M denotes �x:A:M . Furthermore, -> and abstra
tion bind

stronger than appli
ation, so we have to put bra
kets around appli
ations, writing

(x:A)(P x)->(Q x) for �x:A:Px!Qx. In the following, Unnamed thm < and

Coq < are the Coq prompts at whi
h the user is expe
ted to type some
ommand:

at Coq <, the system is in `de
laration mode', where the user
an extend the
on-

text with new de
larations or de�nitions; at Unnamed thm <, the system is in `proof

mode', where the user
an type in ta
ti
s to solve the goal(s).

Proof-Assistants Using Dependent Type Systems 1213

Coq < Variable A:Set; Variable P,Q:A->Prop.

A is assumed

P is assumed

Q is assumed

Coq < Goal (x:A)(P x) -> (Q x).

1 subgoal

============================

(x:A)(P x)->(Q x)

Unnamed_thm < Intros.

1 subgoal

x : A

H : (P x)

============================

(Q x)

The H: (P x) means that we assume that H is a proof of (P x) (in order to

onstru
t a proof q of (Q x), thereby providing a proof of (P x) -> (Q x), namely

[H:(P x)℄q, and hen
e of (x:A)(P x) -> (Q x), namely [x:A℄[H:(P x)℄q.

Another ta
ti
 is `Apply'. If the
urrent
ontext
ontains a:A and p: (x:A)(P x)

-> (Q x) and the
urrent goal is (Q a), then the
ommand Apply p will
hange

the
urrent goal into (P a). This is done by mat
hing the type of p with the
urrent

goal where the universal variables (here just x) are the ones to be instantiated. So,

the system mat
hes (Q x) with (Q a), �nding the instantiation of a for x. The

proof-term that the system
onstru
ts is in this
ase p a ?, with ? the yet to be

onstru
ted proof of (P a).

Coq < Variable a:A; Variable p : (x:A) (P x) -> (Q x).

a is assumed

p is assumed

Coq < Goal (Q a).

1 subgoal

============================

(Q a)

Unnamed_thm < Apply p.

1 subgoal

============================

(P a)

1214 Henk Barendregt and Herman Geuvers

Another essential ta
ti
 is
on
erned with indu
tive types. For example the type

of natural numbers is de�ned by

Indu
tive nat := O :nat | S: nat -> nat.

This type
omes together with an indu
tion prin
iple

nat_ind

: (P:(nat->Prop))(P O)->((n:nat)(P n)->(P (S n)))->(n:nat)(P n)

The way this
an be used is as follows. If the (
urrent) goal is (Q n) in
on-

text
ontaining n : nat, then the ta
ti
 Elim n will produ
e the new goals (Q O)

and (n : nat)(Q n)-> (Q (n+1)). Indeed, if p is a proof of (Q O) and q of

(n:nat)(Q n)->(Q(n+1)), then (nat ind Q p q n) will be a proof of (Q n).

Also this type nat
omes with a re
ursor nat re
 satisfying

(nat re
 a b O) = a;

(nat re
 a b (S n)) = (b n (nat re
 a b n)):

Indeed, going from left to right, these are �-redu
tions that fall under the Poin
ar�e

prin
iple.

As logi
al operators are de�ned indu
tively, we basi
ally have all tools to develop

mathemati
al proofs. The intera
tive session
ontinues until all goals are solved.

Then the system is satis�ed and the proved result
an be stored under a name that

is
hosen by the user.

Subtree proved!

Unnamed_thm < Save fst_lemma.

<ta
ti
s>

fst_lemma is defined

In the pla
e of <ta
ti
s>, the system repeats the series of ta
ti
s that was typed

in by the user to solve the goal. The system adds a de�nition fst lemma := ...

to the
ontext, where ... is the proof term (a typed �-term) that was intera
tively

onstru
ted. Then later the user
an use the lemma by referring to fst lemma, for

example in the Apply ta
ti
: Apply fst lemma.

The set of ta
ti
s and its implementation together with the user interfa
e will

yield a large proof-development system. For example, several te
hniques of auto-

mated dedu
tion may be in
orporated as ta
ti
s. But even if the resulting proof-

development system as subunit in general will be large, the reliability of the proof-

assistant as su
h is still high, provided that the proof
he
ker is small, i.e. satis�es

the de Bruijn
riterion.

4.2. Examples of Proof Development

Given a mathemati
al statement within a
ertain
ontext, a proof development

onsists of a formalization of the
ontext � and statement A and a
onstru
tion of

Proof-Assistants Using Dependent Type Systems 1215

a proof-obje
t for it, i.e. a term p su
h that

� ` p : A:

A substantial part of a proof development
onsists of a theory development, a name

oined by Peter A
zel. This
onsists of a list of primitive and de�ned notions and

axioms and provable theorems
ulminating in the goalA to be proved. In this se
tion

we will present su
h a theory development in the system Coq for the statement that

every natural number greater than one has a prime divisor.

4

Two aspe
ts of the development are of interest. Whereas the logi
al operators!

and 8 are primitive notions of type theory (when translated as �), the operators

onjun
tion ^, disjun
tion _, false FF, negation ~ and existen
e 9 are also de�nable

using indu
tive types, see [Martin-L�of 1984℄. For example

Indu
tive or [A:Prop; B:Prop℄ : Prop :=

or_introl : A->(or A B)

| or_intror : B->(or A B)

Here, the abstra
tion [A:Prop; B:Prop℄ says that A and B are parameters of the

de�nition. Some pretty printing, a synta
ti
 de�nition
an be added, allowing to

write A \/ B for (or A B). The indu
tive de�nition implies that A \/ B
omes

together with maps

or_introl : (A,B:Prop)A->A\/B

or_intror : (A,B:Prop)B->A\/B

We also need a map
orresponding to the elimination prin
iple for disjun
tion (for

example to prove that A\/B -> B\/A):

or_ind : (A,B,P:Prop)(A->P)->(B->P)->A\/B->P

It is also possible to de�ne the operations ^, _, FF, ~ and 9 without indu
tive

types, using higher order quanti�
ation, as in [Russell 1903℄. For example disjun
-

tion be
omes

A _ B � �C:Prop:(A!C)!(B!C)!A _B!C:

In this way the elimination prin
iple is the term

�f :(A!C)�g:(B!C)�h:(A _ B):hCfg:

The logi
al de�nitions de�ned this way turn out to be equivalent with the indu
-

tively de�ned ones. Following Martin-L�of we use the indu
tive de�nitions, be
ause

this way one
an avoid impredi
ative notions like higher order quanti�
ation.

4

From this statement Eu
lid's theorem that there are in�nitely many primes is not far removed:

onsider a prime fa
tor of n! + 1 and show that it is ne
essarily > n. Thus one obtains 8n9p >

n:prime p. A slightly di�erent formalization is possible in type theory, where one
an prove the

statement 8n:IN8p

1

; : : : ; p

n

:IN[prime p

1

^ : : :^prime p

n

) 9x:IN[prime x^x 6= p

1

^ : : :^x 6= p

n

℄℄.

Note that it is impossible to even state this as a theorem in Peano Arithmeti
, be
ause of the use

of n as a parameter denoting the length of the sequen
e ~p and the number of disjun
tions x 6= p

i

.

In type theory it
an be stated be
ause of the rules for indu
tive types. In arithmeti
 one would

have to go to se
ond order logi
 to state (and prove) this theorem

1216 Henk Barendregt and Herman Geuvers

Another point of interest is that indu
tive types are freely generated by their

onstru
tors. This has for example as
onsequen
e that for the type of natural

numbers one
an prove

(n : nat) ~((S n) = O)

(n,m : nat) (S n) = (S m) -> n = m

Thus we see that within type theory with indu
tive types, Heyting arithmeti

an be formalized, without assuming additional axioms or rules. To quote Randy

Polla
k: \Type theory with indu
tive types is intuitionisti
: mathemati
al prin
iples

are wired in."

Now we will present a theory development in Coq (version 6.3), for the statement

that every natural number has a prime divisor. The mathemati
s behind this is very

elementary. Logi
 is introdu
ed.

5

After the introdu
tion of the natural numbers,

plus and times are de�ned re
ursively. Then division and primality are de�ned. In

order to prove our result the usual ordering < is de�ned (�rst �) and
ourse of

value indu
tion

6

is used. Text written between (* ... *) serves as a
omment. In

the following, the proofs are omitted but the de�nitions are given expli
itly.

(**************** A simple proof-development ****************)

(**** Propositional
onne
tives defined indu
tively. ****)

Indu
tive and [A:Prop; B:Prop℄ : Prop

:=
onj : A->B->(and A B).

Indu
tive TT : Prop

:= trivial : TT.

Indu
tive FF : Prop

:=.

Definition not : Prop->Prop

:= [A:Prop℄A->FF.

Definition iff := [A,B:Prop℄(and (A->B)(B->A)).

(* For pretty printing synta
ti
 definitions (not shown) are

introdu
ed that allow to use the following notations

~A for (not A)

A/\B for (and A B)

A\/B for (or A B)

A<->B for (iff A B) *)

(* Introdu
tion and elimination rules. *)

5

In fa
t
lassi
al logi
. An intuitionisti
 proof is mu
h better, as it provides an algorithm to

�nd the prime divisor. But this requires more work.

6

If for every n2IN one has (8m < n:Pm)!Pn, then 8n2IN:Pn.

Proof-Assistants Using Dependent Type Systems 1217

Lemma and_in : (a,b:Prop)a->b->(and a b).

Lemma and_ell : (a,b:Prop)(and a b)->a.

Lemma and_elr : (a,b:Prop)(and a b)->b.

Lemma false_el : (a:Prop) FF->a.

Lemma or_inl : (a,b:Prop)a->(or a b).

Lemma or_inr : (a,b:Prop)b->(or a b).

Lemma or_el : (a,b,
:Prop)(a->
)->(b->
)->(or a b)->
.

(* Lemmas
ombining
onne
tives. *)

Lemma non_or : (a,b:Prop)~(or a b)->~a/\~b.

(* We show the proof-obje
t (generated by the ta
ti
s):

non_or =

[a,b:Prop; p:(not (or a b))℄

(and_in (not a) (not b) [q:a℄(p (or_inl a b q))

[q:b℄(p (or_inr a b q)))

: (a,b:Prop)(not (or a b))->(and (not a) (not b)) *)

(* Some lemmas omitted *)

(******************* Predi
ate logi
. *******************)

Indu
tive ex [A : Set; P : A->Prop℄ : Prop

:= ex_intro : (x:A)(P x)->(ex A P).

(* A synta
ti
 definition (not shown) is given that allows one

to write the usual

(EX x:A|(P x)) for ex A [x:A℄(P x) *)

Se
tion Pred.

Variables A : Set; P : A->Prop; Q : A ->Prop.

Lemma all_el : (x:A)((y:A)(P y))->(P x).

Lemma ex_in : (x:A)(P x)->(EX y:A|(P y)).

Lemma non_ex : (~(EX x:A|(P x)))->(x:A)~(P x).

Lemma all_not : ((x:A)~(P x))->~(EX x:A|(P x)).

Lemma all_and : ((x:A)(P x)/\(Q x))->((x:A)(P x))/\((x:A)(Q x)).

Lemma ex_or : (EX x:A|(P x)\/(Q x))

->(EX x:A|(P x))\/(EX x:A|(Q x)).

End Pred.

(* Classi
al logi
. *)

1218 Henk Barendregt and Herman Geuvers

Axiom DN : (a:Prop)(~~a->a).

Lemma dn_
 : (a:Prop)~~a<->a.

Lemma (* Ex
luded middle: tertium non datur. *)

tnd : (a:Prop)(a\/~a).

(* Some lemmas omitted *)

Se
tion Pred_
las.

Variable A:Set; P:A->Prop.

Lemma non_all : (~(x:A)(P x))->(EX x:A|~(P x)).

Lemma ex_
 : (EX x:A|(P x))<->~(x:A)~(P x).

(* This lemma has the following proof-obje
t. [Note the presen
e of DN℄

ex_
 =

(
onj (EX x:A | (P x))->~((x:A)~(P x))

~((x:A)~(P x))->(EX x:A | (P x))

[H:(EX x:A | (P x)); H0:((x:A)(P x)->FF)℄

(ex_ind A [x:A℄(P x) FF [x:A; H1:(P x)℄(H0 x H1) H)

[H:(~((x:A)~(P x)))℄

(DN (EX x:A | (P x))

[H0:((EX x:A | (P x))->FF)℄

(H [x:A; H1:(P x)℄(H0 (ex_intro A [x0:A℄(P x0) x H1)))))

: (EX x:A | (P x))<->~((x:A)~(P x)) *)

End Pred_
las.

(******************* Arithmeti
 ************************)

Indu
tive eq [A:Set;x:A℄ : A->Prop

:= refl_equal : (eq A x x).

(* A synta
ti
 definition (not shown) is introdu
ed in order to use

the abbreviation

x = y for (eq A x y).

In this synta
ti
 definition, the type A
an be used as an

`impli
it argument'. It is re
onstru
ted by the type
he
king

algorithm from the type of x *)

Lemma sym_eq : (A:Set)(x,y:A)(x = y)->(y = x).

Lemma leib : (A:Set)(P:A->Prop)(x,y:A)(x = y)->(P x)->(P y).

Lemma eq_ind_r : (A:Set; x:A; P:(A->Prop))(P x)->(y:A)(y=x)->(P y).

Lemma f_equal : (A,B:Set; f:(A->B); x,y:A)(x=y) -> ((f x)=(f y)).

Indu
tive nat : Set := O : nat | S : nat->nat.

Proof-Assistants Using Dependent Type Systems 1219

Definition one : nat := (S O).

Definition two : nat := (S one).

Definition Is_su
 := [n:nat℄

Cases n of

O => FF

| (S p) => TT

end.

Lemma no_
onf : (n:nat)~(O= (S n)).

Indu
tive leseq [n:nat℄ : nat->Prop :=

leseq_n : (leseq n n)

| leseq_su
 : (m:nat)(leseq n m)->(leseq n (S m)).

Definition lthan := [n,m:nat℄(leseq (S n) m).

Lemma leseq_trans : (x,y,z:nat)(leseq x y)->(leseq y z)->(leseq x z).

Lemma lthan_leseq : (n,m:nat)((lthan n m)->(leseq n m)).

Lemma non_lt0 : (n:nat)~(lthan n O).

Lemma su
_leseq : (n,m:nat)(leseq (S n)(S m))->(leseq n m).

Lemma lt01 : (x:nat)(x=O\/x=one\/(lthan one x)).

Lemma n0n1lt : (n:nat)(~(n=O)->~(n=one)->(lthan one n)).

Definition before [n:nat; P:nat->Prop℄ := ((k:nat)(lthan k n)->(P k)).

Lemma (* Course of value indu
tion *)

v_ind : (P:nat->Prop)((n:nat)((before n P) -> (P n))-> (n:nat)(P n)).

Fixpoint plus [n:nat℄ : nat -> nat := [m:nat℄

Cases n of

O => m

| (S p) => (S (plus p m))

end.

Lemma plus_altsu
 : (n,m:nat)(plus n (S m))=(S(plus n m)).

Lemma plus_altzero : (n:nat) (plus n O)=n.

Lemma plus_ass : (n,m,k: nat)(n,m,k: nat)

(plus n (plus m k))=(plus(plus n m)k).

Lemma plus_
om : (n,m:nat)(plus n m)=(plus m n).

Fixpoint times [n:nat℄ : nat -> nat := [m:nat℄

Cases n of

O => O

| (S p) => (plus (times p m) m)

end.

1220 Henk Barendregt and Herman Geuvers

Lemma distr : (n,m,k: nat)(n,m,k: nat)

(times (plus n m) k)=(plus(times n k)(times m k)).

Lemma timesaltzero : (n:nat)(times n O)=O.

Lemma timesaltsu
 : (n,m:nat)(times n (S m))=(plus(times n m) n).

Lemma times_ass : (n,m,k:nat)(times n(times m k))=(times(times n m)k).

Definition div : (nat->nat->Prop)

:= [d,n:nat℄(EX x:nat|(times x d)=n).

Definition propdiv : (nat->nat->Prop)

:= [d,n:nat℄((lthan one d)/\(lthan d n)/\(div d n)).

Definition prime : nat -> Prop

:= [n:nat℄((lthan one n)/\~(EX d:nat|(propdiv d n))).

Definition primediv : nat->nat->Prop

:= [p,n:nat℄(prime p)/\(div p n).

(* Some lemmas omitted *)

(* has prime divisor *)

Definition HPD : nat->Prop := [n:nat℄(EX p:nat|(primediv p n)).

Theorem numbers_gt1_have_primediv : (n:nat)(lthan one n)->(HPD n).

(***)

As stated before, from here one
an prove Eu
lid's theorem that there are in�nitely

many primes. In order to do this one needs to know that if d divides both a and

a+b, then it divides b (introdu
e
ut-o� subtra
tion for this and prove some lemmas

about it).

4.3. Autarki
 Computations

We have so far des
ribed how to formalize de�nitions, statements and proofs. An-

other important aspe
t of mathemati
s is
omputing. (In order to de
ide whether

statements are true or simply be
ause a numeri
al value is of interest). The follow-

ing examples are taken from [Barendregt 1997℄. These are examples of statements

for whi
h
omputations are needed.

(1) [

p

45℄ = 6; where [r℄ is the integer part of a real

(2) Prime(61)

(3) (x+ 1)(x+ 1) = x

2

+ 2x+ 1

In prin
iple
omputations
an be done within an axiomati
 framework, in parti
ular

within predi
ate logi
 with equality. But then proofs of these statements be
ome

rather long. E.g.

(x+ 1)

2

= (x+ 1) � (x+ 1)

Proof-Assistants Using Dependent Type Systems 1221

= (x+ 1) � x+ (x+ 1) � 1

= x � x+ 1 � x+ x � 1 + 1 � 1

= x

2

+ x+ x+ 1

= x

2

+ 2 � x+ 1:

This is not even the whole story. Ea
h use of `=' has to be justi�ed by applying an

axiom, substitutions and the fa
t that + preserves equality

7

.

A way to handle (1) is to use the Poin
ar�e prin
iple extended with the redu
-

tion relation !!

�

for primitive re
ursion on the natural numbers. Operations like

f(n) = [

p

n ℄ are primitive re
ursive and hen
e are �-de�nable (using !!

��

) by

Re

nat

introdu
ed in Se
tion 3.8. Then, writing 0 = O; 1 = S O; : : : , it follows

from the Poin
ar�e prin
iple that the same is true for

F 45 = 6 ;

sin
e 6 = 6 is formally derivable and we have F 45 !!

��

6 . Usually, a proof

obligation arises that F is adequately
onstru
ted. For example, in this
ase it
ould

be

8n (F n)

2

� n < ((F n) + 1)

2

:

Su
h a proof obligation needs to be formally proved, but only on
e; after that

redu
tions like

F n !!

��

f(n)

an be used freely many times.

In a similar way, a statement like (2)
an be formulated and proved by
onstru
t-

ing a �-de�ning term K

Prime

for the
hara
teristi
 fun
tion of the predi
ate Prime.

This term should satisfy the following statement

8n [(Primen $ K

Prime

n = 1) &

(K

Prime

n = 0 _ K

Prime

n = 1)℄:

whi
h is the proof obligation.

Statement (3)
orresponds to a symboli

omputation. This
omputation takes

pla
e on the synta
ti
 level of formal terms. There is a fun
tion g a
ting on synta
ti

expressions satisfying

g((x+ 1)(x+ 1)) = x

2

+ 2x+ 1;

that we want to �-de�ne. While x + 1 : Nat (in
ontext x:Nat), one has `x +

1' : term(Nat). Here term(Nat) is an indu
tively de�ned type
onsisting of the

terms over the stru
ture hNat ;+;�; 0; 1i. Using a redu
tion relation for primitive

re
ursion over this data type, one
an represent g, say by G, so that

G `(x+ 1)(x+ 1) '!!

��

`x

2

+ 2x+ 1':

7

This is why some mathemati
ians may be turned o� by logi
. But these steps have to be done.

Usually they are done within a fra
tion of a se
ond and un
ons
iously by a mathemati
ian.

1222 Henk Barendregt and Herman Geuvers

Now in order to �nish the proof of (3), one needs to
onstru
t a self-interpreter E ,

su
h that for all expressions p : Nat one has

E `p' !!

��

p

and prove the proof obligation for G whi
h is

8t:term(Nat) E(Gt) = E t:

It follows that

E(G `(x+ 1)(x+ 1) ') = E `(x+ 1)(x+ 1) ':

Now, sin
e

E(G `(x + 1)(x+ 1) ') !!

��

E `x

2

+ 2x+ 1'

!!

��

x

2

+ 2x+ 1

E `(x+ 1)(x+ 1) ' !!

��

(x + 1)(x+ 1);

we have by the Poin
ar�e prin
iple

(x + 1)(x+ 1) = x

2

+ 2x+ 1:

Bureau
rati
 details how to treat free variables under E are omitted.

The use of indu
tive types like Nat and term(Nat) and the
orresponding re-

du
tion relations for primitive redu
tion was suggested by S
ott [1970℄ and the

extension of the Poin
ar�e prin
iple for the
orresponding redu
tion relations of

primitive re
ursion by Martin-L�of [1984℄. Sin
e su
h redu
tions are not too hard to

program, the resulting proof
he
king still satis�es the de Bruijn
riterion.

The general approa
h is as follows. In
omputer algebra systems algorithms are

implemented by spe
ial purpose term rewriting. For example for polynomial ex-

pressions p one has for (formal) di�erentiation and simpli�
ation the following.

p !

diff

: : : !

diff

p

diff-nf

= p

1

;

p !

simpl

: : : !

simpl

p

simpl-nf

= p

2

:

In this way the fun
tions f

diff

(p) = p

1

and f

simpl

(p) = p

2

are
omputed. In type

theory with indu
tive types and �-redu
tion these
omputations
an be
aptured

as follows.

F

diff

p !!

�Æ�

p

1

;

F

simpl

p !!

�Æ�

p

2

:

This is like repla
ing spe
ial purpose
omputers by the universal Turing-von Neu-

mann
omputer with software.

In [Oostdijk and Geuvers 2001℄ a program is presented that, for every primitive

re
ursive predi
ate P ,
onstru
ts the lambda term K

P

de�ning its
hara
teristi

Proof-Assistants Using Dependent Type Systems 1223

fun
tion and the proof of the adequa
y of K

P

. That is, one proves 8n:Nat:P (n)$

K

P

(n) = 1 (generi
ally for all primitive re
ursive predi
ates P). In this way, proving

P (n)
an be repla
ed by
omputing K

P

(n). The resulting
omputations for P =

Prime are not eÆ
ient, be
ause a straightforward (non-optimized) translation of

primitive re
ursion is given and the numerals (represented numbers) used are in a

unary (rather than n-ary) representation; but the method is promising. In [Caprotti

and Oostdijk 2001℄, a more eÆ
ient ad ho
 de�nition of the
hara
teristi
 fun
tion

of Prime is given, using Po
klington's
riterion, based on Fermat's small theorem

about primality. Also the required proof obligation is given. In this way it
an be

proved, formally in Coq, that a number like 1223334444555554444333221 is prime

(but also bigger numbers, some of 44 digits!) So the statements in the beginning of

this subse
tion
an be obtained by
omputations.

Another use of re
e
tion is to show that a fun
tion like

f(x) = e

3x

2

+

p

1 + sin

2

x+ � � �

is
ontinuous. Rather than proving this by hand one
an introdu
e a formal language

L, su
h that a des
ription of f is among them, and show that every expression e : L

denotes a
ontinuous fun
tion.

5. Proof assistants

Proof assistants are intera
tive programs running on a
omputer that help the

user to obtain veri�ed statements (within a given mathemati
al
ontext). This

veri�
ation
an be generated in two ways: automati
ally by a theorem prover, or

provided by the user with a proof that is
he
ked by the ma
hine.

It is
lear that proof
he
king is not automated dedu
tion. The problem of de
id-

ing whether a putative proof is indeed a proof is de
idable; on the other hand the

problem whether a putative theorem is indeed a theorem is unde
idable. Having

said this, it is nevertheless good to remark that there is a spe
trum ranging from

on the one hand pure proof-
he
kers to on the other hand pure automated theorem

provers. A pure proof-
he
ker, to whi
h one has to present an entire fully formalized

proof, is impra
ti
al, be
ause it is diÆ
ult to provide these proof-obje
ts. On the

other hand a pure automated theorem prover (that �nds a proof if a statement

A is provable and tells us that there is none otherwise) is impossible for theorems

in theories as simple as predi
ate logi
. Automated dedu
tion is in general only

possible as a partial algorithm (providing a proof if there is one, running forever

otherwise).

For some spe
ial theories, like elementary geometry (whi
h is de
idable), a total

algorithm may be possible (in the
ase of geometry there is the ex
ellent theorem

prover of Wu [1994℄). In most
ases an automated theorem prover requires that the

user gives hints. Although this
hapter is not about automated theorem provers, we

would like to mention Otter [1998℄ for
lassi
al predi
ate logi
, the system of Bibel

and S
hmitt [1998℄ for
lassi
al predi
ate logi
 with equality, Boyer and Moore's

1224 Henk Barendregt and Herman Geuvers

[1997℄ theorem prover Nqthm, based upon primitive re
ursive arithmeti
, and Wu's

[1994℄ geometry theorem prover that was already mentioned.

At the other end of the spe
trum a user-friendly proof-
he
ker usually has some

form of automated dedu
tion in order to make it more easy for the user to provide

proof-obje
ts. Proof-assistants
onsists of a proof-development system together with

a proof-
he
ker.

5.1. Comparing proof-assistants

We will dis
uss several proof-assistants. All systems ex
ept Agda work with proof

s
ripts that are a list of ta
ti
s needed to make the proof-assistant to verify the

validity of the statement. The proof-assistants fall into two
lasses: those with proof-

obje
ts and those without proof-obje
ts.

In the
ase of a proof-assistant with proof-obje
ts the s
ript generates and stores a

term that is (isomorphi
 to) a proof that
an be
he
ked by a simple proof
he
ker.

This makes these systems highly reliable. In prin
iple someone, who is doubtful

whether a
ertain statement is valid,
an download a proof-obje
t via the internet

and lo
ally verify it using his or her own trusted proof
he
ker of relatively small

size.

Proof-assistants that have no proof-obje
ts
ome in two
lasses. The �rst one

onsists of systems that in prin
iple
an translate the proof-s
ript into a proof-

obje
t that
an be veri�ed by a small
he
ker. In this
ase the proof-s
ript
an be

onsidered as a non-standard proof-obje
t. In order to make this translation these

systems just need some system spe
i�
 prepro
essor after whi
h a trustworthy
he
k

an be performed. The se
ond
lass
onsists of proof-assistants for whi
h there is

not (yet) a way to provide a proof-obje
t with high reliability. So for the
orre
tness

of theorems a

epted by assistants in this
lass one has to trust these systems. The

advantage of these kind of systems usually is their larger automated dedu
tion

fa
ilities and (therefore) their larger user-friendliness.

We will dis
uss the following proof-assistants.

system proof-obje
ts

Coq, Lego, Agda yes

Nuprl, HOL, Isabelle non-standard

Mizar, PVS, ACL2 no

Coq, Lego and Agda

Of these three systems Coq is the most developed one. The systems Coq and Lego

are based on versions of the
al
ulus of
onstru
tions extended with indu
tive types.

For the logi
al power of this formal system, see [A
zel 1999℄ and the referen
es

ontained therein. An important di�eren
e between the proof-assistants is in their

Proof-Assistants Using Dependent Type Systems 1225

omputational power. Both systems admit the Poin
ar�e prin
iple for �Æ�-
onversion.

This means that there are dedu
tion steps like the following ones.

Re
exive(R)

Æ

8x:Rxx

A(Ix)

�Æ

A(x)

and

A(fa
(4))

�Æ

A(24)

;

[Here one assumes to have de�ned Re
exive(R) � 8x:Rxx, I � �x:x and fa
 as the

fun
tion representing the fa
torial.℄ One of the di�eren
es between Coq and Lego

is that in Lego one
an introdu
e other notions of redu
tion for whi
h the Poin
ar�e

prin
iple is assumed to hold (in
luding non-terminating ones).

Both Coq and Lego
reate proof-obje
ts from the proof-s
ripts and store them.

These proof-obje
ts are isomorphi
 to natural dedu
tion proofs. The two systems

allow impredi
ative arguments as used in a
tual mathemati
s, but argued to be po-

tentially unreliable by Poin
ar�e and Martin-L�of. The system Agda is similar to Coq

and Lego, ex
ept that it is based on Martin-L�of type-theory in whi
h impredi
ative

quanti�
ations are not allowed. The Poin
ar�e prin
iple
an be assumed by the user

for any notion of redu
tion that is proved to be strongly normalizing. Agda is not

so mu
h `ta
ti
s based' as Coq and Lego. In Agda one edits a proof term by `�lling

in the holes' in an open term. The system a
ts as a stru
ture editor, providing

support for term
onstru
tion.

Nuprl, HOL and Isabelle

Constable et al.'s [1986℄ system Nuprl does have proof-obje
ts, but a judgment

` p : A;

indi
ating that p is a proof of A, is not de
idable. The reason for this is that the

Poin
ar�e prin
iple is assumed not only for �Æ�-
onversion, (the intensional equality)

but also for extensional equality. See Se
tion 2.8. So there is a rule

p : A(t) q : (t = s)

p : A(s)

So, Nuprl is based on an extensional type system. This implies that type
he
king

p : A? (TCP, see Se
tion 2.1) is no longer de
idable and therefore proofs
annot

be
he
ked. However, there are `expanded' proof-obje
ts d that
an establish that

p : A. In fa
t, the d takes into a

ount the terms q for whi
h q : t = s. So these d

serve as the `real' proof-obje
ts.

The proof-assistant HOL [1998℄ is based on Chur
h's [1940℄ simple type theory.

This is a
lassi
al system of higher order logi
. That HOL uses non-standard proof-

obje
ts has a di�erent reason. HOL does not satisfy the Poin
ar�e prin
iple for any

onversion relation. As a
onsequen
e
omputations involving re
ursion be
ome

quite lengthy when
onverted to a proof-obje
t (for example establishing by a proof

that ` fa

n

=

n!

). Therefore the design de
ision was made that proof-obje
ts

1226 Henk Barendregt and Herman Geuvers

are not stored, only the proof-s
ripts. Even if a proof of fa

n

=

n!

may be long,

it is possible to give it a short des
ription in the proof-s
ript. Indu
tion is done by

de�ning an indu
tive predi
ate in a higher order way as the smallest set satisfying

a
losure property.

Also Isabelle is based on intuitionisti
 simple type theory. But this proof-assistant

is �ne-tuned towards using this logi
 as a meta-logi
 in whi
h various logi
s (for

example �rst-order predi
ate logi
, the systems of the lambda
ube or higher or-

der logi
) are des
ribed internally, in the Logi
al Framework style. This makes it

having non-standard proof-obje
ts. Again the system does not satisfy the Poin
ar�e

prin
iple, but avoids the problem by not
onsidering proof-obje
ts. Both assistants

HOL and Isabelle have pretty good rewrite engines, needed to run the non-standard

proof-obje
ts.

It should be emphasized that HOL and Isabelle did not fail to adept the Poin
ar�e

prin
iple be
ause it was forgotten, but be
ause the problem of equational reasoning

was solved in a di�erent way, by the non-standard proof-obje
ts in the form of

the ta
ti
s. It makes formalizing more easy, but one
annot use proof-obje
ts for

example to see details of the proof or for program extra
tion. However, it is in

prin
iple not diÆ
ult to modify either HOL or Isabelle to
reate and store proof

obje
ts.

Mizar, ACL2, PVS

Mizar [1989℄ is based on a form of set theory (Tarski-Grothendie
k, that is ZFC

extended with an axiom expressing the existen
e arbitrary large
ardinals). It does

not work with proof-obje
ts nor does it have the Poin
ar�e prin
iple. The system has

some automated dedu
tion and a user-friendly set of ta
ti
s. In fa
t a ni
e feature

of the system is that the proof-s
ript is
lose to an ordinary proof in mathemati
s

(whi
h are internally represented as proofs in set theory). An impressive
olle
tion

of results is in the Mizar library. It seems that in prin
iple it is possible that the

Mizar s
ripts are translated into a proof-obje
t.

ACL2 [2000℄ is an extension of the theorem prover of Boyer-Moore. It is based on

lassi
al primitive re
ursive arithmeti
 and it is used in industry. It is not possible

for the user to
onstru
t indu
tive types, but there is a powerful built-in indu
tion:

a user
an de�ne his own well-founded re
ursive fun
tions (up to �

0

re
ursion) and

let the system
ompute with them. (The fun
tions are a
tually Lisp fun
tions.)

PVS [1999℄ again is based on
lassi
al simple type theory. It is without proof-

obje
ts and exploits this by allowing all kind of rewriting, for numeri
 and symboli

equalities. The system is very user-friendly be
ause of automated dedu
tion that is

built in. The system allows subtypes of the form

A = fx : B j P (x)g:

If the system has to
he
k a : A it will generate a proof-obligation for the reader:

\prove P (a)". Up to our knowledge no e�ort has been made to provide PVS with

proof-obje
ts.

Proof-Assistants Using Dependent Type Systems 1227

Comparison

The proof-assistants
onsidered follow the following pattern:

Agda-Coq-Lego-Nuprl-HOL-Isabelle-Mizar-ACL2-PVS.

Agda, Coq and Lego are to the left, indi
ating reliability (Agda given the �rst

pla
e be
ause it has only predi
ative logi
; Coq
oming se
ond, sin
e only strongly

normalizing rewrite rules may be added). After that follow Nuprl, HOL and Isabelle,

with their non-standard proof-obje
ts (Nuprl
oming �rst for the same reasons as

Agda; Isabelle
oming last, be
ause the extra layer making things a bit harder to

manage). Finally
ome Mizar, ACL2 and PVS, be
ause they do not work with

proof-obje
ts. We put PVS last, be
ause every now and then bugs are found in this

system).

On the other hand, the order for internal automation is the opposite: ACL2 and

PVS win and Agda loses. Of
ourse eventually proof-assistants should be developed

that are both reliable and user-friendly. The following judgments are based on some

intuition and should not be taken too seriously.

Ass. p.o. reliab. PP logi
 dep.t. ind.t autom. #users

Agda yes +++ �Æ�R

1

int. pred. yes yes none

8

-

Coq yes ++ �Æ�R

2

int. yes yes + ++

Lego yes ++ �Æ�R

1

int. yes yes + +

Nuprl n.s. ++ �Æ�R

3

int. yes yes + ++

HOL n.s. ++ none
l. no yes ++ ++

Isabelle n.s. ++ none t.b.s. no no ++ ++

Mizar none + none
l. yes no + ++

ACL2 none + R

4

pra no yes

9

+++ +++

PVS none � none
l. no no +++ +++

8

There is a little use of higher order uni�
ation

9

Basi
ally, there's only one indu
tive type in whi
h the user `
odes' his indu
tion

1228 Henk Barendregt and Herman Geuvers

Legenda

Ass. name of the Proof Assistant;

p.o. proof-obje
ts;

n.s. non-standard;

reliab. reliability;

PP Poin
ar�e prin
iple;

dep.t. dependent types;

ind.t. indu
tive types;

autom. degree of automation;

int. intuitionisti
 logi
 preferred;

pred. only predi
ative quanti�
ation;

l.
lassi
al logi
;

pra primitive re
ursive arithmeti
 (so no quanti�ers);

t.b.s. to be spe
i�ed by the user;

R

1

arbitrary notion of redu
tion;

R

2

stru
turally well-founded re
ursion;

R

3

arbitrary provable equality;

R

4

�

0

-re
ursion.

There are very many other proof-assistants. See [Digimath 2000℄ for an impressive

list.

5.2. Appli
ations of proof-assistants

At present there are two approa
hes to the me
hani
al veri�
ation of
ompli
ated

statements. The �rst one, that we may
all the pragmati
 approa
h, uses proof assis-

tants with many
omplex tools to verify the
orre
tness of statements. These tools

in
lude theorem provers and
omputer algebra systems, the
orre
tness of whi
h

has not been veri�ed (as a matter of fa
t,
omputer algebra systems are often not

formally
orre
t at all). Even if these systems may
ontain bugs the
orre
tness of

hardware systems and (relatively small but
riti
al) software systems (like proto-

ols) is dramati
ally in
reased, see [Rushby and Henke 1993℄ and [Ruess, Shankar

and Srivas 1996℄. Proof-assistants that are used in
lude PVS, Nuprl, Isabelle and

HOL.

The other approa
h, that we may
all the fundamental one, aims at the highest

degree of reliability. In this approa
h one only uses proof-assistants with a proof-

he
ker that satis�es the de Bruijn
riterion, i.e. have a small verifying program.

In this
hapter we have fo
used our attention on the se
ond approa
h. It should

be remarked that even in this approa
h there is some spe
trum of reliability. If

the Poin
ar�e prin
iple is adopted for �Æ�-
onversion, the verifying program is more

Proof-Assistants Using Dependent Type Systems 1229

omplex than the one for just �Æ-
onversion. This is natural and fair, sin
e adopting

the Poin
ar�e prin
iple for �-
onversion has as
onsequen
e that primitive re
ursive

omputations within a proof
ome without proof obligations. In fa
t the pragmati

proof-assistants
an be viewed as a strong use of the
omputational power as pro-

vided by a form of the Poin
ar�e prin
iple.

Another parameter in a fundamental proof-assistant is the
hoi
e of strength of

the underlying type system and hen
e the related logi
al system. For example, one

may use �rst-order, se
ond-order or higher-order logi
. This parameter determines

the logi
al strength of the proof system.

Rather than making a
hoi
e for the
omputational and logi
al strength one may

think of a universal

10

system in whi
h these two
an be set a

ording to the taste

and appli
ation area of the user. It is hoped (and expe
ted) that it is possible

to
onstru
t a universal proof-assistant that is suÆ
iently eÆ
ient. Also there is

a
onsiderable foundational interest in the enterprise of
onstru
ting user-friendly

proof-assistants. One has to realize whi
h steps are obvious to the mathemati
ian

and provide suitable tools.

It is a (possibly long term) goal of the se
ond approa
h to make the formalization

of an informally known mathemati
al proof as easy as writing a mathemati
al paper

say in L

A

T

E

X. At the same time the eÆ
ien
y should be
omparable to eÆ
ient

systems for
omputer algebra.

Several notions in
lassi
al mathemati
s are not dire
tly available in the
on-

stru
tive approa
h of type theory. Next to the failure of the ex
luded middle these

in
lude quotient sets, subsets de�ned by a property and partial fun
tions. It is for

good reasons that these
onstru
tions are not available. In the
onstru
tive type

theoreti
 approa
h the notion a : A should be de
idable, a property that is lost in

the presen
e of types representing unde
idable sets.

In order to in
rease the ease of formalizing proofs several tools are being
on-

stru
ted that enhan
e the power of the fundamental approa
h. In this way even-

tually the power of the fundamental approa
h may be equal to that of the present

day pragmati
 one.

When the goal of easy formalization has been rea
hed not only spin-o� in system

design, but also in the development of mathemati
s is expe
ted. First of all there

may emerge a di�erent system of refereeing. People will only submit papers that

are
orre
t. The referee
an fo
us on the judgment whether the paper is of interest

and point out relations with other work. Then there will be an impa
t on tea
hing

mathemati
s. The notion of proof
an be taught by patient
omputers.

It is also to be expe
ted that eventually proof-assistants will help the working

mathemati
ian. Arbitrary mathemati
al notions
an be represented on a
omputer;

not just the
omputable ones, as is presently the
ase in systems of
omputer

algebra. The intera
tion between humans and
omputers may lead to fruitful new

mathemati
s, where humans provide the intuition and ma
hines take over part of

10

Of
ourse there
annot be a universal proof-assistant, due to G�odel's theorem. The word

universal is used in the same way as ZFC is seen as a universal foundation: it
aptures large parts

of mathemati
s

1230 Henk Barendregt and Herman Geuvers

the
raftsmanship.

Next to these theoreti
al aspe
ts, there is a potential pra
ti
al spin-o� in the

form of program extra
tion. In
ase a statement of the form

8x9y:A(x; y)

has been proved
onstru
tively, an algorithm �nding the y in terms of the x
an

be extra
ted automati
ally. See [Mohring 1986, Paulin-Mohring and Werner 1993,

Parent 1995℄.

For a dis
ussion of issues related to (the future of) proof-assistants, see also the

QED-manifesto in [Bundy 1994℄ (pp. 238{251).

Many (often smaller) proof-assistants we have not mentioned. For a (probably

in
omplete) but extended survey see [Digimath 2000℄.

A
knowledgments

We thank all people from the EC Working Group `Types' and its prede
essor

`Logi
al Frameworks' for the pleasant
ooperation and the lively dis
ussions over

the years. In parti
ular we want to thank Ana Bove, Thierry Coquand, Wolfgang

Naras
hewski, Randy Polla
k, Dan Synek, Freek Wiedijk, Jan Zwanenburg and the

readers for their very useful suggestions and
omments.

Bibliography

Abramsky, S., Gabbay, D. M. and Maibaum, T., eds [1992℄, Handbook of Logi
 in Computer

S
ien
e, Volume 2: Ba
kground: Computational Stru
tures, Oxford University Press.

ACL2 [2000℄, `Appli
ative Common Lisp'. Ar
hite
ts: M. Kaufmann and J. Strother Moore.

URL: http://www.
s.utexas.edu/users/moore/a
l2/a
l2-do
.html

A
zel P. [1999℄, On relating type theories and set theories, in `Altenkir
h, Naras
hewski and

Reus [1999℄'.

Agda [2000℄, `A system for in
rementally developing proofs and programs'. Ar
hite
t: C. Co-

quand.

URL: http://www.
s.
halmers.se/
atarina/agda/

Altenkir
h, T., Naras
hewski, W. and Reus, B., eds [1999℄, International Workshop TYPES

'98, Kloster Irsee, Germany, 1998: sele
ted papers, Vol. 1657, Springer-Verlag, Berlin.

Audebaud P. [1991℄, Partial obje
ts in the Cal
ulus of Constru
tions, in `Pro
eedings of the

Symposium on Logi
 in Computing S
ien
e', IEEE, Amsterdam, NL, pp. 86{95.

Barendregt H. [1992℄, Lambda
al
uli with types, in `Abramsky, Gabbay and Maibaum [1992℄',

Oxford University Press, pp. 117{309.

Barendregt H. [1997℄, `The impa
t of the lambda
al
ulus', Bulletin of Symboli
 Logi

3(2), 181{215.

Barendregt, H. and Nipkow, T., eds [1994℄, Types for proofs and programs: international

workshop TYPES '93, Nijmegen, The Netherlands, 1993: sele
ted papers, Vol. 806 of Le
ture

Notes in Computer S
ien
e, Springer-Verlag, Berlin.

Barthe G. [1996℄, Impli
it
oer
ions in type systems, in `Berardi and Coppo [1996℄', pp. 1{15.

Barthe G., Ruys M. and Barendregt H. [1996℄, A two-level approa
h towards lean proof-

he
king, in `Berardi and Coppo [1996℄', pp. 16{35.

Proof-Assistants Using Dependent Type Systems 1231

Barthe G. and S�rensen M. [2000℄, `Domain-free Pure Type Systems', Journal of Fun
tional

Programming 10, 417{452. Preliminary version in S. Adian and A. Nerode, editors, Pro
eed-

ings of LFCS'97, LNCS 1234, pp 9-20.

Barwise J. and Et
hemendy J. [1995℄, Hyperproof, Cambridge University Press.

Berardi S. [1988℄, Towards a mathemati
al analysis of the Coquand-Huet Cal
ulus of Con-

stru
tions and the other systems in Barendregt's
ube, Te
hni
al report, Dept. of Computer

S
ien
e, Carnegie-Mellon University and Dipartimento Matemati
a, Universita di Torino.

Berardi S. [1990℄, Type Dependen
e and Constru
tive Mathemati
s, PhD thesis, Dipartimento

Matemati
a, Universit�a di Torino.

Berardi, S. and Coppo, M., eds [1996℄, Types for proofs and programs: international workshop

TYPES '95, Torino, Italy, 1995: sele
ted papers, Vol. 1158, Springer-Verlag, Berlin.

Bezem, M. and Groote, J., eds [1993℄, Typed Lambda Cal
uli and Appli
ations, TLCA'93,

Vol. 664 of Le
ture Notes in Computer S
ien
e, Springer, Berlin.

Bibel, W. and S
hmitt, P., eds [1998℄, Automated Dedu
tion|A Basis for Appli
ations, Vol.

I,II,III, Kluwer, Dordre
ht.

Boyer R. and Moore J. [1997℄, A Computational Logi
 Handbook, se
ond edn, A
ademi
 Press,

London.

Bundy, A., ed. [1994℄, Automated dedu
tion, CADE-12: 12th International Conferen
e on Au-

tomated Dedu
tion, Nan
y, Fran
e, June 26{July 1, 1994: pro
eedings, Vol. 814 of Le
ture

Notes in Arti�
ial Intelligen
e and Le
ture Notes in Computer S
ien
e, Springer-Verlag In
.

Caprotti O. and Oostdijk M. [2001℄, `Formal and eÆ
ient primality proofs by use of
omputer

algebra ora
les', Journal of Symboli
 Computation to appear. Spe
ial Issue on Computer

Algebra and Me
hanized Reasoning.

Chur
h A. [1940℄, `A formulation of the simple theory of types', Journal of Symboli
 Logi

5, 56{68.

Constable et al. R. [1986℄, Implementing Mathemati
s with the Nuprl Proof Development

System, Prenti
e-Hall, New Jersey.

COQ [1999℄, `The Coq proof assistant version 6.9'. Ar
hite
ts: Chr. Paulin-Mohring et al.

URL: http://pauilla
.inria.fr/
oq/assis-eng.html

Coquand T. [1985℄, Une th�eorie des Constru
tions, PhD thesis, Universit�e Paris VII, Th�ese de

troisi�eme
y
le.

Coquand T. [1986℄, An analysis of Girard's paradox, in `Pro
eedings of the Symposium on Logi

in Computing S
ien
e', IEEE, Cambridge, Massa
husetts.

Coquand T. [1991℄, An algorithm for testing
onversion in type theory, in `Huet and Plotkin

[1991℄', Cambridge University Press.

Coquand T. and Gallier J. [1990℄, A proof of strong normalization for the theory of Con-

stru
tions using a Kripke-like interpretation, in G. Huet and G. Plotkin, eds, `Preliminary

Pro
eedings 1st Annual Workshop on Logi
al Frameworks, Antibes, Fran
e, 7{11 May 1990',

pp. 479{497.

URL: ftp://ftp.inria.fr/INRIA/Proje
ts/
oq/types/Pro
eedings/book90.dvi

Coquand T. and Huet G. [1988℄, `The Cal
ulus of Constru
tions', Information and Computa-

tion 76, 95{120.

Coquand T. and Paulin-Mohring C. [1990℄, Indu
tively de�ned types, in `Martin-L�of and

Mints [1990℄', Vol. 417 of Le
ture Notes in Computer S
ien
e, Springer Verlag, Berlin.

Daalen D. v. [1980℄, The Language Theory of Automath, PhD thesis, Eindhoven University of

Te
hnology, The Netherlands.

de Bruijn N. [1980℄, A survey of the proje
t Automath, in `Seldin and Hindley [1980℄', A
ademi

Press, pp. 579{606. Also in Nederpelt et al. [1994℄, pp 141{161.

de Bruijn N. G. [1970℄, The mathemati
al language AUTOMATH, its usage and some of its ex-

tensions, in M. Laudet, D. La
ombe and M. S
huetzenberger, eds, `Symposium on Automati

Demonstration', Springer Verlag, Berlin, 1970, IRIA, Versailles, pp. 29{61. Le
ture Notes in

Mathemati
s 125; also in Nederpelt et al. [1994℄.

1232 Henk Barendregt and Herman Geuvers

Dezani-Cian
aglini, M. and Plotkin, G., eds [1995℄, Se
ond International Conferen
e on

Typed Lambda Cal
uli and Appli
ations, TLCA'95, Vol. 902 of Le
ture Notes in Computer

S
ien
e, Springer, Berlin.

Digimath [2000℄, `A list of
omputer math systems'. F. Wiedijk.

URL: http://www.
s.kun.nl/ freek/digimath

Dowek G. [1993℄, The unde
idability of typability in the ��-
al
ulus, in `Bezem and Groote

[1993℄', pp. 139{145.

Dybjer, P., Nordstr

�

om, B. and Smith, J., eds [1995℄, Types for proofs and programs: inter-

national workshop TYPES '94, B�astad, Sweden, 1994: sele
ted papers, Vol. 996 of Le
ture

Notes in Computer S
ien
e, Springer-Verlag, Berlin.

Geuvers H. [1992℄, The Chur
h-Rosser property for ��-redu
tion in typed lambda
al
uli, in

`Pro
eedings of the seventh annual symposium on Logi
 in Computer S
ien
e, Santa Cruz,

Cal.', IEEE, pp. 453{460.

Geuvers H. [1993℄, Logi
s and Type Systems, PhD thesis, Catholi
 University of Nijmegen, The

Netherlands.

Geuvers H. [1995℄, A short and
exible proof of strong normalization for the Cal
ulus of Con-

stru
tions, in `Dybjer, Nordstr�om and Smith [1995℄', pp. 14{38.

Geuvers H. and Nederhof M. [1991℄, `A modular proof of strong normalization for the Cal
ulus

of Constru
tions', Journal of Fun
tional Programming 1(2), 155{189.

Geuvers H., Poll E. and Zwanenburg J. [1999℄, Safe proof
he
king in type theory with Y,

in F. Flum and M. Rodriguez-Artalejo, eds, `Computer S
ien
e Logi
 (CSL'99)', Vol. 1683 of

LNCS, Spinger-Verlag, pp. 439{452.

Gim

�

enez, E. and Paulin-Mohring, C., eds [1998℄, International Workshop TYPES '96, Aus-

sois, Fran
e, 1996: sele
ted papers, Vol. 1512 of LNCS, Springer-Verlag, Berlin.

Girard J.-Y. [1972℄, Interpr�etation fon
tionelle et �elimination des
oupures de l'arithm�etique

d'ordre sup�erieur, PhD thesis, Th�ese d'Etat, Universit�e Paris VII.

Girard, J.-Y., ed. [1999℄, Typed Lambda Cal
ulus and Appli
ations, TLCA '99, Vol. 1581 of

Le
ture Notes in Computer S
ien
e, Springer, Berlin.

Girard J.-Y., Lafont Y. and Taylor P. [1989℄, Proofs and Types, Vol. 7 of Cambridge Tra
ts

in Theoreti
al Computer S
ien
e, Cambridge University Press.

Goguen H. and Luo Z. [1993℄, Indu
tive data types: Well-orderings revisited, in `Huet and

Plotkin [1993℄', Cambridge University Press, pp. 198{218.

Harper R., Honsell F. and Plotkin G. [1993℄, `A framework for de�ning logi
s', Journal of

the ACM 40(1), 143{184.

Hofmann M. [1994℄, Elimination of extensionality and quotient types in Martin-L�of type theory,

in `Barendregt and Nipkow [1994℄', pp. 166{190.

HOL [1998℄, `Higher order logi
 theorem prover'. Ar
hite
ts: K. Slind et al.

URL: http://www.
l.
am.a
.uk/Resear
h/HVG/HOL/

Howard W. [1980℄, The formulas-as-types notion of
onstru
tion, in `Seldin and Hindley [1980℄',

A
ademi
 Press, pp. 479{490.

Howe D. [1988℄, Computational metatheory in Nuprl, in E. Lusk and R. Overbeek, eds, `Pro
eed-

ings of the Ninth International Conferen
e of Automated Dedu
tion', number 310 in `LNCS',

Springer, Berlin, pp. 238{257.

Huet, G. and Plotkin, G., eds [1991℄, Logi
al Frameworks, Cambridge University Press.

Huet, G. and Plotkin, G., eds [1993℄, Logi
al Environments, Cambridge University Press.

Hurkens A. [1995℄, A simpli�
ation of Girard's paradox, in `Dezani-Cian
aglini and Plotkin

[1995℄', pp. 266{278.

JAPE [1997℄, `A framework for building intera
tive proof editors'. Ar
hite
ts: B. Sufrin and

R. Bornat.

URL: http://users.
omlab.ox.a
.uk/bernard.sufrin/jape.html

LEGO [1998℄, `The Lego proof assistant'. Ar
hite
t: R. Polla
k.

URL: http://www.d
s.ed.a
.uk/home/lego/

Proof-Assistants Using Dependent Type Systems 1233

Luo Z. [1989℄, ECC, the Extended Cal
ulus of Constru
tions, in `Logi
 in Computer S
ien
e',

IEEE Computer So
iety Press.

Luo Z. [1994℄, Computation and Reasoning: A Type Theory for Computer S
ien
e, Vol. 11 of

Intl. Series of Monographs in Computer S
ien
e, Clarendon Press.

Luo Z. [1999℄, `Coer
ive subtyping', Journal of Logi
 and Computation 9(1).

Magnusson L. [1994℄, The implementation of ALF: a proof-editor based on Martin-L�of's

monomorphi
 type theory with expli
it substitution, PhD thesis, Dept. of Comp. S
ien
e,

Chalmers University, Sweden.

Martin-L

�

of P. [1984℄, Intuitionisti
 Type Theory, Studies in Proof Theory, Bibliopolis, Napoli.

Martin-L

�

of, P. and Mints, G., eds [1990℄, COLOG-88: International
onferen
e on
omputer

logi
, Vol. 417 of Le
ture Notes in Computer S
ien
e, Springer Verlag, Berlin.

Mathpert [1997℄, `Mathpert'. Ar
hite
t: M. Beeson.

URL: http://www.mathpert.
om

M
Carthy J. [1962℄, Computer programs for
he
king mathemati
al proofs, in `Pro
eedings of

the Symposium in Pure Mathemati
s 5', Ameri
an Mathemati
al So
iety.

Mellies P. and Werner B. [1998℄, A generi
 proof of strong normalisation for Pure Type

Systems, in `Gim�enez and Paulin-Mohring [1998℄'.

Mizar [1989℄. Ar
hite
ts: Andrzej Trybule
, Czeslaw Bylinski.

URL: http://www.mizar.org

Mohring C. [1986℄, Algorithm development in the Cal
ulus of Constru
tions, in `Pro
eedings of

the First Symposium on Logi
 in Computer S
ien
e, Cambridge, Mass.', IEEE, Washington

DC, pp. 84{91.

Nederpelt R. [1973℄, Strong normalisation in a lambda
al
ulus with lambda stru
tured types,

PhD thesis, Eindhoven University of Te
hnology, The Netherlands.

Nederpelt, R., Geuvers, H. and de Vrijer, R., eds [1994℄, Sele
ted Papers on Automath,

Studies in Logi
 and the Foundations of Mathemati
s 133, North-Holland, Amsterdam.

Nordstr

�

om B., Petersson K. and Smith J. [1990℄, Programming in Martin-L�of's Type Theory,

Oxford University Press.

Oostdijk M. and Geuvers H. [2001℄, `Proof by
omputation in the Coq system', Theoreti
al

Computer S
i. to appear.

OpenMath [1998℄.

URL: http://www.nag.
o.uk/proje
ts/openmath/omso

Otter [1998℄. Ar
hite
t: William M
Cune.

URL: http://www.m
s.anl.gov/AR/otter

Parent C. [1995℄, Synthesizing proofs from programs in the Cal
ulus of Indu
tive Constru
tions,

in B. M�oller, ed., `Pro
eedings 3rd Intl. Conf. on Mathemati
s of Program Constru
tion,

MPC'95, Kloster Irsee, Germany, 1995', Vol. 947 of Le
ture Notes in Computer S
ien
e,

Springer-Verlag, Berlin, pp. 351{379.

Paulin-Mohring C. [1994℄, Indu
tive de�nitions in the system Coq; rules and properties, in

`Bezem and Groote [1993℄', pp. 328{345.

Paulin-Mohring C. and Werner B. [1993℄, `Synthesis of ML programs in the system Coq',

Journal of Symboli
 Computation 15, 607{640.

Pfenning F. [1991℄, Logi
 programming in the LF logi
al framework, in `Huet and Plotkin

[1991℄', Cambridge University Press, pp. 149{181.

Pfenning F. [2001℄, Logi
al frameworks, in A. Robinson and A. Voronkov, eds, `Handbook of

Automated Reasoning', Vol. II, Elsevier S
ien
e,
hapter 17, pp. 1063{1147.

Polla
k R. [1995℄, A veri�ed type
he
ker, in `Dezani-Cian
aglini and Plotkin [1995℄', pp. 365{

380.

PVS [1999℄, `Spe
i�
ation and veri�
ation system'. Ar
hite
ts: J. Rushby et al.

URL: http://pvs.
sl.sri.
om/

Ramsey F. [1925℄, `The foundations of mathemati
s', Pro
eedings of the London Mathemati
al

So
iety pp. 338{384.

1234 Henk Barendregt and Herman Geuvers

Ruess H., Shankar N. and Srivas M. [1996℄, Modular veri�
ation of SRT division, in `Pro-

eedings of the 8th International Conferen
e on Computer Aided Veri�
ation, New Brunswi
k,

NJ, USA, eds. R. Alur and T.A. Henzinger', Vol. 1102 of Le
ture Notes in Computer S
ien
e,

Springer, pp. 123{134.

Rushby J. and Henke F. v. [1993℄, `Formal veri�
ation of algorithms for
riti
al systems', IEEE

Transa
tions on Software Engineering 19(1), 13{23.

Russell B. [1903℄, The Prin
iples of Mathemati
s, Allen & Unwin, London.

S
ott D. [1970℄, Constru
tive validity, in D. L. M. Laudet and M. S
huetzenberger, eds, `Sym-

posium on Automated Demonstration', Vol. 125 of Le
ture Notes in Mathemati
s, Springer,

Berlin, pp. 237{275.

Seldin, J. and Hindley, J., eds [1980℄, To H.B. Curry: Essays on Combinatory Logi
, Lambda

Cal
ulus and Formalism, A
ademi
 Press.

Severi P. [1998℄, `Type inferen
e for Pure Type Systems', Information and Computation 143-

1, 1{23.

Severi P. and Poll E. [1994℄, Pure Type Systems with de�nitions, in A. Nerode and Y. Matiya-

sevi
h, eds, `Pro
eedings of LFCS'94, St. Petersburg, Russia', number 813 in `LNCS', Springer

Verlag, Berlin, pp. 316{328.

Swaen M. [1989℄, Weak and strong sum-elimination in intuitionisti
 type theory, PhD thesis,

University of Amsterdam.

Terlouw J. [1989℄, Een nadere bewijstheoretis
he analyse van GSTT's (Dut
h), Te
hni
al re-

port, Department of Computer S
ien
e, Catholi
 University of Nijmegen.

van Benthem Jutting L. [1993℄, `Typing in Pure Type Systems', Information and Computation

105(1), 30{41.

van Benthem Jutting L., M
Kinna J. and Polla
k R. [1994℄, Che
king algorithms for Pure

Type Systems, in `Barendregt and Nipkow [1994℄', pp. 19{61.

Whitehead A. and Russell B. [1910, 1927℄, Prin
ipia Mathemati
a Vol 1 (1910) and 2 (1927),

Cambridge University Press.

Wu W. [1994℄, Me
hani
al Theorem Proving in Geometries, Texts and Monographs in Symboli

Computation, Springer.

Zwanenburg J. [1999℄, Pure Type Systems with subtyping, in `Girard [1999℄', pp. 381{396.

Proof-Assistants Using Dependent Type Systems 1235

Index

Symbols

�-type . 1204

�-type
omputation rule 1205

�-equality
he
king1191

�-redu
tion . .1153, 1158, 1164, 1182, 1225

Æ-redu
tion 1153, 1157, 1225

�-redu
tion .1168

�-redu
tion 1164, 1207{1211, 1225

�PRED . 1197, 1201

�PRED! .1198, 1201

�� . 1201

�HOL . 1185, 1197

�HOL modi�ed . 1195

A

ACL2 . 1224

adequa
y . 1161{1163

Agda .1224

antisymmetri
 . 1157

Apply ta
ti
 .1213

autarki

omputation 1220

Automath . 1168

B

book equality . 1170

bound variable . 1182

C

Cal
ulus of Constru
tions 1198, 1200

Chur
h's � .1164, 1165

oer
ion . 1173, 1174

ompleteness of propositions as types 1177,

1190

ompleteness of type synthesis1193

omputability of types1190

omputation1164, 1166, 1220

omputer mathemati
s 1152

on
uen
e 1159, 1166, 1168, 1191

on
uen
e on well-typed terms 1191

onstru
tive logi
 . . 1156, 1164, 1177, 1184

ontext 1160, 1170, 1185, 1186, 1212

ontext
he
king algorithm 1192

onversion1153, 1166, 1182

onversion rule 1167, 1169, 1183, 1196

Coq . 1212, 1215, 1224

Currying . 1182

ut-elimination 1166, 1188

D

de Bruijn
riterion 1155, 1228

de
idability of �Æ .1159

de
idability of type
he
king1156

dedu
tion rules of HOL 1183

de�nitional equality 1170, 1172

dependent fun
tion type .1158, 1172, 1186

dependent type 1153, 1158, 1210, 1228

dependent typed
onstru
tors 1210

dire
t en
oding .1160

disambiguate . 1190

disjun
tion property1184

E

equality . 1168

equality judgment 1169

equality of fun
tions1172

equality type . 1171

Eu
lid's theorem . 1215

existen
e property 1165, 1185

existential quanti�er1178, 1205

extensional equality 1169, 1172, 1225

F

faithfulness . 1161{1163

Fermat's small theorem 1223

�xed-point-operator 1180

free variable . 1182

fun
tion de�nition by re
ursion 1206

fun
tion spa
e setoid 1172

fun
tional PTS . 1200

fun
tions as algorithms 1164

fun
tions as graphs 1164

G

goal . 1212

group-stru
ture . 1204

H

higher order fun
tion 1198

higher order logi
1164, 1181, 1225

higher order typed �-
al
ulus 1185

HOL . 1224, 1225

HOL . 1181

I

identity type . 1171

impredi
ativity 1178, 1184

in
onsistent type system1177, 1201

indu
tive equality 1171, 1211

indu
tive predi
ate 1210

indu
tive type 1153, 1206, 1214, 1228

1236 Henk Barendregt and Herman Geuvers

intensional equality1172, 1225

intera
tive proof-development 1212

intera
tive theorem proving 1156

Intros ta
ti
 . 1212

irre
exive . 1157

Isabelle . 1224

L

Lego . 1224

Leibniz equality 1170, 1184, 1188

List . 1207

logi
al equality . 1170

logi
al framework 1160

M

mat
hing . 1213

minimal predi
ate logi
1162

minimal propositional logi
 1161

Mizar . 1224

modus ponens . 1185

N

nat . 1164, 1206

nat . 1214

non-standard proof-obje
t 1224

normalization 1153, 1159

Nuprl . 1172, 1224

O

obje
ts depending on proofs . . . 1165, 1178

Ok(�) . 1192

opaque . 1166

OpenMath . 1153

P

parametri
 indu
tive type 1209

Po
klington's
riterion 1223

Poin
ar�e prin
iple . 1167, 1183, 1221, 1228

polymorphism 1198, 1202, 1203

predi
ativity 1153, 1227, 1228

primality . 1223

primitive re
ursion 1164, 1206, 1223

produ
t
omputation rule 1203

produ
t type . 1202

program extra
tion 1230

proof assistant1151, 1211, 1223

proof by indu
tion 1206

proof
he
ker 1151, 1212

proof
he
king1151, 1153, 1180

proof development1215

proof development system 1151

proof irrelevan
e . 1179

proof s
ript . 1224

proof-obje
t 1155, 1157, 1224, 1228

proofs as terms 1157, 1185, 1189

propositions as types1153, 1156, 1176,

1185, 1188

provability . 1183

pseudo terms 1170, 1185, 1196

PTS . 1196

PTS-morphism . 1200

Pure Type System 1196

PVS . 1224

Q

QED-manifesto1153, 1230

quotient-setoid . 1173

R

re
e
tion . 1168, 1223

reliability of ma
hine
he
ked proofs . 1155

S

semanti
s . 1175

setoid . 1172, 1179

setoid fun
tion . 1172

shallow en
oding . 1160

signature . 1160

singly sorted PTS 1200

sorts . 1196

soundness . 1161, 1176

soundness of type synthesis1193

strengthening . 1199

strong
ompleteness 1177

strong normalization 1191, 1201

sub-setoid . 1173

subje
t redu
tion 1166, 1191, 1200

substitution 1182, 1199

subtype 1173, 1174, 1226

sum
omputation rule 1203

sum type . 1203

syntax-dire
ted rules 1192

system F . 1198

system F! . 1198

T

ta
ti
 . 1212

ta
ti
s . 1154

Type (�) . 1154, 1192

TCP . 1155, 1158, 1191

theory development 1215, 1216

theory of groups .1204

thinning .1199

TIP . 1155, 1172

Tree . 1208

TSP .1155, 1158, 1191

type
he
ker1155, 1175, 1192

type
he
king1154, 1155, 1192

Proof-Assistants Using Dependent Type Systems 1237

type inferen
e . 1191

type inhabitation 1155, 1156

type synthesis 1155, 1159, 1191, 1192

typing rules for �HOL 1185

typing rules for PTS 1196

U

uniqueness of types1158, 1193, 1200

untyped �-
al
ulus 1163

W

well-formed
ontext 1186, 1199

well-ordering types 1206

well-typed term 1185, 1196

witness . 1164, 1205

1238 Henk Barendregt and Herman Geuvers

Name index

A

A
zel .1174, 1215

B

Bove . 1230

Brouwer .1153

C

Chur
h 1153, 1164, 1165, 1182, 1225

Coquand . 1153, 1230

Curry 1153, 1176, 1185

D

de Bruijn . . . 1153, 1155, 1176, 1185, 1214,

1222, 1228

G

Gentzen . 1153

Girard . 1153

H

Heyting . 1153, 1216

Howard 1153, 1176, 1185

Huet . 1153

M

Martin-L�of . .1153, 1165, 1171, 1172, 1177,

1215, 1225

N

Naras
hewski .1230

P

Polla
k . 1216, 1230

Prawitz . 1153

R

Russell . 1153, 1184

S

S
ott .1153

Synek . 1230

T

Turing . 1222

V

von Neumann . 1222

W

Wiedijk . 1230

Z

Zwanenburg . 1230

