
1

Handout for part 1:

Higher-order Rewriting:
motivation and definitions

1. Motivation

2

Common features from functional programming

map :: (α ⇒ β) ⇒ list α ⇒ list β
map F [] = []
map F (h ; t) = (F h) ; (map F t)

double all :: list int ⇒ list int
double all lst = map double lst

handle :: event ⇒ list (event ⇒ result) ⇒ list result
handle e callbacks = map (λF.F e) callbacks

Functional programming is a lot like term rewriting, but also has many structures that have no counterpart
in traditional term rewriting systems. An important example of this is the ability to send functions as
arguments to other functions, whether by sending an unapplied or partially applied function symbol, or
constructing a lambda-expression.

This can both be used to express very pure, mathematical algorithms, but also to implement very practical
solutions that for instance work with callbacks for event handlers.

3

Common features from functional programming

init :: (int ⇒ α) ⇒ int ⇒ int ⇒ list α
init F x y = if (x ≥ y) then [] else ((F x) ; (init F (x+ 1) y))

filter :: (α ⇒ bool) ⇒ list α ⇒ list α
filter F [] = []
filter F (h ; t) = if (F h) then (h ; (filter F t))

else (filter F t)

evens :: int ⇒ list int
evens n = filter is even (init id 0 n)

Typical examples often implement algorithms on integers or lists, but in larger programs all kinds of
functions appear naturally.

4

Common features from functional programming

fold :: (α ⇒ β ⇒ β) ⇒ β ⇒ list α ⇒ β
fold F x [] = x
fold F x (h ; t) = fold F (F h x) t

rec :: (int ⇒ int ⇒ int) ⇒ int ⇒ int ⇒ int
rec F x n = if (n ≤ 0) then x else (rec F (F x n) (n− 1))

exp :: int ⇒ int ⇒ int
exp x y = rec ((∗) x) 1 y

greatest :: list int ⇒ int
greatest l = fold (λy, z.if (z > y) then z else y) 0 l

Higher-order programming allows the programmer to isolate very basic common programming structures,
such as “iterating over a list” or “iterating over numbers in a given range”.

5

Shorthand using higher-order functions

sumfun F x = if (x ≤ 0) then (F x)
else ((F x) + (sumfun F (x− 1)))

sumfun F x = fold (+) 0 (map F (init id 0 x))

sumfun F x = rec (λy, z.y + F (z)) (F 0) x

It is very common for functional programmers to use this ability to write highly compact code.

6

Higher-order functions appear naturally in. . .

• functional programming (as we just saw)

• object-oriented programming (we can view a class that implements a given interface as a collection
of data and function symbols of specific types)

• mathematics (e.g., quantifiers) (mathematicians often reason about functions; for example the in-
duction principle for natural numbers can be formulated as follows)

∀P :: nat ⇒ bool.(P (0) ∧ ∀x :: nat.P (x) ⇒
P (x+ 1)) ⇒ ∀x :: nat.P (x)

(note that quantifiers are exactly higher-order functions that take a predicate as argument; the
example of induction above is even third-order because the argument to ∀ is a function of type
(nat ⇒ bool) ⇒ bool)

• theorem proving (in proof assistants like Coq, specifications of functions are provided in a form
of higher-order term rewriting; aside from allowing us the ability to reason about mathematical
structures like functions and predicates, higher-order specifications may even be useful for reasoning
about naturally first-order definitions, since higher-order specifications allow for a kind of modularity
that makes it easier to prove termination requirements and helps to analyse parts of a definition in
isolation)

ack 0 n → s n
ack (s m) 0 → ack m (s 0)

ack (s m) (s n) → ack m (ack (s m) n)

=⇒
helper F 0 → F (s 0)

helper F (s n) → F (helper F n)
ack 0 → s

ack (s m) → helper (ack m)

7

A first idea
Question: do we need more than we already have?

Idea:

• application symbol @ with arity 2

• all other symbols: arity 0

Examples:

@(@(map, F), []) → []
@(@(map, F),@(@(cons, h), t)) → @(@(cons,@(F, h)),@(@(map, F), t))

@(@(@(rec, F), x), 0) → x
@(@(@(rec, F), x),@(s y)) → @(@(@(rec, F),

@(@(F, x),@(s, y))),
y)

This is of course not particularly readable, but we can use some syntactic sugar: we present the function
symbol @ as an infix symbol ·, and say that · is left-associative; i.e., a · b · c = @(@(a, b), c). Then we end
up with the much more pleasant specification:

map · F · [] → []
map · F · (cons · h · t) → cons · (F · h) · (map · F · t)

rec · F · x · 0 → x
rec · F · x · (s · y) → rec · F · (F · x · (s · y)) · y

8

Applicative rewriting
Question: what about lambda?

handle · e · callbacks → map · “(λF.F e)” · callbacks

A simple solution could be to encode a λ-expression as a fresh function symbol:

handle · e · callbacks → map · (helper · e) · callbacks
helper · e · F → F · e

Downsides

• λ-expressions in the input cannot be represented (but: may not be needed!)
If we want to for instance prove termination of all terms, we would have to include rules for all
possible λ-terms into the TRS to analyse this. This creates an infinite system, which is not typically
great for analysis. But: in practical applications we are often concerned with specific start terms,
and it may be possible to exclude arbitrary lambda-terms from this.

• Having only one root symbol makes analysis harder
Methods like the recursive path ordering tend to be very weak on large systems where all rules have
the same root symbol: we cannot even prove something like f ·x >rpo g ·x ·x. So, we may still need
to develop dedicated analysis methods.

9

Exercise: playing with applicative systems

1.
rec · F · x · 0 → x

rec · F · x · (s · y) → rec · F · (F · x · (s · y)) · y

Use rec to define addition, multiplication and factorial. You are allowed to use lambda (or
define helper functions), but don’t write your own recursive functions.

2. Prove termination of
f · x → g · x · x

(There are no additional function symbols – so also no lambda)

2. Challenges

10

Termination of map
Recall:

map · F · [] → []
map · F · (cons · h · t) → cons · (F · h) · (map · F · t)

Debate: is this TRS terminating?

Debate: what if we add the following rules?

g · x · F → F · x
tmp · x → map · (g · x) · x

These additions may seem quite innocuous: they are just the encodings of (typable) lambda terms!

11

Termination of map

map · F · [] → []
map · F · (cons · h · t) → cons · (F · h) · (map · F · t)

g · x · F → F · x
tmp · x → map · (g · x) · x

Answer: NO

Consider: Let ω := cons · tmp · []

map · (g · ω) · ω
= map · (g · ω)︸ ︷︷ ︸

F

·(cons · tmp︸︷︷︸
h

· []︸︷︷︸
t

)

→ cons · (g · ω · tmp) · (map · (g · ω) · [])
= cons · (g · ω · tmp) · [· · ·]
→ cons · (tmp · ω) · [· · ·]
→ cons · (map · (g · ω) · ω) · [· · ·]

So map · (g · ω) · ω reduces to a term that has map · (g · ω) · ω as a subterm, proving non-termination.

12

Problem: termination of map
Discussion: is there an inherent problem that makes systems like this non-terminating?

map · F · [] → []
map · F · (cons · h · t) → cons · (F · h) · (map · F · t)

g · x · F → F · x
tmp · x → map · (g · x) · x

Idea: λ-calculus is non-terminating, so obviously we should not allow (arbitrary) λ-terms!

(But: how to design termination methods that would reject g · x ·F → F · x or tmp · x → map · (g · x) · x?)

Idea: the problem arises due to duplication; can we avoid that?

(Not if we want functions like map and fold. . .)

Idea: the problem arises due to the construction of an untypable term map · (g · ω) · ω

(Written as, for instance, an OCaml program, the rules above are terminating! So can we just limit
interest to typable terms?)

13

Types: avoiding undesirable terms
Without type restrictions you can build terms such as:

add(0, apple)

This is a fully first-order example that illustrates the issue: when analysing term rewriting systems
without types, we are also analysing a lot of trash: terms that have no meaning or purpose, but that
exist as a side effect of the definition.

In higher-order rewiting this problem is exacerbated, because you end up conflating data and functions:

map(map(F, []), s(pear)) → map([], s(pear))

14

Problems of type-insensitive analysis

f(0) → 0

f(s(x)) → f(x)
cost(apple) → s(0)
cost(pear) → s(s(0))

Question: are the following properties satisfied?

• f(t) reduces to 0 for all t

• every ground term reduces to a constructor normal form

This is very relevant for analysis methods like rewriting induction, which are in principle defined for
first-order rewriting!

And even in a fully first-order system, typing matters for termination:

f(x, 1, 2) → f(x, x, x)
chooselist(x, y) → x
chooselist(x, y) → y

This is only non-terminating if we are allowed to construct a term chooselist(1, 2)!

15

Typing a term rewriting system (intuition)
Idea: add types to function symbols

Example: 0 :: nat, apple :: fruit, banana :: fruit, s :: nat ⇒ nat, cost :: fruit ⇒ nat, add :: nat ⇒ nat ⇒
nat, [] :: list, cons :: nat ⇒ list ⇒ list

Requirement: terms must be well-typed!

• Terms: s(add(0, 0)) and cons(0, cons(add(0, cost(apple)), []))

• Not terms: cons(0, banana) and s([])

Variables: carry an implicit type. They must be typed consistently within the same term or rule.

• Allowed: add(x, x)

• Not allowed: cons(x, x)

Reduction: unchanged! (But: rules must be type-preserving; that is, the left- and right-hand side must
have the same type.)

3. Definition

16

Simple types
Fix: a set of base types

For example: nat, int, bool, fruit, list

Types are:

• all base types

• if σ and τ are types, then σ ⇒ τ

Notation: the type arrow is right-associative

So σ ⇒ τ ⇒ ρ is just σ ⇒ (τ ⇒ ρ)

And: all types can be written as σ1 ⇒ . . . ⇒ σm ⇒ ι with ι a base type

17

HTRSs
We are now ready to formally define a higher-order term rewriting system.

Signature: we assume given a set F of pairs f :: σ with f a function symbol and σ a simple type

Example: F = {0 :: nat, s :: nat ⇒ nat, add :: nat ⇒ nat ⇒ nat}

Variables: we assume given a set V of variables

Terms: are all expressions s such that s :: σ can be deduced for some simple type σ using the rules:

• If (f :: σ) ∈ F then f :: σ

• If x ∈ V and σ a simple type then xσ :: σ

• If s :: σ ⇒ τ and t :: σ then s · t :: τ

• if s :: τ , x ∈ V and σ a simple type, then λxσ.s :: σ ⇒ τ

=⇒ the application operator is not a function symbol!

α-renaming: term equality is modulo renaming of bound variables (both the binder and all its occur-
rences in the subterm below the λ); for example, we consider λxnat.(s ·xnat) equal to λynat.(s · ynat). Note
that we may change the name, but not the type. We can only change names of bound variables if this does
not cause free variables to be captured; e.g., λxnat.add · xnat · ynat is not the same as λynat.add · ynat · ynat!

18

HTRSs (continued)
Rules: pairs of terms ℓ → r with the same type

Reduction:

• C[ℓγ] →R C[rγ] if ℓ → r is a rule

• C[(λxσ.s) · t] →R C[s[x := t]] (β-reduction)

Notation:

• we typically omit variable types when clear from context (we usually make sure that every occurrence
of a variable in a given term/rule carries the same type)

• use uncurried notation f(s1, . . . , sn) for f · s1 · · · sn (but we still allow partially applied terms to
exist, e.g., add, add(0) and add(s(x), 0) are all distinct terms)

19

Example HTRS

map(F, []) → []
map(F, cons(x, y)) → cons(F · x, map(F, y))

double(x) → map(λy.add(y, x))

Signature:
add :: nat ⇒ nat ⇒ nat
double :: nat ⇒ list ⇒ list
[] :: list
cons :: nat ⇒ list ⇒ list
map :: (nat ⇒ nat) ⇒ list ⇒ list

Note that the last rule has a type list ⇒ list – this is perfectly allowed! Note also that y is used with
different types in the last two rules. This is also allowed by our notational rules – we only have to be
consistent with variable naming in the same rule. (But in case of confusion, feel free to add the type
subscript or to use a fixed type for each name when writing your own examples.)

Note also that this presentation is syntactic sugar for:

map · Fnat⇒nat · [] → []
map · Fnat⇒nat · (cons · xnat · ylist) → cons · (Fnat⇒nat · xnat) · (map · Fnat⇒nat · ylist)

double · xnat → map · (λynat.add · ynat · xnat)

20

Group exercise
Challenge: find the type of rec!

rec(0, Y, F) → Y
rec(s(X), Y, F) → F ·X · rec(X,Y, F)

Signature:
0 :: nat
s :: nat ⇒ nat
rec :: nat ⇒ A ⇒ (nat ⇒ A ⇒ A) ⇒ A

21

Exercise
Assign types to all symbols in the following rules. Use cons : nat ⇒ list ⇒ list and s : nat ⇒ nat.

filter(F, []) → []
filter(F, cons(h, t)) → test(F · h, , F, h, t)

test(true, F, h, t) → cons(h, filter(F, t))
test(false, F, h, t) → filter(F, t)

I(0) → 0

I(s(x)) → s(twice(I, x))
twice(F) → λx.F · F · x

22

For those who like a bigger challenge!
Assign types to all symbols in the following rules. Use s : ord ⇒ ord, and let the output type of rec be
A.

rec(0, Y, F,G) → Y
rec(s(X), Y, F,G) → F ·X · rec(X,Y, F,G)

rec(lim(H), Y, F,G) → G ·H · (λxnat.rec(H · xnat, Y, F,G))

4. Discussion

23

The limitation of simple types
Question: what if I want a list of numbers and a list of booleans and a list of functions?

What should be the type of cons?

Solution: have separate types intlist, boollist, inttoboollist, . . .

=⇒ also make copies of map, filter, fold, etc. for each

Alternative solution: use wrappers

cons :: A ⇒ list ⇒ list
wrapint :: int ⇒ A
wrapbool :: bool ⇒ A

However, this is also not ideal: it requires a lot of encoding, and using wrappers like this throughout the
HTRS loses many of the benefits that having types brings.

24

Shallow polymorphism
Yet, functional programming languages don’t have this problem! This is because they do not use simple
types, but instead use polymorphic types. Why not take a leaf out of their pocket?

Preferred type: map :: (α ⇒ β) ⇒ list(α) ⇒ list(β)

Idea: polymorphically-typed rules correspond to a set of simply-typed rules!

That is, including a symbol like map above in the signature, could be viewed as including the infinitely
many function symbols mapσ,τ :: (σ ⇒ τ) ⇒ “list(σ)” ⇒ “list(τ)”, where list(σ) is a new base type for any
type-variable-free type σ. And the usual map rule,

map(F, cons(h, t)) → cons(F · h, map(F, t))

would then correspond to the infinite set of rules:

mapσ,τ (Fσ⇒τ , consσ(hσ, tlist(τ))) →
consτ (Fσ⇒τ · hσ, mapσ,τ (Fσ⇒τ , tlist(τ)))

Thus, results on simply-typed HTRSs can be transferred to polymorphically-typed ones: to show that
a set of rules satisfies a certain property, we then need to show that the property holds for all the
simply-typed instances of these rules.

Hence, for simplicity in this course I will limit interest to simply-typed HTRSs, and we may discuss how
the results extend to their polymophically-typed counterparts.

25

More higher-order definitions
I here present one definition of higher-order term rewriting, but if you meet someone else in the field,
they would likely give you a different one. This is because there have been many different definitions, for
a variety of purposes. To name some examples...

• CS [Aczel, 1978]

• CRS [Klop, 1980]

• ERS [Khasidashvili, 1990]

• HRS [Nipkow, 1991]

• AFS [Jouannaud, Okada, 1991]

• HORS [van Oostrom, 1994]

• IDTS [Blanqui, 2000]

• STRS [Kusakari, 2001]

• STTRS [Yamada, 2001]

• Nominal rewriting [Gabbay, Pitts, 2002]

• AFSM [Kop, 2012]

• . . .

On top of that, there are many variations and restrictions, for example limiting the output types of rules,
the shapes of the left-hand sides or the kinds of function symbols that are included. Nor does it account
for different type systems, such as (various kinds of) polymorphism or dependent types.

Some of these systems are fundamentally different; others just seem to be small variations of the same
idea – but small syntactic differences can actually make a significant difference for analysis!

26

Eta-expansion
An example of a feature that varies in different styles of higher-order term rewriting is whether or not
equality is considered modulo η

s =η λxσ.(s · xσ)

if s :: σ ⇒ τ and xσ does not occur in s, and s not an abstraction

When reasoning about mathematics, it is natural to consider two functions equal if and only if their value
on all input is the same. In such a setting, reasoning modulo η makes a lot of sense. When considering
more syntactic applications, like functional programming, this is less natural.

Typical usage: expand f(s1, . . . , sn) to λx1 . . . xm.f(s1, . . . , sn, x1, . . . , xm) if f :: σ1 ⇒ . . . ⇒ σm ⇒ ι
with ι a base type. This is convenient when reasoning: we can assumpe that every occurrence of a
function symbol f has the same number of arguments, which makes it easier to extend techniques from
first-order term rewriting.

A downside of this approach is polymorphism. Consider for instance a rule like the following:

head(cons(X,Y)) → X with head :: list(α) ⇒ α

If we use η-expansion on all rules in a simply-typed system to maximally extend function symbols, then
the instances of this rule will have different structures:

headint(cons(Xint, Ylist(int))) → Xint

headint⇒bool(cons(Xint⇒bool, Ylist(int⇒bool)), Zint) → Xint⇒bool · Zint

. . .

Here, we use a formalism that does not use η-expansion, but the techniques then apply to η-long variations
of the HTRS, too.

27

Final exercise

Write a short HTRS (including signature!) that, given a list of natural numbers and a function mapping
numbers to Booleans, finds the number of items in the list that satisfy the requirement.

