
1

Handout for part 3:

Termination:
the higher-order recursive path ordering



1. Reduction ordering

2

How to prove termination?

1. Embed the rewrite relation →R in a well-founded ordering.

(Because then any infinite reduction s1 → s2 → s3 → . . . is an infinite decreasing sequence s1 ≻
s2 ≻ s3 ≻ . . . , contradicting well-foundedness.)

2. Pay special attention to function calls
(Use some form of the dependency pair framework.)

To start: we will define a well-founded ordering
There are many ways to find such an ordering! In this course, we will consider two of the most popular.

3

Embedding →R in a well-founded ordering
Goal: find a well-founded ordering ≻ and prove that s ≻ t whenever s → t.

Difficulty: how to prove s ≻ t whenever s → t? There are infinitely many terms and possible reductions.

add(0, y) → y
add(s(x), y) → s(add(x, y))

Needed: add(0, 0) ≻ 0, add(0, add(x, y)) ≻ add(x, y), . . .

Solution: it suffices to orient the rules if we have a well-founded ordering ≻ with:

• if s ≻ t then sσ ≻ tσ for all substitutions σ
(we say: ≻ is stable)

• if s ≻ t then f(. . . , s, . . . ) ≻ f(. . . , t, . . . ) for all f
(we say: ≻ is monotonic)

Such an ordering is called a reduction ordering.



2. RPO

4

The (first-order) lexicographic path ordering
A very powerful technique, with many extensions and variations, is the lexicographic path ordering.

Let � be a total, well-founded ordering on the function symbols.

We define: f(s1, . . . , sn) ≻LPO t if one of the following holds:

(sub) si ⪰LPO t for some i ∈ {1, . . . , n}
(that is, si ≻ t or si = t)

(copy) t = g(t1, . . . , tm) and f� g and f(s1, . . . , sn) ≻LPO tj for all j ∈ {1, . . . ,m}

(lex) t = f(t1, . . . , tn) and f(s1, . . . , sn) ≻LPO ti for all i ∈ {1, . . . , n},
and [s1, . . . , sn](≻LPO)lex[t1, . . . , tn];
that is, there is some i ∈ {1, . . . , n} such that:

• sj = tj for j ∈ {1, . . . , i− 1}
• si ≻LPO ti

5

LPO example
add(0, y) → y

add(s(x), y) → s(add(x, y))
mul(0, y) → 0

mul(s(x), y) → add(y, mul(x, y))

We choose: mul� add� s� 0

We orient the last rule as follows:

A. mul(s(x), y) ≻LPO add(y, mul(x, y)) by (copy), B, D
B. mul(s(x), y) ≻LPO y by (sub), C
C. y ⪰LPO y by definition
D. mul(s(x), y) ≻LPO mul(x, y) by (lex), E, B, F
E. mul(s(x), y) ≻LPO x by (sub), F
F. s(x) ≻LPO x by (sub), G
G. x ⪰LPO x by definition

6

Exercise
Use LPO to prove termination of the well-known Ackermann function, defined by:



A(0, x) → s(x)
A(s(x), 0) → A(x, s(0))

A(s(x), s(y)) → A(x, A(s(x), y))

Note: it speaks to the power of LPO that we can indeed use it to prove termination of the Ackermann
function. After all, while termination theoretically holds, the normal form of A(s(s(s(s(0)))), s(s(0))) is
a term containing N symbols s, for N being a number of 19,729 decimal digits. Hence, this normal form
does not fit in all computer memory of the world.

7

Soundness of LPO

Theorem
If ℓ ≻LPO r for all rules in R, then the TRS with rules R is terminating.

Proof. ≻LPO is:

• stable: if s ≻LPO t then sσ ≻LPO tσ
(by a simple induction on the definition: if x ⪰LPO t then t = x, so xσ = tσ too)

• monotonic: if s ≻LPO t then f(. . . , s, . . . ) ≻LPO f(. . . , t, . . . )
(by the (lex) rule)

• well-founded: there is no infinite decreasing sequence

8

Well-foundedness of LPO

Define: s is terminating if there is no infinite sequence s ≻LPO t1 ≻LPO t2 ≻LPO . . . starting in s.

Claim: if (s1, . . . , sn) terminating, and f(s1, . . . , sn) ≻LPO t, then t terminating

Proof: by induction on:

• f first (using �)

• (s1, . . . , sn) ordered lexicographically by ≻LPO second;

• the derivation of f(s1, . . . , sn) ≻LPO t third

Conclude: if there is a smallest non-terminating f(s1, . . . , sn), then by definition of “smallest”, all
si are terminating; therefore, if there is an infinite sequence f(s1, . . . , sn) ≻LPO t1 ≻LPO . . . then t1 is
terminating as we saw above. But this contradicts the existence of the infinite sequence!

9

Extending LPO
In practice, the lexicographic path ordering is quite minimalistic – and often we can do better.



Challenge: mutual recursion

f(s(x)) → g(x) f(x) → s(x)
g(s(x)) → f(x) f(x) → s(x)

Solution: allow an equivalence relation ≈ compatible with �, and set f ≈ g

Challenge: argument permutations

f(s(x), y) → f(y, x)

Solution: allow some function symbols to order arguments using the multiset ordering

This yields the recursive path ordering (RPO).



3. A higher-order RPO

10

Applying RPO to higher-order systems
The recursive path ordering is a powerful method, and we would like to apply it in higher-order rewriting
as well. However, we run into a few challenges. . .

Challenge: f(g(x)) ≻LPO x

Why is this a problem? Well. . .

Recall: if

f :: o ⇒ o ⇒ o and

g :: (o ⇒ o) ⇒ o,

this is non-terminating as it encodes the untyped λ-calculus (we can see f as the application symbol, and
g as a wrapper for abstractions)!

Nor is the problem with the (sub) rule the only one. The recursive path ordering has no functionality
to deal with applications.

Challenge: how to derive s ≻LPO F · x?

We could of course try encoding application as a function symbol – but this comes with all the problems
we had before. Besides, this still does not solve all our problems.

Challenge: do we have f(s, t) ≻LPO @(f(s), t) since (s, t)(≻LPO)lex(s)?

Conclusion:

• A dedicated higher-order definition is needed. Such a definition could take head-variables, lambda-
abstraction and also partial application into account.

• Types are important for termination! Hence, we should take them into account in the definition of
higher-order RPO.

11

HOLPO
So now, let us present a higher-order extension of the basic lexicographic path ordering.

• s ≻LPO t if s and t have the same type and:

(greater) s ⊐X
LPO t

(@) s = s1 · s2, t = t1 · t2, each si ⪰LPO ti, some si ≻LPO ti
This could be used for instance to derive x · s · t ·u ≻LPO x · s · t′ ·u if t ≻LPO t′. We would typically
not use it for applications with a function symbol at the head, since there it is more powerful to
just use ⊐LPO instead.

(lam) s = λx.s′, t = λx.t′ and s′ ≻LPO t′

We can use α-renaming to make sure both variables are the same.



(beta) s = (λx.s′) · u0 · · ·un and s′[x := u0] · u1 · · ·un ⪰LPO t (where n ≥ 0)

• f(s1, . . . , sn) ⊐X
LPO t if:

(sub) si ⪰LPO t for some i ∈ {1, . . . , n} or t ∈ X
Note that ⪰LPO is the reflexive closure of the type-conscious relation ≻LPO, so this implicitly
requires that si and t have the same type.

(copy) t = g(t1, . . . , tm) and f� g and f(s1, . . . , sn) ⊐X
LPO tj for all j ∈ {1, . . . ,m}

(lex) t = f(t1, . . . , tn) and f(s1, . . . , sn) ⊐X
LPO ti for all i ∈ {1, . . . , n},

and [s1, . . . , sn] (≻LPO)lex[t1, . . . , tn];
Note that this means that there is some i ∈ {1, . . . , n} such that:

• sj = tj for j ∈ {1, . . . , i− 1}
• si ≻LPO ti

We explicitly do not have [s1, . . . , sn+1] (≻LPO)lex [s1, . . . , sn]. Note also that for the arguments we
use the type-sensitive comparison.

(app) t = t0 · t1 · · · tn and f(s1, . . . , sn) ⊐X
LPO ti for all i ∈ {0, . . . , n}

(abs) t = λx.t′ and f(s1, . . . , sn) ⊐
X∪{x}
LPO t′

12

Collapsing types in HOLPO

[] : natlist
cons : nat ⇒ natlist ⇒ natlist
map : (nat ⇒ nat) ⇒ natlist ⇒ natlist

map(F , []) → []
map(F , cons(x, y)) → cons(F · x, map(F , y))

Sometimes problematic: Not cons(x, y) ≻ y due to types!

Solution:
[] : o

cons : o ⇒ o ⇒ o
map : (o ⇒ o) ⇒ o ⇒ o

13

Example
[] : o

cons : o ⇒ o ⇒ o
map : (o ⇒ o) ⇒ o ⇒ o

map(F , []) → []
map(F , cons(x, y)) → cons(F · x, map(F , y))

Choose map� cons, [].



14

1. map(F , cons(x, y)) ≻LPO cons(F · x, map(F , y))
by (greater), 2

2. map(F , cons(x, y)) ⊐∅
LPO cons(F · x, map(F , y))

by (copy), map� cons, 3, 4

3. map(F , cons(x, y)) ⊐∅
LPO F · x

by (app), 7, 8

4. map(F , cons(x, y)) ⊐∅
LPO map(F , y)

by (lex), F ⪰LPO F , 5 (typecheck: o)

5. cons(x, y)) ⪰LPO y
by (greater), 6

6. cons(x, y)) ⊐∅
LPO y

by (sub), y ⪰LPO y

7. map(F , cons(x, y)) ⊐∅
LPO F

by (sub), F ⪰LPO F

8. map(F , cons(x, y)) ⊐∅
LPO x

by (sub), 9 (typecheck: o)

9. cons(x, y)) ⪰ x
by (greater), 10

10. cons(x, y)) ⊐∅
LPO x

by (sub), x ⪰LPO x

15

Exercise
Orient the following rules using HOLPO:

start :: o ⇒ o
add :: o ⇒ o ⇒ o
map :: (o ⇒ o) ⇒ o ⇒ o

start(y) → map(λxo.add(xo, xo), y)

a :: o
b :: o
f :: ((o ⇒ o) ⇒ o) ⇒ o

f(λxo⇒o.xo⇒o · a) → f(λyo⇒o.yo⇒o · b)

16



Polymorphic HOLPO

Idea: be creative with the type collapsing!

Instead of mapping each base type to o, it is actually sound to replace base types by any type, so long
as we do it consistently. Thus, we can for instance let:

collapse(list(α)) := collapse(α) for all types α

Then to prove termination of all type-instances of the polymorphic map rule at once, it suffices to orient
the following rule using HOLPO:

cons1 :: α ⇒ α
cons2 :: β ⇒ β
map :: (α ⇒ β) ⇒ α ⇒ β

map(Fα⇒β, cons1(xα, yα)) → cons2(Fα⇒β · xα, map(Fα⇒β, yα))

This can be oriented with the same proof as we saw before!

17

HORPO
As in the first-order setting, the higher-order lexicographic path ordering can be extended with status
and distinct function symbols being equated. This for example gives rules like:

(mul) s = f(s1, . . . , sk) ⊐X
LPO g(t1, . . . , tn) if

• f ≈ g

• status(f) = mulm for some m ∈ N with m ≤ n

• f(s1, . . . , sk) ⊐X
LPO ti for all i ∈ {1, . . . , n}

• {{s1, . . . , smin(k,m)}} (≻LPO)mul {{t1, . . . , tm}}



4. Computability

18

Challenge: well-foundedness of HORPO
Recall: the well-foundedness proof of RPO was based on the argument:

if (s1, . . . , sn) terminating, and f(s1, . . . , sn) ≻LPO t, then t terminating

Problem: termination of, e.g., map(F , cons(x, y)) depends on the behaviour of F .

While F , x and y could all be instantiated by terminating terms, what we really need to know is if the
function F terminates when applied to some arbitrary input.

Example:

map(F , []) → []
map(F , cons(x, y)) → cons(F · x, map(F , y))

f x → f (s x)

Although f, 0 and [] are all terminating, map(f, cons(0, [])) is not.

Of course, this isn’t a major problem, because the termination proof will fail regardless on the rule
f x → f (s x). That is, if everything else is terminating, then so is the map function. This leads to the
idea of computability.

19

Solution: computability
Definition

• a term s of base type is computable if s is terminating (under ≻LPO)

• a term s of type σ ⇒ τ is computable if
for all computable t of type σ
the term s · t (of type τ) is also computable

(This is well-defined by induction on types.)

Computability can be seen as a higher-order version of termination. (Although with disclaimers – there
are different definitions of computability, and computability cannot take the place of termination in all
proofs.)

20

Properties of computability
Claim: for all types σ:

1. all variables of type σ are computable

2. every computable term of type σ is terminating



3. if s :: σ is computable and s ≻LPO t then t is computable

Proof: by shared induction on σ (class exercise)

21

Soundness of HORPO

Main proof ideas:

• if s[x := t] is computable for all computable t, then λx.s computable

• if s1, . . . , sk computable, and f(s1, . . . , sk) ⊐X
LPO t,

then t[x⃗ := u⃗] is computable for all computable u⃗

(by induction first on f,
then on (s1, . . . , sk) ordered with status(f),
and finally on the derivation of f(s1, . . . , sk) ⊐X

LPO t)



5. Automation

22

Implementing automatic HORPO proof search

Needed: status, precedence, which clause to apply when

Strategy: use existing SAT or SMT solvers!

In the past, solvers would implement their own proof search, but with the quality of SAT and SMT
solvers, this would not be the most efficient approach – neither in terms of implementation time nor
in terms of executation time. Instead, we would implement the problem as a boolean formula, whose
satisfiability implies that the HORPO proof succeeds.

Idea:

• for each function symbol: an integer value for the precedence

• for each function symbol: an integer value for the status

• for each HORPO relation we encounter: a boolean variable

23

Example: encoding proof search for map
Formula:

• v1

• (v1 → v2 ∨ v3 ∨ v4 ∨ v5 ∨ v6) ∧

• (v2 → v7 ∨ v8) ∧

• (v3 → (precmap > preccons ∧ v9 ∧ v10)) ∧

• . . .

Variables:

• v1 ≡ “map(F , cons(x, y)) ≻LPO cons(F · x, map(F , y))”

• v2 ≡ “map(F , cons(x, y)) ⊐∅
LPO cons(F · x, map(F , y)) by (sub)”

• v3 ≡ “map(F , cons(x, y)) ⊐∅
LPO cons(F · x, map(F , y)) by (copy)”

• v4 ≡ “map(F , cons(x, y)) ⊐∅
LPO cons(F · x, map(F , y)) by (lex)”

• v5 ≡ “map(F , cons(x, y)) ⊐∅
LPO cons(F · x, map(F , y)) by (mul)”

• v6 ≡ “map(F , cons(x, y)) ⊐∅
LPO cons(F · x, map(F , y)) by (app)”

• v7 ≡ “F ≻LPO cons(F · x, map(F , y))”

• v8 ≡ “cons(x, y) ≻LPO cons(F · x, map(F , y))”

• v9 ≡ “map(F , cons(x, y)) ⊐∅
LPO F · x”

• v10 ≡ “map(F , cons(x, y)) ⊐∅
LPO map(F , y)”

• . . .


