
1

Handout for part 5:

Complexity:
tuple interpretations

1. Monotonic algebras

2

Derivation height

A measure of the “cost” of reducing a term to normal form (worst-case).

add(x, 0) → x
add(x, s(y)) → s(add(x, y))

mul(x, 0) → 0

mul(x, s(y)) → add(x, mul(x, y))

Derivation height:

• add(0, s(0)): 2 (add(0, s(0)) → s(add(0, 0)) → s(0)).

• mul(mul(s(s(0)), s(s(s(0)))) , 0): 15

3

Traditional interpretations (first-order)
Idea:

• map every term s to JsK ∈ N

• make sure that s → t implies JsK > JtK

Then: JsK ≥ derivationheight(s)!

Approach:

• map every function that takes k arguments to a monotonic function in Nk 7→ N

• make sure that JℓK > JrK for all rules ℓ → r

4

Bounding derivation height with interpretations to N

add(0, y) → y
add(s(x), y) → s(add(x, y))

Let:

• J0K = 0

• Js(x)K = x+ 1

• Jadd(x, y)K = 1 + y + 2 ∗ x

We might initially be inclined to choose Jadd(x, y)K = x+ y – but then we do not have that JℓK > JrK for
the rules. Hence, the interpretation cannot exactly match the “meaning” of the rules:

Then:
Jadd(0, y)K = 1 + y > JyK

Jadd(s(x), y)K = 3 + y + 2 ∗ x > 2 + y + 2 ∗ x
= Js(add(x, y))K

Hence: Jadd(sn(0), sm(0))K = 1 +m+ 2 ∗ n: linear!

5

Monotonic algebras: definition
Given: a set A with a well-founded ordering > (for example: N)

Choose: a function [f] from Ak to A for every f of arity k

Define: for a given α mapping variables to A:

• JxK = α(x)

• Jf(s1, . . . , sk)K = [f](Js1K, . . . , JskK)

Prove: JℓK > JrK for all rules ℓ → r, all α

In practice, since we quantify over α, we essentially view both sides as functions over a given set of
variables. This is why we for instance write Jadd(0, y)K = 1 + y instead of 1 + α(y).

Then: JsK > JtK whenever s →R t.

The most common example is to choose the set of natural numbers for A, but we could also for instance
choose the rational numbers (with x > y if x ≥ y + 1), or pairs of numbers as we will see later.

Consequence: if tonat(a) > tonat(b) whenever a > b then tonat(JsK) ≥ derivationheight(s). (Here,
we let tonat be a function that maps each element of A to a natural number. If A = N this is just the
identity; if A = Q this could for instance be rounding down.)

6

Higher-order interpretations to N: problems
Let’s extend this idea to higher-order rewriting. Here, we quickly run into the problem: what to do with
partial applications? For example:
Suppose: Js(x)K = x+ 1
Question: What is JsK?

Problem: behaviour matters!

fold(F , x, []) → []
fold(F , x, cons(y, l)) → fold(F , (F · x · y), l)

add(x, 0) → x
add(x, s(y)) → s(add(x, y))

• What is the derivation height if F := λx, y.minimum(x, y)?

• What if: F := λx, y.add(x, y)?

• What if: F := λx, y.add(x, s(0))?

• What if: F := λx, y.add(x, s(s(0)))?

• What if: F := λx, y.add(x, x)?

All in all, the consequences of using different functions for F cannot really be captured by a number.

7

Proposal

Let’s interpret terms of function type as functions!

More than that: for each type we have a possibly different interpretation domain. We only fix that
function types are interpreted as monotonic functions:

Type interpretations:

• For every base type ι: a set Aι, ordering >ι and quasi-ordering ≥ι

• Define:
LιM = Aι

Lσ ⇒ τM = “monotonic functions from LσM to LτM”
F >σ⇒τ G if F (a) >τ G(a) for all a ∈ LσM
F ≥σ⇒τ G if F (a) ≥τ G(a) for all a ∈ LσM

8

Higher-order monotonic algebras: definition

(Difference to the first-order definition are indicated in red.)

Given: a a type interpretation function as on the previous slide

Choose: a function [f] in LσM for every f of type σ

Define: for a given α mapping variables to A:

• JxK = α(x)

• JfK = [f]

• Js · tK = JsK(JtK)

(We’re ignoring abstractions for now. We will get back to that later!)

Prove: JℓK > JrK for all rules ℓ → r, all α

In practice, since we quantify over α, we essentially view both sides as functions over a given set of
variables.

Then: JsK > JtK whenver s →R t.

Consequence: if tonat(a) > tonat(b) whenever a > b then tonat(JsK) ≥ derivationheight(s).

Note that of course, this is also a termination technique: if we have a bound on the number of steps,
clearly this number is not infinite.

9

Example:

[] :: list
cons :: nat ⇒ list ⇒ list
map :: (nat ⇒ nat) ⇒ list ⇒ list

map(F , []) → []
map(F , cons(x, l)) → cons(F · x, map(F , l))

Choose: Aι = N for all ι

[[]] = 0
[cons](x, y) = x+ y + 1
[map](F, x) = (x+ 1) ∗ F (x)

Monotonicity: holds. (We can easily see that, for example, if x > y then [map](F, x) > [map](F, y), and
if F (x) > G(x) for all x then [map](F, x) > [map](G, x).)

10

Example

[[]] = 0
[cons](x, y) = x+ y + 1
[map](F, x) = (x+ 1) ∗ F (x) + 1

Goal 1:

Jmap(F, [])K > J[]K

That is:

(0 + 1) ∗ F (0) + 1 > 0

Which is certainly true because 1 > 0.

Goal 2:

Jmap(F , cons(x, l))K > Jcons(F · x, map(F , l))K

That is:

((x+ l + 1) + 1) ∗ F (x+ l + 1) + 1 >
F (x) + ((l + 1) ∗ F (l) + 1) + 1

Simplifying the arithmetic, this is:

x ∗ F (x+ l + 1) + l ∗ F (x+ l + 1) + F (x+ l + 1) + F (x+ l + 1) + 1 >
F (x) + l ∗ F (l) + F (l) + 1

Let’s reorganise that a bit!

x ∗ F (x+ l + 1) +l ∗ F (x+ l + 1) +F (x+ l + 1) +F (x+ l + 1) +1
> +l ∗ F (l) +F (x) +F (l) +1

Now observe that F is monotonic. So for instance F (x + l + 1) > F (x). Hence we quickly see that this
inequality indeed holds.

11

Exercise
Given:

[] :: list
cons :: nat ⇒ list ⇒ list

filter :: (nat ⇒ bool) ⇒ list ⇒ list
helper :: bool ⇒ nat ⇒ list ⇒ list

filter(F , []) → []
filter(F , cons(x, l)) → helper(F · x, x, filter(F , l))

helper(true, x, l) → cons(x, l)
helper(false, x, l) → l

Task: show that the following interpretation suffices:

[[]] = 0 [true] = 1
[cons](x, y) = x+ y + 1 [false] = 0

[helper](b, x, y) = b+ x+ y + 1
[filter](F, x) = (x+ 1) ∗ (F (x) + 1)

12

Bonus exercise
Given:

[] :: list
cons :: nat ⇒ list ⇒ list
zip :: (nat ⇒ nat) ⇒ list ⇒ list

zip(F , [], l) = l
zip(F , l, []) = l

zip(F , cons(x, l), cons(y, q)) = cons(F · x · y, zip(F , l, q))

Task: find an interpretation that orients these rules!

13

Abstraction
Discussion: what should be the interpretation of λx.s?

Naive choice: x 7→ JsK

Problem: the naive interpretation for for λx.s is not monotonic if x does not occur in s! For example,
this choice would let Jλx.0K be the constant function mapping everything to 0 – and thus, it would not
be an element of Lnat ⇒ natM.

Solution: for each σ, τ , a function makesmσ,τ :

• Input: a monotonic or constant function from LσM to LτM

• Output: a monotonic function from LσM to LτM

• makesmσ,τ should itself be monotonic!

• we need to have J(λx.s) · tK > s[x := t]

The use of makesm functions may be confusing at first – but essentially, all that this means is that we
choose a systematic way of turning a given abstraction into a monotonic function. And in practice, we
can usually find a way to define a class of makesm functions that allows us to almost map λx.s to x 7→ JsK
if x ∈ FV (s) – just adding a cost for the β-reduction. This is demonstrated for Anat = N below.

Example: (for σ, τ = nat and Anat = N):

• if F is constant, then makesmσ,τ (F) = x 7→ F (x) + x+ 1

• otherwise makesmσ,τ (F) = x 7→ F (x) + 1

This definition works very nicely in practice. The only difficulty is to prove that the above makesm

function is indeed monotonic; in particular, if F is monotonic in x and G is constant, we must show that
that F >nat⇒nat G implies that also makesm(F) >nat⇒nat makesm(G). To see that this holds, we make
the observation that in the natural numbers, if F is a monotonic function, then F (x + 1) > F (x), so
F (x+ 1) ≥ F (x) + 1; by induction, we see that F (n) ≥ F (0) + n. In a constant function, G(n) = G(0).
Thus we see: for all n: F (n) ≥ F (0) + n > G(0) + n = G(n) + n.

This idea can be generalised to all types, but it takes a bit more definition effort; for example, if σ = τ =
nat ⇒ nat we let makesmσ,τ (F) = (G, x) 7→ F (G, x) + 1 if F is monotonic in its first argument (G), and
(G, x) 7→ F (G, x) +G(0) + 1 if F is constant in its first argument.

2. Tuple interpretations

14

An observation
Consider:

• Jadd(sn(0), sm(0))K = 1 +m+ 2 ∗ n

• actual cost of reduction: n+ 1

• size of normal form: n+m

• This does raise the question: are we actually giving a bound to the sum of cost and size by using
interpretations to N?

Idea: separate cost and size already in the interpretation!

Mechanism: map to N2 instead of N.

We let ⟨x, y⟩ > ⟨x′, y′⟩ if x > x′ and y ≥ y′.

Note: we can choose tonat(⟨x, y⟩) = x. That is, if a > b in N2 then tonat(a) > tonat(b) – so if we can
express JsK as an element ⟨x, y⟩ of N2, then x gives a bound on the derivation height of s. We will refer
to the first element of the tuple as the cost component of the tuple.

15

Separating cost and size

add(0, y) → y
add(s(x), y) → s(add(x, y))

Let:
cost size

J0K = ⟨ 0 , 0 ⟩
Js(x)K = ⟨ xcost , xsize + 1 ⟩
Jadd(x, y)K = ⟨ xcost + ycost + xsize , xsize + ysize ⟩

Then:
Jadd(0, y)K = ⟨1 + y1, y2⟩

> ⟨y1, y2⟩ = JyK
Jadd(s(x), y)K = ⟨2 + x1 + y1 + x2, 1 + x2 + y2⟩

> ⟨1 + x1 + y1 + x2, 1 + x2 + y2⟩ = Js(add(x, y))K

Hence: Jadd(sn(0), sm(0))K = ⟨1 + n, n+m⟩: precise! (And also intuitive.)

16

When interpretations to N are Not Great

a(b(x)) → b(a(x))

Let:

• Ja(x)K = 2 ∗ x

• Jb(x)K = x+ 1

• JϵK = 0

Then:
Ja(b(x))K = 2 + 2 ∗ x > 1 + 2 ∗ x = Jb(a(x))K

Hence: Jan(bm(ϵ))K = 2n ∗m: exponential!

17

Separating cost and size

a(b(x)) → b(a(x))

Let:
cost size

Ja(x)K = ⟨ xcost + xsize , xsize ⟩
Jb(x)K = ⟨ xcost , xsize + 1 ⟩
JϵK = ⟨ 0 , 0 ⟩

Then:
Ja(b(x))K = ⟨x1 + x2 + 1, x2 + 1⟩ > ⟨x1 + x2, x2 + 1⟩ = Jb(a(x))K

Hence: Jan(bm(ϵ))K = (n ∗m,m): precise!

Of course, we can’t always get precision. But we invariably get tighter interpretations by using tuples
than single numbers.

18

Tuple interpretations
Definition: monotonic algebras with Aι = NK[ι] for all ι (where K[ι] is a positive integer for all ι).

=⇒ both for first- and higher-order!

This is a specific implementation of a well-known method (monotonic algebras), that adds a surprising
amount of power over other variations. In the bigger picture, tuple interpretations can be seen as a
generalisation of the method of matrix interpretations: this method also considers tuples over N as the
interpretation domain, but restrict the shape of the interpretation functions [f].

Of course, there is no reason to stop here. We could have tuples over other sets than N – for example, using
the set of integers Z as the second set in the component (as only the first needs to admit a wellfounded
ordering), a set such as N ∪ {∞}, or even some impromptu set {a, b, c} with a > b and a > c but b, c not
comparable. There are uses for all these examples. We could also use tuples only for some base types,
and still allow, for instance, a base type list(N ⇒ N) to be mapped to a function space such as LN ⇒ NM.
However, for this lecture, we will limit interest to tuples of the form Nk.

Example sort interpretations:

• {nat} = N2 (cost, size of normal form)

• {list} = N3 (cost, list length, size of greatest element)

• {bool} = N1 (cost)

19

Example: interpreting list functions

append([], l) → l
append(cons(x, l), q) → cons(x, append(l, q))

sum([]) → 0

sum(cons(x, l)) → add(x, sum(l))

Interpretations:

• {list} = N3 (cost, list length, maximum element)

• J[]K = ⟨0, 0, 0⟩

• Jcons(x, l)K = ⟨xcost + lcost , llen + 1,max(xsize , lmax)⟩

• Jappend(l, q)K = ⟨cost, length,maximum⟩, where:

– maximum = max(lmax , qmax)

– length = llen + qlen

– cost = lcost + qcost + llen + 1

• Jsum(l)K = ⟨cost, size⟩, where:

– size = llen ∗ lmax

– cost = lcost + 2 ∗ llen + llen ∗ lmax + 1

20

Higher-order tuple interpretations: an example

[] :: list
cons :: N ⇒ list ⇒ list
map :: (N ⇒ N) ⇒ list ⇒ list

map(F , []) → []
map(F , cons(x, l)) → cons(F · x, map(F , l))

Let:

• J[]K = ⟨0, 0, 0⟩

• Jcons(x, l)K = ⟨xcost + lcost , llen + 1,max(xsize , lmax)⟩

• Jmap(F , l)K = ⟨cost, length,maximum⟩, where:

– length: llen

– maximum: F (⟨lcost , lmax ⟩)s
– cost: (llen + 1) ∗ (F (⟨lcost , lmax ⟩)cost + 1)

21

Exercise

1. Find an interpretation, with LnatM = N2, for the following system:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

Warning: do not take xsize − ysize for the size of minus(x, y)! Doing this would break the
monotonicity requirement: we must have Jminus(a, b)K > Jminus(a, c)K if b > c, which implies
Jminus(a, b)Ksize ≥ Jminus(a, c)K≥ if bcost > ccost and bsize ≥ csize .

Side note: the fact that we can do this at all illustrates the power of tuple interpretations. This was a
motivating example for dependency pairs, since it cannot be handled with any well-founded ordering
that has minus(x, y) ⪰ y. Thus, termination cannot be proved using RPO or interpretations to N,
nor can it be proved with a method like matrix interpretations due to the duplication of x in the
last rule. Yet, here we do not only prove its termination, but also find a bound to its complexity.

2. Find an interpretation for the following HTRS, where zip :: (nat ⇒ nat) ⇒ list ⇒ list.

zip(F , [], l) = l
zip(F , l, []) = l

zip(F , cons(x, l), cons(y, q)) = cons(F · x · y, zip(F , l, q))

22

A more challenging higher-order tuple interpretation

fold(F , x, []) → []
fold(F , x, cons(y, l)) → fold(F , (F · x · y), l)

Interpretation:
Jfold(F , x, l)K = ⟨cost, size⟩

Where:

• cost = 1 + lcost + F (⟨0, 0⟩)cost +Helper [F , ⟨lcost , lmax ⟩]llen (x)cost

• size = Helper [F , ⟨lcost , lmax ⟩]llen (x)size

• And Helper [F , y] = x 7→ ⟨F (x, y)cost ,max(xsize , F (x, y)size)⟩.

23

A more challenging higher-order tuple interpretation

add(0, y) → y
add(s(x), y) → add(x, s(y))
fold(F , x, []) → []

fold(F , x, cons(y, l)) → fold(F , (F · x · y), l)
sum(l) → fold(λx.λy.add(x, y), 0, l)

Method: Plug Jλx.λy.add(x, y)K into the interpretation for fold.

Interpreting λ: use makesmι,σ1⇒...⇒σm⇒κ ={
(F, x, y1, . . . , ym) 7→ (F (x, y⃗)1 + 1 + x1, F (x, y⃗)2, . . . , F (x, y⃗)K[κ]) if F is constant

(F, x, y1, . . . , ym) 7→ (F (x, y⃗)1 + 1 , F (x, y⃗)2, . . . , F (x, y⃗)K[κ]) if F is monotonic

3. Complexity notions

24

Derivational and runtime complexity (first-order)
Derivational complexity:
n 7→ “maximum derivation height for a term of size n”

Downside: can easily get large; e.g.: mul(mul(mul(mul(s(s(0)), s(s(0))), s(s(0))), s(s(0))), s(s(0)))

Runtime complexity:
n 7→ “maximum derivation height for a basic term of size n”

Basic term: function(data, . . . , data)

Example: mul(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))

Connection with computational complexity: depends

25

Termination (and complexity) competition
In the annual termination competition, there are categories for both runtime and derivational complexity
of first-order term rewriting (both with a general reduction strategy, and focused on innermost reduction).

26

Complexity of higher-order term rewriting
Open question: do derivational and runtime complexity even make sense for higher-order rewriting?

fold(F , x, []) → []
fold(F , x, cons(y, l)) → fold(F , (F · x · y), l)

Recall:

• What if: F := λx, y.minimum(x, y)?

• What if: F := λx, y.add(x, y)?

• What if: F := λx, y.add(x, x)?

27

Higher-order derivational complexity?
Idea: naively extend the definition of derivational complexity

Result:
add(x, 0) → x

add(x, s(y)) → s(add(x, y))

• (λx.add(x, x)) · (s(s(0)))

• (λx.add(x, x)) · ((λx.add(x, x)) · (s(s(0))))

• (λx.add(x, x)) · ((λx.add(x, x)) · ((λx.add(x, x)) · (s(s(0)))))

• . . .

Conclusion: exponential complexity at a minimum, even for very simple systems.

28

Runtime complexity: a simple extension
Runtime complexity:
n 7→ “maximum derivation height for a basic term of size n”
Basic term: function(data, . . . , data)

Question: is it interesting to look at λ-functions over constructors?

• map(λx.s(x), some lst)?

• maketree(λxnat, ytree.node(x, y, y), some natural number)

A notion of runtime complexity like this would be well-defined, and give reasonable bounds. However,
where runtime complexity makes sense in first-order rewriting if we are interested in “start terms” for a
program, the concept of instantiating higher-order functions by constructors or functions that are built
from constructors doesn’t seem to have much practical relevance.

Choice: data must be a first-order term.

Thus, we let the start terms for higher-order runtime complexity analysis be exactly the same as those
for runtime analysis of first-order term rewriting. Yet, higher-order function calls may arise during the
evaluation of the start terms, so their analysis is still needed. This actually seems representative of full
program analysis.

29

Higher-order runtime complexity example

add(0, y) → y
add(s(x), y) → add(x, s(y))
fold(F , x, []) → []

fold(F , x, cons(y, l)) → fold(F , (F · x · y), l)
sum(l) → fold(λx.λy.add(x, y), 0, l)

Basic terms:

• add(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))

• sum(cons(s(s(0)), cons(0, cons(s(s(s(0))), []))))

Runtime complexity: n 7→ O(n2) (actually: length * max)

30

Exercises

1. Compute a bound on the runtime complexity of the following system.

map(F , []) → []
map(F , cons(x, l)) → cons(F · x, map(F , l))

doublemap(l) → map(double, l)
double(0) → 0

double(s(x)) → s(s(double(x)))

2. Compute a bound on the runtime complexity of the following system.

add(x, 0) → x
add(x, s(y)) → s(add(x, y))
zip(F , [], l) = l
zip(F , l, []) = l

zip(F , cons(x, l), cons(y, q)) = cons(F · x · y, zip(F , l, q))
zipadd(l, q) → zip(λx.λy.add(y, x), l, q)

31

A higher-order complexity notion?

Extending the first-order runtime complexity notion to higher-order rewriting is a good start, but it
doesn’t really capture the higher-order nature. And indeed, tuple interpretations give us much more

information, that we could use for both time and space bounds. Even just sticking to time (or: compu-
tation cost) bounds, it would be nice if we could express the complexity of functions, rather than full
programs; for example:

Idea:

• complexity of map is O(n ∗ F (n))?

• complexity of fold is O(Fn(n))?

However, this is speculative; there is no clear definition of what it would mean. We could likely define
something, but would it be useful?

32

Basic Feasible Functions
But there is a higher-order version of PTIME! This is defined in terms of Turing Machines.

Idea:

• Oracle Turing Machines: these take n functions, k binary words

• to compute function i:

– copy input to tape i

– go to special state

– output is written on tape n+ i

• =⇒ function cost is assumed zero, but function output size is important

• Question: is the execution time limited by a higher-order polynomial over F1, . . . , Fn, w1, . . . , wk?

Relevance: this is exactly determined by the existence of a higher-order polynomially-bounded tuple
interpretation, provided we impose some restrictions on the interpretation of binary words.

