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Handout for part 5:

Complexity:
tuple interpretations



1. Monotonic algebras
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Derivation height

A measure of the “cost” of reducing a term to normal form (worst-case).

add(x, 0) → x
add(x, s(y)) → s(add(x, y))

mul(x, 0) → 0

mul(x, s(y)) → add(x, mul(x, y))

Derivation height:

• add(0, s(0)): 2 (add(0, s(0)) → s(add(0, 0)) → s(0)).

• mul( mul(s(s(0)), s(s(s(0)))) , 0): 15
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Traditional interpretations (first-order)
Idea:

• map every term s to JsK ∈ N

• make sure that s → t implies JsK > JtK

Then: JsK ≥ derivationheight(s)!

Approach:

• map every function that takes k arguments to a monotonic function in Nk 7→ N

• make sure that JℓK > JrK for all rules ℓ → r
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Bounding derivation height with interpretations to N

add(0, y) → y
add(s(x), y) → s(add(x, y))

Let:

• J0K = 0

• Js(x)K = x+ 1

• Jadd(x, y)K = 1 + y + 2 ∗ x



We might initially be inclined to choose Jadd(x, y)K = x+ y – but then we do not have that JℓK > JrK for
the rules. Hence, the interpretation cannot exactly match the “meaning” of the rules:

Then:
Jadd(0, y)K = 1 + y > JyK

Jadd(s(x), y)K = 3 + y + 2 ∗ x > 2 + y + 2 ∗ x
= Js(add(x, y))K

Hence: Jadd(sn(0), sm(0))K = 1 +m+ 2 ∗ n: linear!
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Monotonic algebras: definition
Given: a set A with a well-founded ordering > (for example: N)

Choose: a function [f] from Ak to A for every f of arity k

Define: for a given α mapping variables to A:

• JxK = α(x)

• Jf(s1, . . . , sk)K = [f](Js1K, . . . , JskK)

Prove: JℓK > JrK for all rules ℓ → r, all α

In practice, since we quantify over α, we essentially view both sides as functions over a given set of
variables. This is why we for instance write Jadd(0, y)K = 1 + y instead of 1 + α(y).

Then: JsK > JtK whenever s →R t.

The most common example is to choose the set of natural numbers for A, but we could also for instance
choose the rational numbers (with x > y if x ≥ y + 1), or pairs of numbers as we will see later.

Consequence: if tonat(a) > tonat(b) whenever a > b then tonat(JsK) ≥ derivationheight(s). (Here,
we let tonat be a function that maps each element of A to a natural number. If A = N this is just the
identity; if A = Q this could for instance be rounding down.)
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Higher-order interpretations to N: problems
Let’s extend this idea to higher-order rewriting. Here, we quickly run into the problem: what to do with
partial applications? For example:
Suppose: Js(x)K = x+ 1
Question: What is JsK?

Problem: behaviour matters!

fold(F , x, []) → []
fold(F , x, cons(y, l)) → fold(F , (F · x · y), l)

add(x, 0) → x
add(x, s(y)) → s(add(x, y))

• What is the derivation height if F := λx, y.minimum(x, y)?

• What if: F := λx, y.add(x, y)?



• What if: F := λx, y.add(x, s(0))?

• What if: F := λx, y.add(x, s(s(0)))?

• What if: F := λx, y.add(x, x)?

All in all, the consequences of using different functions for F cannot really be captured by a number.
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Proposal

Let’s interpret terms of function type as functions!

More than that: for each type we have a possibly different interpretation domain. We only fix that
function types are interpreted as monotonic functions:

Type interpretations:

• For every base type ι: a set Aι, ordering >ι and quasi-ordering ≥ι

• Define:
LιM = Aι

Lσ ⇒ τM = “monotonic functions from LσM to LτM”
F >σ⇒τ G if F (a) >τ G(a) for all a ∈ LσM
F ≥σ⇒τ G if F (a) ≥τ G(a) for all a ∈ LσM
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Higher-order monotonic algebras: definition

(Difference to the first-order definition are indicated in red.)

Given: a a type interpretation function as on the previous slide

Choose: a function [f] in LσM for every f of type σ

Define: for a given α mapping variables to A:

• JxK = α(x)

• JfK = [f]

• Js · tK = JsK(JtK)

(We’re ignoring abstractions for now. We will get back to that later!)

Prove: JℓK > JrK for all rules ℓ → r, all α

In practice, since we quantify over α, we essentially view both sides as functions over a given set of
variables.

Then: JsK > JtK whenver s →R t.

Consequence: if tonat(a) > tonat(b) whenever a > b then tonat(JsK) ≥ derivationheight(s).

Note that of course, this is also a termination technique: if we have a bound on the number of steps,
clearly this number is not infinite.
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Example:

[] :: list
cons :: nat ⇒ list ⇒ list
map :: (nat ⇒ nat) ⇒ list ⇒ list

map(F , []) → []
map(F , cons(x, l)) → cons(F · x, map(F , l))

Choose: Aι = N for all ι

[[]] = 0
[cons](x, y) = x+ y + 1
[map](F, x) = (x+ 1) ∗ F (x)

Monotonicity: holds. (We can easily see that, for example, if x > y then [map](F, x) > [map](F, y), and
if F (x) > G(x) for all x then [map](F, x) > [map](G, x).)
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Example

[[]] = 0
[cons](x, y) = x+ y + 1
[map](F, x) = (x+ 1) ∗ F (x) + 1

Goal 1:

Jmap(F, [])K > J[]K

That is:

(0 + 1) ∗ F (0) + 1 > 0

Which is certainly true because 1 > 0.

Goal 2:

Jmap(F , cons(x, l))K > Jcons(F · x, map(F , l))K

That is:

((x+ l + 1) + 1) ∗ F (x+ l + 1) + 1 >
F (x) + ((l + 1) ∗ F (l) + 1) + 1

Simplifying the arithmetic, this is:

x ∗ F (x+ l + 1) + l ∗ F (x+ l + 1) + F (x+ l + 1) + F (x+ l + 1) + 1 >
F (x) + l ∗ F (l) + F (l) + 1

Let’s reorganise that a bit!

x ∗ F (x+ l + 1) +l ∗ F (x+ l + 1) +F (x+ l + 1) +F (x+ l + 1) +1
> +l ∗ F (l) +F (x) +F (l) +1



Now observe that F is monotonic. So for instance F (x + l + 1) > F (x). Hence we quickly see that this
inequality indeed holds.
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Exercise
Given:

[] :: list
cons :: nat ⇒ list ⇒ list

filter :: (nat ⇒ bool) ⇒ list ⇒ list
helper :: bool ⇒ nat ⇒ list ⇒ list

filter(F , []) → []
filter(F , cons(x, l)) → helper(F · x, x, filter(F , l))

helper(true, x, l) → cons(x, l)
helper(false, x, l) → l

Task: show that the following interpretation suffices:

[[]] = 0 [true] = 1
[cons](x, y) = x+ y + 1 [false] = 0

[helper](b, x, y) = b+ x+ y + 1
[filter](F, x) = (x+ 1) ∗ (F (x) + 1)
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Bonus exercise
Given:

[] :: list
cons :: nat ⇒ list ⇒ list
zip :: (nat ⇒ nat) ⇒ list ⇒ list

zip(F , [], l) = l
zip(F , l, []) = l

zip(F , cons(x, l), cons(y, q)) = cons(F · x · y, zip(F , l, q))

Task: find an interpretation that orients these rules!
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Abstraction
Discussion: what should be the interpretation of λx.s?

Naive choice: x 7→ JsK

Problem: the naive interpretation for for λx.s is not monotonic if x does not occur in s! For example,
this choice would let Jλx.0K be the constant function mapping everything to 0 – and thus, it would not
be an element of Lnat ⇒ natM.

Solution: for each σ, τ , a function makesmσ,τ :

• Input: a monotonic or constant function from LσM to LτM

• Output: a monotonic function from LσM to LτM



• makesmσ,τ should itself be monotonic!

• we need to have J(λx.s) · tK > s[x := t]

The use of makesm functions may be confusing at first – but essentially, all that this means is that we
choose a systematic way of turning a given abstraction into a monotonic function. And in practice, we
can usually find a way to define a class of makesm functions that allows us to almost map λx.s to x 7→ JsK
if x ∈ FV (s) – just adding a cost for the β-reduction. This is demonstrated for Anat = N below.

Example: (for σ, τ = nat and Anat = N):

• if F is constant, then makesmσ,τ (F ) = x 7→ F (x) + x+ 1

• otherwise makesmσ,τ (F ) = x 7→ F (x) + 1

This definition works very nicely in practice. The only difficulty is to prove that the above makesm

function is indeed monotonic; in particular, if F is monotonic in x and G is constant, we must show that
that F >nat⇒nat G implies that also makesm(F ) >nat⇒nat makesm(G). To see that this holds, we make
the observation that in the natural numbers, if F is a monotonic function, then F (x + 1) > F (x), so
F (x+ 1) ≥ F (x) + 1; by induction, we see that F (n) ≥ F (0) + n. In a constant function, G(n) = G(0).
Thus we see: for all n: F (n) ≥ F (0) + n > G(0) + n = G(n) + n.

This idea can be generalised to all types, but it takes a bit more definition effort; for example, if σ = τ =
nat ⇒ nat we let makesmσ,τ (F ) = (G, x) 7→ F (G, x) + 1 if F is monotonic in its first argument (G), and
(G, x) 7→ F (G, x) +G(0) + 1 if F is constant in its first argument.



2. Tuple interpretations
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An observation
Consider:

• Jadd(sn(0), sm(0))K = 1 +m+ 2 ∗ n

• actual cost of reduction: n+ 1

• size of normal form: n+m

• This does raise the question: are we actually giving a bound to the sum of cost and size by using
interpretations to N?

Idea: separate cost and size already in the interpretation!

Mechanism: map to N2 instead of N.

We let ⟨x, y⟩ > ⟨x′, y′⟩ if x > x′ and y ≥ y′.

Note: we can choose tonat(⟨x, y⟩) = x. That is, if a > b in N2 then tonat(a) > tonat(b) – so if we can
express JsK as an element ⟨x, y⟩ of N2, then x gives a bound on the derivation height of s. We will refer
to the first element of the tuple as the cost component of the tuple.
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Separating cost and size

add(0, y) → y
add(s(x), y) → s(add(x, y))

Let:
cost size

J0K = ⟨ 0 , 0 ⟩
Js(x)K = ⟨ xcost , xsize + 1 ⟩
Jadd(x, y)K = ⟨ xcost + ycost + xsize , xsize + ysize ⟩

Then:
Jadd(0, y)K = ⟨1 + y1, y2⟩

> ⟨y1, y2⟩ = JyK
Jadd(s(x), y)K = ⟨2 + x1 + y1 + x2, 1 + x2 + y2⟩

> ⟨1 + x1 + y1 + x2, 1 + x2 + y2⟩ = Js(add(x, y))K

Hence: Jadd(sn(0), sm(0))K = ⟨1 + n, n+m⟩: precise! (And also intuitive.)
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When interpretations to N are Not Great

a(b(x)) → b(a(x))

Let:



• Ja(x)K = 2 ∗ x

• Jb(x)K = x+ 1

• JϵK = 0

Then:
Ja(b(x))K = 2 + 2 ∗ x > 1 + 2 ∗ x = Jb(a(x))K

Hence: Jan(bm(ϵ))K = 2n ∗m: exponential!
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Separating cost and size

a(b(x)) → b(a(x))

Let:
cost size

Ja(x)K = ⟨ xcost + xsize , xsize ⟩
Jb(x)K = ⟨ xcost , xsize + 1 ⟩
JϵK = ⟨ 0 , 0 ⟩

Then:
Ja(b(x))K = ⟨x1 + x2 + 1, x2 + 1⟩ > ⟨x1 + x2, x2 + 1⟩ = Jb(a(x))K

Hence: Jan(bm(ϵ))K = (n ∗m,m): precise!

Of course, we can’t always get precision. But we invariably get tighter interpretations by using tuples
than single numbers.
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Tuple interpretations
Definition: monotonic algebras with Aι = NK[ι] for all ι (where K[ι] is a positive integer for all ι).

=⇒ both for first- and higher-order!

This is a specific implementation of a well-known method (monotonic algebras), that adds a surprising
amount of power over other variations. In the bigger picture, tuple interpretations can be seen as a
generalisation of the method of matrix interpretations: this method also considers tuples over N as the
interpretation domain, but restrict the shape of the interpretation functions [f].

Of course, there is no reason to stop here. We could have tuples over other sets than N – for example, using
the set of integers Z as the second set in the component (as only the first needs to admit a wellfounded
ordering), a set such as N ∪ {∞}, or even some impromptu set {a, b, c} with a > b and a > c but b, c not
comparable. There are uses for all these examples. We could also use tuples only for some base types,
and still allow, for instance, a base type list(N ⇒ N) to be mapped to a function space such as LN ⇒ NM.
However, for this lecture, we will limit interest to tuples of the form Nk.

Example sort interpretations:

• {nat} = N2 (cost, size of normal form)

• {list} = N3 (cost, list length, size of greatest element)



• {bool} = N1 (cost)
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Example: interpreting list functions

append([], l) → l
append(cons(x, l), q) → cons(x, append(l, q))

sum([]) → 0

sum(cons(x, l)) → add(x, sum(l))

Interpretations:

• {list} = N3 (cost, list length, maximum element)

• J[]K = ⟨0, 0, 0⟩

• Jcons(x, l)K = ⟨xcost + lcost , llen + 1,max(xsize , lmax )⟩

• Jappend(l, q)K = ⟨cost, length,maximum⟩, where:

– maximum = max(lmax , qmax )

– length = llen + qlen

– cost = lcost + qcost + llen + 1

• Jsum(l)K = ⟨cost, size⟩, where:

– size = llen ∗ lmax

– cost = lcost + 2 ∗ llen + llen ∗ lmax + 1
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Higher-order tuple interpretations: an example

[] :: list
cons :: N ⇒ list ⇒ list
map :: (N ⇒ N) ⇒ list ⇒ list

map(F , []) → []
map(F , cons(x, l)) → cons(F · x, map(F , l))

Let:

• J[]K = ⟨0, 0, 0⟩

• Jcons(x, l)K = ⟨xcost + lcost , llen + 1,max(xsize , lmax )⟩

• Jmap(F , l)K = ⟨cost, length,maximum⟩, where:

– length: llen

– maximum: F ( ⟨lcost , lmax ⟩ )s
– cost: (llen + 1) ∗ (F ( ⟨lcost , lmax ⟩ )cost + 1)
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Exercise

1. Find an interpretation, with LnatM = N2, for the following system:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

Warning: do not take xsize − ysize for the size of minus(x, y)! Doing this would break the
monotonicity requirement: we must have Jminus(a, b)K > Jminus(a, c)K if b > c, which implies
Jminus(a, b)Ksize ≥ Jminus(a, c)K≥ if bcost > ccost and bsize ≥ csize .

Side note: the fact that we can do this at all illustrates the power of tuple interpretations. This was a
motivating example for dependency pairs, since it cannot be handled with any well-founded ordering
that has minus(x, y) ⪰ y. Thus, termination cannot be proved using RPO or interpretations to N,
nor can it be proved with a method like matrix interpretations due to the duplication of x in the
last rule. Yet, here we do not only prove its termination, but also find a bound to its complexity.

2. Find an interpretation for the following HTRS, where zip :: (nat ⇒ nat) ⇒ list ⇒ list.

zip(F , [], l) = l
zip(F , l, []) = l

zip(F , cons(x, l), cons(y, q)) = cons(F · x · y, zip(F , l, q))
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A more challenging higher-order tuple interpretation

fold(F , x, []) → []
fold(F , x, cons(y, l)) → fold(F , (F · x · y), l)

Interpretation:
Jfold(F , x, l)K = ⟨cost, size⟩

Where:

• cost = 1 + lcost + F (⟨0, 0⟩)cost +Helper [F , ⟨lcost , lmax ⟩]llen (x)cost

• size = Helper [F , ⟨lcost , lmax ⟩]llen (x)size

• And Helper [F , y] = x 7→ ⟨F (x, y)cost ,max(xsize , F (x, y)size)⟩.
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A more challenging higher-order tuple interpretation

add(0, y) → y
add(s(x), y) → add(x, s(y))
fold(F , x, []) → []

fold(F , x, cons(y, l)) → fold(F , (F · x · y), l)
sum(l) → fold(λx.λy.add(x, y), 0, l)



Method: Plug Jλx.λy.add(x, y)K into the interpretation for fold.

Interpreting λ: use makesmι,σ1⇒...⇒σm⇒κ ={
(F, x, y1, . . . , ym) 7→ (F (x, y⃗)1 + 1 + x1, F (x, y⃗)2, . . . , F (x, y⃗)K[κ]) if F is constant

(F, x, y1, . . . , ym) 7→ (F (x, y⃗)1 + 1 , F (x, y⃗)2, . . . , F (x, y⃗)K[κ]) if F is monotonic



3. Complexity notions
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Derivational and runtime complexity (first-order)
Derivational complexity:
n 7→ “maximum derivation height for a term of size n”

Downside: can easily get large; e.g.: mul(mul(mul(mul(s(s(0)), s(s(0))), s(s(0))), s(s(0))), s(s(0)))

Runtime complexity:
n 7→ “maximum derivation height for a basic term of size n”

Basic term: function(data, . . . , data)

Example: mul(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))

Connection with computational complexity: depends
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Termination (and complexity) competition
In the annual termination competition, there are categories for both runtime and derivational complexity
of first-order term rewriting (both with a general reduction strategy, and focused on innermost reduction).
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Complexity of higher-order term rewriting
Open question: do derivational and runtime complexity even make sense for higher-order rewriting?

fold(F , x, []) → []
fold(F , x, cons(y, l)) → fold(F , (F · x · y), l)

Recall:

• What if: F := λx, y.minimum(x, y)?

• What if: F := λx, y.add(x, y)?

• What if: F := λx, y.add(x, x)?
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Higher-order derivational complexity?
Idea: naively extend the definition of derivational complexity

Result:
add(x, 0) → x

add(x, s(y)) → s(add(x, y))

• (λx.add(x, x)) · (s(s(0)))

• (λx.add(x, x)) · ((λx.add(x, x)) · (s(s(0))))

• (λx.add(x, x)) · ((λx.add(x, x)) · ((λx.add(x, x)) · (s(s(0)))))

• . . .

Conclusion: exponential complexity at a minimum, even for very simple systems.
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Runtime complexity: a simple extension
Runtime complexity:
n 7→ “maximum derivation height for a basic term of size n”
Basic term: function(data, . . . , data)

Question: is it interesting to look at λ-functions over constructors?

• map(λx.s(x), some lst)?

• maketree(λxnat, ytree.node(x, y, y), some natural number)

A notion of runtime complexity like this would be well-defined, and give reasonable bounds. However,
where runtime complexity makes sense in first-order rewriting if we are interested in “start terms” for a
program, the concept of instantiating higher-order functions by constructors or functions that are built
from constructors doesn’t seem to have much practical relevance.



Choice: data must be a first-order term.

Thus, we let the start terms for higher-order runtime complexity analysis be exactly the same as those
for runtime analysis of first-order term rewriting. Yet, higher-order function calls may arise during the
evaluation of the start terms, so their analysis is still needed. This actually seems representative of full
program analysis.
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Higher-order runtime complexity example

add(0, y) → y
add(s(x), y) → add(x, s(y))
fold(F , x, []) → []

fold(F , x, cons(y, l)) → fold(F , (F · x · y), l)
sum(l) → fold(λx.λy.add(x, y), 0, l)

Basic terms:

• add(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))

• sum(cons(s(s(0)), cons(0, cons(s(s(s(0))), []))))

Runtime complexity: n 7→ O(n2) (actually: length * max)
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Exercises

1. Compute a bound on the runtime complexity of the following system.

map(F , []) → []
map(F , cons(x, l)) → cons(F · x, map(F , l))

doublemap(l) → map(double, l)
double(0) → 0

double(s(x)) → s(s(double(x)))

2. Compute a bound on the runtime complexity of the following system.

add(x, 0) → x
add(x, s(y)) → s(add(x, y))
zip(F , [], l) = l
zip(F , l, []) = l

zip(F , cons(x, l), cons(y, q)) = cons(F · x · y, zip(F , l, q))
zipadd(l, q) → zip(λx.λy.add(y, x), l, q)
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A higher-order complexity notion?

Extending the first-order runtime complexity notion to higher-order rewriting is a good start, but it
doesn’t really capture the higher-order nature. And indeed, tuple interpretations give us much more



information, that we could use for both time and space bounds. Even just sticking to time (or: compu-
tation cost) bounds, it would be nice if we could express the complexity of functions, rather than full
programs; for example:

Idea:

• complexity of map is O(n ∗ F (n))?

• complexity of fold is O(Fn(n))?

However, this is speculative; there is no clear definition of what it would mean. We could likely define
something, but would it be useful?
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Basic Feasible Functions
But there is a higher-order version of PTIME! This is defined in terms of Turing Machines.

Idea:

• Oracle Turing Machines: these take n functions, k binary words

• to compute function i:

– copy input to tape i

– go to special state

– output is written on tape n+ i

• =⇒ function cost is assumed zero, but function output size is important

• Question: is the execution time limited by a higher-order polynomial over F1, . . . , Fn, w1, . . . , wk?

Relevance: this is exactly determined by the existence of a higher-order polynomially-bounded tuple
interpretation, provided we impose some restrictions on the interpretation of binary words.


