Handout for part 5:

Complexity: tuple interpretations

1

² Derivation height

A measure of the "cost" of reducing a term to normal form (worst-case).

 $\begin{array}{rcl} \operatorname{add}(x,0) & \to & x \\ \operatorname{add}(x,\mathbf{s}(y)) & \to & \operatorname{s}(\operatorname{add}(x,y)) \\ \operatorname{mul}(x,0) & \to & 0 \\ \operatorname{mul}(x,\mathbf{s}(y)) & \to & \operatorname{add}(x,\operatorname{mul}(x,y)) \end{array}$

Derivation height:

- $\operatorname{add}(0, \operatorname{s}(0)): 2 (\operatorname{add}(0, \operatorname{s}(0)) \to \operatorname{s}(\operatorname{add}(0, 0)) \to \operatorname{s}(0)).$
- mul(mul(s(s(0)), s(s(s(0)))) , 0): 15

³ Traditional interpretations (first-order) Idea:

- map every term s to $[\![s]\!] \in \mathbb{N}$
- make sure that $s \to t$ implies $[\![s]\!] > [\![t]\!]$

Then: $\llbracket s \rrbracket \ge \texttt{derivationheight}(s)!$

Approach:

- map every function that takes k arguments to a **monotonic** function in $\mathbb{N}^k \to \mathbb{N}$
- make sure that $\llbracket \ell \rrbracket > \llbracket r \rrbracket$ for all rules $\ell \to r$

Bounding derivation height with interpretations to $\ensuremath{\mathbb{N}}$

```
 add(0, y) \rightarrow y 
 add(s(x), y) \rightarrow s(add(x, y))
```

Let:

4

- $\llbracket \mathbf{0} \rrbracket = 0$
- $\llbracket \mathbf{s}(x) \rrbracket = x + 1$
- [[add(x, y)]] = 1 + y + 2 * x

We might initially be inclined to choose $[\![add(x, y)]\!] = x + y - but$ then we do not have that $[\![\ell]\!] > [\![r]\!]$ for the rules. Hence, the interpretation cannot exactly match the "meaning" of the rules:

Then:

$$\begin{bmatrix} \mathsf{add}(0, y) \end{bmatrix} = 1 + y > \begin{bmatrix} y \end{bmatrix} \\ \begin{bmatrix} \mathsf{add}(\mathbf{s}(x), y) \end{bmatrix} = 3 + y + 2 * x > 2 + y + 2 * x \\ = \begin{bmatrix} \mathsf{s}(\mathsf{add}(x, y)) \end{bmatrix}$$

Hence: $[add(s^n(0), s^m(0))] = 1 + m + 2 * n$: linear!

5

Monotonic algebras: definition

Given: a set \mathcal{A} with a well-founded ordering > (for example: \mathbb{N})

Choose: a function [f] from \mathcal{A}^k to \mathcal{A} for every f of arity k

Define: for a given α mapping variables to \mathcal{A} :

•
$$\llbracket x \rrbracket = \alpha(x)$$

• $[\![\mathbf{f}(s_1,\ldots,s_k)]\!] = [\![\mathbf{f}]([\![s_1]\!],\ldots,[\![s_k]\!])$

Prove: $\llbracket \ell \rrbracket > \llbracket r \rrbracket$ for all rules $\ell \to r$, all α

In practice, since we quantify over α , we essentially view both sides as functions over a given set of variables. This is why we for instance write [add(0, y)] = 1 + y instead of $1 + \alpha(y)$.

Then: $\llbracket s \rrbracket > \llbracket t \rrbracket$ whenever $s \to_{\mathcal{R}} t$.

The most common example is to choose the set of natural numbers for \mathcal{A} , but we could also for instance choose the rational numbers (with x > y if $x \ge y + 1$), or pairs of numbers as we will see later.

Consequence: if tonat(a) > tonat(b) whenever a > b then $tonat(\llbracket s \rrbracket) \ge \texttt{derivationheight}(s)$. (Here, we let *tonat* be a function that maps each element of \mathcal{A} to a natural number. If $\mathcal{A} = \mathbb{N}$ this is just the identity; if $\mathcal{A} = \mathbb{Q}$ this could for instance be rounding down.)

⁶ Higher-order interpretations to \mathbb{N} : problems

Let's extend this idea to higher-order rewriting. Here, we quickly run into the problem: what to do with partial applications? For example:

Suppose: [[s(x)]] = x + 1Question: What is [[s]]?

Problem: behaviour matters!

$$\begin{array}{rcl} \texttt{fold}(F, x, []) & \to & [] \\ \texttt{fold}(F, x, \texttt{cons}(y, l)) & \to & \texttt{fold}(F, (F \cdot x \cdot y), l) \\ & \texttt{add}(x, \texttt{0}) & \to & x \\ & \texttt{add}(x, \texttt{s}(y)) & \to & \texttt{s}(\texttt{add}(x, y)) \end{array}$$

- What is the derivation height if $F := \lambda x, y.\min(x, y)$?
- What if: $F := \lambda x, y.add(x, y)$?

- What if: $F := \lambda x, y.add(x, s(0))$?
- What if: $F := \lambda x, y.add(x, s(s(0)))?$
- What if: $F := \lambda x, y.add(x, x)$?

All in all, the consequences of using different functions for F cannot really be captured by a number.

7 Proposal

Let's interpret terms of function type as functions!

More than that: for each type we have a possibly different interpretation domain. We only fix that function types are interpreted as *monotonic* functions:

Type interpretations:

- For every base type ι : a set \mathcal{A}_{ι} , ordering $>_{\iota}$ and quasi-ordering \geq_{ι}
- Define:

⁸ Higher-order monotonic algebras: definition

(Difference to the first-order definition are indicated in red.)

Given: a a type interpretation function as on the previous slide

Choose: a function [f] in (σ) for every f of type σ

Define: for a given α mapping variables to \mathcal{A} :

- $\llbracket x \rrbracket = \alpha(x)$
- $\llbracket \mathtt{f} \rrbracket = [\mathtt{f}]$
- $\llbracket s \cdot t \rrbracket = \llbracket s \rrbracket (\llbracket t \rrbracket)$

(We're ignoring abstractions for now. We will get back to that later!)

Prove: $\llbracket \ell \rrbracket > \llbracket r \rrbracket$ for all rules $\ell \to r$, all α

In practice, since we quantify over α , we essentially view both sides as functions over a given set of variables.

Then: $[\![s]\!] > [\![t]\!]$ whenver $s \to_{\mathcal{R}} t$.

Consequence: if tonat(a) > tonat(b) whenever a > b then $tonat([s]) \ge derivationheight(s)$.

Note that of course, this is also a *termination* technique: if we have a bound on the number of steps, clearly this number is not infinite.

⁹ Example:

$$\begin{array}{cccc} [] & :: & \mathsf{list} \\ \texttt{cons} & :: & \mathsf{nat} \Rightarrow \mathsf{list} \Rightarrow \mathsf{list} \\ \texttt{map} & :: & (\mathsf{nat} \Rightarrow \mathsf{nat}) \Rightarrow \mathsf{list} \Rightarrow \mathsf{list} \\ \texttt{map}(F, []) & \to & [] \\ \texttt{map}(F, \texttt{cons}(x, l)) & \to & \texttt{cons}(F \cdot x, \texttt{map}(F, l)) \end{array}$$

Choose: $\mathcal{A}_{\iota} = \mathbb{N}$ for all ι

Monotonicity: holds. (We can easily see that, for example, if x > y then [map](F, x) > [map](F, y), and if F(x) > G(x) for all x then [map](F, x) > [map](G, x).)

10 Example

Goal 1:

$$[\![\mathtt{map}(F,[])]\!] > [\![]]\!]$$

That is:

$$(0+1) * F(0) + 1 > 0$$

Which is certainly true because 1 > 0.

Goal 2:

$$\llbracket map(F, cons(x, l)) \rrbracket > \llbracket cons(F \cdot x, map(F, l)) \rrbracket$$

That is:

$$((x+l+1)+1) * F(x+l+1) + 1 > F(x) + ((l+1) * F(l) + 1) + 1$$

Simplifying the arithmetic, this is:

$$x * F(x + l + 1) + l * F(x + l + 1) + F(x + l + 1) + F(x + l + 1) + 1 > F(x) + l * F(l) + F(l) + 1$$

Let's reorganise that a bit!

Now observe that F is monotonic. So for instance F(x+l+1) > F(x). Hence we quickly see that this inequality indeed holds.

11 Exercise

Given:

 $[] :: \text{ list} \\ \text{cons} :: \text{ nat} \Rightarrow \text{list} \Rightarrow \text{list} \\ \text{filter} :: (\text{nat} \Rightarrow \text{bool}) \Rightarrow \text{list} \Rightarrow \text{list} \\ \text{helper} :: \text{bool} \Rightarrow \text{nat} \Rightarrow \text{list} \Rightarrow \text{list} \\ \text{filter}(F, []) \rightarrow [] \\ \text{filter}(F, \text{cons}(x, l)) \rightarrow \text{helper}(F \cdot x, x, \text{filter}(F, l)) \\ \text{helper}(\text{true}, x, l) \rightarrow \text{cons}(x, l) \\ \text{helper}(\text{false}, x, l) \rightarrow l$

Task: show that the following interpretation suffices:

¹² Bonus exercise

Given:

```
[] :: \text{ list}
\operatorname{cons} :: \text{ nat} \Rightarrow \text{list} \Rightarrow \text{list}
\operatorname{zip} :: (\operatorname{nat} \Rightarrow \operatorname{nat}) \Rightarrow \text{list} \Rightarrow \text{list}
\operatorname{zip}(F, [], l) = l
\operatorname{zip}(F, \operatorname{cons}(x, l), \operatorname{cons}(y, q)) = \operatorname{cons}(F \cdot x \cdot y, \operatorname{zip}(F, l, q))
```

Task: find an interpretation that orients these rules!

13 Abstraction

Discussion: what should be the interpretation of $\lambda x.s$?

Naive choice: $x \mapsto [\![s]\!]$

Problem: the naive interpretation for for $\lambda x.s$ is not monotonic if x does not occur in s! For example, this choice would let $[\lambda x.0]$ be the **constant** function mapping everything to 0 – and thus, it would not be an element of (nat \Rightarrow nat).

Solution: for each σ, τ , a function makes $m_{\sigma,\tau}$:

- Input: a monotonic or constant function from (σ) to (τ)
- Output: a monotonic function from (σ) to (τ)

- makesm_{σ,τ} should itself be monotonic!
- we need to have $\llbracket (\lambda x.s) \cdot t \rrbracket > s[x := t]$

The use of makesm functions may be confusing at first – but essentially, all that this means is that we choose a systematic way of turning a given abstraction into a monotonic function. And in practice, we can usually find a way to define a class of makesm functions that allows us to *almost* map $\lambda x.s$ to $x \mapsto [\![s]\!]$ if $x \in FV(s)$ – just adding a cost for the β -reduction. This is demonstrated for $\mathcal{A}_{nat} = \mathbb{N}$ below.

Example: (for $\sigma, \tau = \text{nat}$ and $\mathcal{A}_{nat} = \mathbb{N}$):

- if F is constant, then $makesm_{\sigma,\tau}(F) = x \mapsto F(x) + x + 1$
- otherwise makes $m_{\sigma,\tau}(F) = x \mapsto F(x) + 1$

This definition works very nicely in practice. The only difficulty is to prove that the above makesm function is indeed monotonic; in particular, if F is monotonic in x and G is constant, we must show that that $F >_{nat \Rightarrow nat} G$ implies that also $makesm(F) >_{nat \Rightarrow nat} makesm(G)$. To see that this holds, we make the observation that in the natural numbers, if F is a monotonic function, then F(x + 1) > F(x), so $F(x + 1) \ge F(x) + 1$; by induction, we see that $F(n) \ge F(0) + n$. In a constant function, G(n) = G(0). Thus we see: for all n: $F(n) \ge F(0) + n > G(0) + n = G(n) + n$.

This idea can be generalised to all types, but it takes a bit more definition effort; for example, if $\sigma = \tau =$ nat \Rightarrow nat we let $\mathtt{makesm}_{\sigma,\tau}(F) = (G, x) \mapsto F(G, x) + 1$ if F is monotonic in its first argument (G), and $(G, x) \mapsto F(G, x) + G(0) + 1$ if F is constant in its first argument.

2. Tuple interpretations

An observation

Consider:

- $[add(s^n(0), s^m(0))] = 1 + m + 2 * n$
- actual cost of reduction: n+1
- size of normal form: n + m
- This does raise the question: are we actually giving a bound to the *sum* of cost and size by using interpretations to N?

Idea: separate cost and size already in the interpretation!

Mechanism: map to \mathbb{N}^2 instead of \mathbb{N} .

We let $\langle x, y \rangle > \langle x', y' \rangle$ if x > x' and $y \ge y'$.

Note: we can choose $tonat(\langle x, y \rangle) = x$. That is, if a > b in \mathbb{N}^2 then tonat(a) > tonat(b) – so if we can express $[\![s]\!]$ as an element $\langle x, y \rangle$ of \mathbb{N}^2 , then x gives a bound on the derivation height of s. We will refer to the first element of the tuple as the **cost component** of the tuple.

¹⁵ Separating cost and size

$$add(0,y) \rightarrow y$$

 $add(s(x),y) \rightarrow s(add(x,y))$

Let:

 $\begin{bmatrix} 0 \end{bmatrix} = \langle 0 , 0 \rangle$ $\begin{bmatrix} s(x) \end{bmatrix} = \langle x_{cost} , x_{size} + 1 \rangle$ $\begin{bmatrix} add(x,y) \end{bmatrix} = \langle x_{cost} + y_{cost} + x_{size} , x_{size} + y_{size} \rangle$ Then: $\begin{bmatrix} add(0,y) \end{bmatrix} = \langle 1 + y_1, y_2 \rangle$ $> \langle y_1, y_2 \rangle = \llbracket y \rrbracket$ $\begin{bmatrix} add(s(x), y) \rrbracket = \langle 2 + x_1 + y_1 + x_2, 1 + x_2 + y_2 \rangle$ $> \langle 1 + x_1 + y_1 + x_2, 1 + x_2 + y_2 \rangle = \llbracket s(add(x, y)) \rrbracket$

Hence: $[\![add(s^n(0), s^m(0))]\!] = \langle 1 + n, n + m \rangle$: precise! (And also intuitive.)

When interpretations to $\mathbb N$ are Not Great

 $\mathbf{a}(\mathbf{b}(x)) \rightarrow \mathbf{b}(\mathbf{a}(x))$

Let:

16

- [[a(x)]] = 2 * x
- $\bullet \ \llbracket \mathbf{b}(x) \rrbracket = x+1$
- $\llbracket \boldsymbol{\epsilon} \rrbracket = 0$

Then:

$$[[\mathbf{a}(\mathbf{b}(x))]] = 2 + 2 * x > 1 + 2 * x = [[\mathbf{b}(\mathbf{a}(x))]]$$

Hence: $[\![\mathbf{a}^n(\mathbf{b}^m(\epsilon))]\!] = 2^n * m$: exponential!

¹⁷ Separating cost and size

$$\mathbf{a}(\mathbf{b}(x)) \rightarrow \mathbf{b}(\mathbf{a}(x))$$

Let:

 $\begin{bmatrix} \mathbf{a}(x) \end{bmatrix} = \langle x_{cost} + x_{size} , x_{size} \rangle$ $\begin{bmatrix} \mathbf{b}(x) \end{bmatrix} = \langle x_{cost} , x_{size} + 1 \rangle$ $\begin{bmatrix} \epsilon \end{bmatrix} = \langle 0 , 0 \rangle$

Then:

$$[\![\mathbf{a}(\mathbf{b}(x))]\!] = \langle x_1 + x_2 + 1, x_2 + 1 \rangle > \langle x_1 + x_2, x_2 + 1 \rangle = [\![\mathbf{b}(\mathbf{a}(x))]\!]$$

Hence: $[a^n(b^m(\epsilon))] = (n * m, m)$: precise!

Of course, we can't always get precision. But we invariably get tighter interpretations by using tuples than single numbers.

¹⁸ **Tuple interpretations**

Definition: monotonic algebras with $\mathcal{A}_{\iota} = \mathbb{N}^{K[\iota]}$ for all ι (where $K[\iota]$ is a positive integer for all ι).

 \implies both for first- and higher-order!

This is a specific implementation of a well-known method (monotonic algebras), that adds a surprising amount of power over other variations. In the bigger picture, tuple interpretations can be seen as a generalisation of the method of *matrix interpretations*: this method also considers tuples over \mathbb{N} as the interpretation domain, but restrict the shape of the interpretation functions $[\mathbf{f}]$.

Of course, there is no reason to stop here. We could have tuples over *other* sets than \mathbb{N} – for example, using the set of integers \mathbb{Z} as the second set in the component (as only the first needs to admit a wellfounded ordering), a set such as $\mathbb{N} \cup \{\infty\}$, or even some impromptu set $\{a, b, c\}$ with a > b and a > c but b, c not comparable. There are uses for all these examples. We could also use tuples only for *some* base types, and still allow, for instance, a base type list($\mathbb{N} \Rightarrow \mathbb{N}$) to be mapped to a function space such as $(\mathbb{N} \Rightarrow \mathbb{N})$. However, for this lecture, we will limit interest to tuples of the form \mathbb{N}^k .

Example sort interpretations:

- $\{\mathsf{nat}\} = \mathbb{N}^2$ (cost, size of normal form)
- $\{\text{list}\} = \mathbb{N}^3$ (cost, list length, size of greatest element)

• $\{\mathsf{bool}\} = \mathbb{N}^1 \ (\mathrm{cost})$

¹⁹ Example: interpreting list functions

 $\begin{array}{rcl} \texttt{append}([],l) & \to & l \\ \texttt{append}(\texttt{cons}(x,l),q) & \to & \texttt{cons}(x,\texttt{append}(l,q)) \\ & & \texttt{sum}([]) & \to & \texttt{0} \\ & & \texttt{sum}(\texttt{cons}(x,l)) & \to & \texttt{add}(x,\texttt{sum}(l)) \end{array}$

Interpretations:

- $\{\text{list}\} = \mathbb{N}^3$ (cost, list length, maximum element)
- $\llbracket \llbracket \rrbracket \rrbracket = \langle 0, 0, 0 \rangle$
- $[[cons(x, l)]] = \langle x_{cost} + l_{cost}, l_{len} + 1, \max(x_{size}, l_{max}) \rangle$
- [append(l, q)] = (cost, length, maximum), where:
 - $\max(l_{max}, q_{max})$
 - $\text{ length} = l_{len} + q_{len}$
 - $-\cos t = l_{cost} + q_{cost} + l_{len} + 1$
- $[[sum(l)]] = \langle cost, size \rangle$, where:

$$-$$
 size $= l_{len} * l_{max}$

 $-\cos t = l_{cost} + 2 * l_{len} + l_{len} * l_{max} + 1$

²⁰ Higher-order tuple interpretations: an example

$$[] :: \text{ list} \\ \texttt{cons} :: \mathbf{N} \Rightarrow \texttt{list} \Rightarrow \texttt{list} \\ \texttt{map} :: (\mathbf{N} \Rightarrow \mathbf{N}) \Rightarrow \texttt{list} \Rightarrow \texttt{list} \\ \texttt{map}(F, []) \rightarrow [] \\ \texttt{map}(F, \texttt{cons}(x, l)) \rightarrow \texttt{cons}(F \cdot x, \texttt{map}(F, l)) \end{cases}$$

Let:

- $\llbracket \llbracket \rrbracket \rrbracket = \langle 0, 0, 0 \rangle$
- $\llbracket \operatorname{cons}(x, l) \rrbracket = \langle x_{cost} + l_{cost}, l_{len} + 1, \max(x_{size}, l_{max}) \rangle$
- $[map(F, l)] = \langle cost, length, maximum \rangle$, where:

- length: l_{len}

- maximum: $F(\langle l_{cost}, l_{max} \rangle)_s$
- cost: $(l_{len} + 1) * (F(\langle l_{cost}, l_{max} \rangle)_{cost} + 1)$

21 Exercise

1. Find an interpretation, with $(nat) = \mathbb{N}^2$, for the following system:

$$\begin{array}{rcl} \min(x,0) & \to & x\\ \min(s(x),s(y)) & \to & \min(x,y)\\ \operatorname{quot}(0,s(y)) & \to & 0\\ \operatorname{quot}(s(x),s(y)) & \to & \operatorname{s}(\operatorname{quot}(\min(x,y),s(y))) \end{array}$$

Warning: do not take $x_{size} - y_{size}$ for the size of $\min(x, y)$! Doing this would break the monotonicity requirement: we must have $[\min(a, b)] > [\min(a, c)]$ if b > c, which implies $[\min(a, b)]_{size} \ge [\min(a, c)]_{\ge}$ if $b_{cost} > c_{cost}$ and $b_{size} \ge c_{size}$.

Side note: the fact that we can do this at all illustrates the power of tuple interpretations. This was a motivating example for dependency pairs, since it cannot be handled with any well-founded ordering that has $\min(x, y) \succeq y$. Thus, termination *cannot* be proved using RPO or interpretations to \mathbb{N} , nor can it be proved with a method like matrix interpretations due to the duplication of x in the last rule. Yet, here we do not only prove its termination, but also find a bound to its complexity.

2. Find an interpretation for the following HTRS, where $zip :: (nat \Rightarrow nat) \Rightarrow list \Rightarrow list$.

 $\begin{aligned} \mathtt{zip}(F,[],l) &= l\\ \mathtt{zip}(F,l,[]) &= l\\ \mathtt{zip}(F,\mathsf{cons}(x,l),\mathsf{cons}(y,q)) &= \mathsf{cons}(F\cdot x\cdot y,\mathtt{zip}(F,l,q)) \end{aligned}$

A more challenging higher-order tuple interpretation

 $\begin{array}{rcl} \texttt{fold}(F, x, []) & \rightarrow & [] \\ \texttt{fold}(F, x, \texttt{cons}(y, l)) & \rightarrow & \texttt{fold}(F, (F \cdot x \cdot y), l) \end{array}$

Interpretation:

 $\llbracket \texttt{fold}(F, x, l) \rrbracket = \langle \text{cost, size} \rangle$

Where:

23

- $\operatorname{cost} = 1 + l_{cost} + F(\langle 0, 0 \rangle)_{cost} + Helper[F, \langle l_{cost}, l_{max} \rangle]^{l_{len}}(x)_{cost}$
- size = $Helper[F, \langle l_{cost}, l_{max} \rangle]^{l_{len}}(x)_{size}$
- And $Helper[F, y] = x \mapsto \langle F(x, y)_{cost}, \max(x_{size}, F(x, y)_{size}) \rangle.$

A more challenging higher-order tuple interpretation

```
\begin{array}{rcl} \operatorname{add}(\mathbf{0},y) & \to & y \\ \operatorname{add}(\mathbf{s}(x),y) & \to & \operatorname{add}(x,\mathbf{s}(y)) \\ \operatorname{fold}(F,x,[]) & \to & [] \\ \operatorname{fold}(F,x,\operatorname{cons}(y,l)) & \to & \operatorname{fold}(F,(F \cdot x \cdot y),l) \\ & & \operatorname{sum}(l) & \to & \operatorname{fold}(\lambda x.\lambda y.\operatorname{add}(x,y),\mathbf{0},l) \end{array}
```

Method: Plug $[\lambda x.\lambda y.add(x, y)]$ into the interpretation for fold.

Interpreting λ : use makesm_{$\iota,\sigma_1 \Rightarrow ... \Rightarrow \sigma_m \Rightarrow \kappa =$}

$$\begin{cases} (F, x, y_1, \dots, y_m) & \mapsto & (F(x, \vec{y})_1 + 1 + x_1, F(x, \vec{y})_2, \dots, F(x, \vec{y})_{K[\kappa]}) \text{ if } F \text{ is constant} \\ (F, x, y_1, \dots, y_m) & \mapsto & (F(x, \vec{y})_1 + 1 \dots, F(x, \vec{y})_2, \dots, F(x, \vec{y})_{K[\kappa]}) \text{ if } F \text{ is monotonic} \end{cases}$$

3. Complexity notions

24

Derivational and runtime complexity (first-order)

Derivational complexity:

 $n\mapsto$ "maximum derivation height for a term of size n "

Downside: can easily get large; e.g.: mul(mul(mul(s(s(0)), s(s(0))), s(s(0))), s(s(0))), s(s(0)))

Runtime complexity:

 $n \mapsto$ "maximum derivation height for a **basic** term of size n"

Basic term: function(data,...,data)

Example: mul(s(s(s(s(s(0))))), s(s(s(s(s(s(0)))))))))

Connection with computational complexity: depends

25

Termination (and complexity) competition

In the annual termination competition, there are categories for both runtime and derivational complexity of first-order term rewriting (both with a general reduction strategy, and focused on innermost reduction).

Complexity Analysis

Derivational_Complexity: TRS 41499
1. AProVE (UP:742, LOW:914, TIME:5d 14:51:28)
2. tct-trs_v3.2.0_2020-06-28 (UP:645, LOW:0, IIIME:3d 23:25:46)
Derivational_Complexity: TRS Innermost 41500
1. AProVE (UP:1530, LOW:2070, TIME:8d 10:19:16)
2. tct-trs_v3.2.0_2020-06-28 (UP:636, LOW:0, TIME:6d 01:37:44)
Runtime_Complexity: TRS 41508
1. AProVE (UP:665, LOW:1782, ITIME:1d 07:43:25)
2. tct-trs_v3.2.0_2020-06-28 (UP:380, LOW:1103, TIME:2d 00:28:55)
Runtime_Complexity: TRS Innermost 41507
1. AProVE (UP:672, LOW:1238, ITIME:1d 03:51:23)
2. tct-trs_v3.2.0_2020-06-28 (UP:444, LOW:777, TIME:1d 08:04:34)
Runtime_Complexity: TRS Innermost Certified 41509
1. tct-trs_v3.2.0_2020-06-28 (UP:419, LOW:0, TIME:1d 01:02:42, Certification:00:00:3
2. AProVE (UP:400, LOW:0, IIME:18:40:07, Certification:00:00:57)

²⁶ Complexity of higher-order term rewriting

Open question: do derivational and runtime complexity even make sense for higher-order rewriting?

$$\begin{array}{rcl} \texttt{fold}(F,x,[]) & \to & [] \\ \texttt{fold}(F,x,\texttt{cons}(y,l)) & \to & \texttt{fold}(F,(F \cdot x \cdot y),l) \end{array}$$

Recall:

- What if: $F := \lambda x, y.\min(x, y)$?
- What if: $F := \lambda x, y.add(x, y)$?
- What if: $F := \lambda x, y.add(x, x)$?

²⁷ Higher-order derivational complexity?

Idea: naively extend the definition of derivational complexity

Result:

 $\begin{array}{rcl} \operatorname{add}(x,\mathbf{0}) & \to & x \\ \operatorname{add}(x,\mathbf{s}(y)) & \to & \operatorname{s}(\operatorname{add}(x,y)) \end{array}$

- $(\lambda x.\operatorname{add}(x,x)) \cdot (\mathbf{s}(\mathbf{s}(\mathbf{0})))$
- $(\lambda x.\operatorname{add}(x,x)) \cdot ((\lambda x.\operatorname{add}(x,x)) \cdot (\mathbf{s}(\mathbf{s}(\mathbf{0}))))$
- $(\lambda x.\operatorname{add}(x,x)) \cdot ((\lambda x.\operatorname{add}(x,x)) \cdot ((\lambda x.\operatorname{add}(x,x)) \cdot (\mathbf{s}(\mathbf{s}(\mathbf{0})))))$
- . . .

Conclusion: exponential complexity at a minimum, even for very simple systems.

²⁸ Runtime complexity: a simple extension

Runtime complexity:

 $n \mapsto$ "maximum derivation height for a **basic** term of size n" Basic term: function(data,..., data)

Question: is it interesting to look at λ -functions over constructors?

- $map(\lambda x.s(x), some lst)$?
- maketree($\lambda x_{nat}, y_{tree.node}(x, y, y)$, some natural number)

A notion of runtime complexity like this would be well-defined, and give reasonable bounds. However, where runtime complexity makes sense in first-order rewriting if we are interested in "start terms" for a program, the concept of instantiating higher-order functions by constructors or functions that are built from constructors doesn't seem to have much practical relevance.

Choice: data must be a first-order term.

Thus, we let the start terms for higher-order runtime complexity analysis be *exactly the same* as those for runtime analysis of first-order term rewriting. Yet, higher-order function calls may arise during the evaluation of the start terms, so their analysis is still needed. This actually seems representative of full program analysis.

²⁹ Higher-order runtime complexity example

 $\begin{array}{rcl} \operatorname{add}(0,y) & \to & y \\ \operatorname{add}(\mathbf{s}(x),y) & \to & \operatorname{add}(x,\mathbf{s}(y)) \\ \operatorname{fold}(F,x,[]) & \to & [] \\ \operatorname{fold}(F,x,\operatorname{cons}(y,l)) & \to & \operatorname{fold}(F,(F \cdot x \cdot y),l) \\ & & \operatorname{sum}(l) & \to & \operatorname{fold}(\lambda x.\lambda y.\operatorname{add}(x,y),\mathbf{0},l) \end{array}$

Basic terms:

- add(s(s(s(s(s(0))))), s(s(s(s(s(s(0)))))))))
- sum(cons(s(s(0)), cons(0, cons(s(s(0))), []))))

Runtime complexity: $n \mapsto \mathcal{O}(n^2)$ (actually: length * max)

³⁰ Exercises

1. Compute a bound on the runtime complexity of the following system.

```
\begin{array}{rcl} \max(F, []) & \to & [] \\ \max(F, \operatorname{cons}(x, l)) & \to & \operatorname{cons}(F \cdot x, \operatorname{map}(F, l)) \\ \operatorname{doublemap}(l) & \to & \operatorname{map}(\operatorname{double}, l) \\ \operatorname{double}(0) & \to & 0 \\ \operatorname{double}(\mathbf{s}(x)) & \to & \mathbf{s}(\mathbf{s}(\operatorname{double}(x))) \end{array}
```

2. Compute a bound on the runtime complexity of the following system.

$$\begin{array}{rcl} \operatorname{add}(x,0) & \to & x \\ \operatorname{add}(x,\mathbf{s}(y)) & \to & \operatorname{s}(\operatorname{add}(x,y)) \\ \operatorname{zip}(F,[],l) & = & l \\ \operatorname{zip}(F,l,[]) & = & l \\ \operatorname{zip}(F,\operatorname{cons}(x,l),\operatorname{cons}(y,q)) & = & \operatorname{cons}(F \cdot x \cdot y,\operatorname{zip}(F,l,q)) \\ \operatorname{zipadd}(l,q) & \to & \operatorname{zip}(\lambda x.\lambda y.\operatorname{add}(y,x),l,q) \end{array}$$

³¹ A higher-order complexity notion?

Extending the first-order runtime complexity notion to higher-order rewriting is a good start, but it doesn't really capture the higher-order nature. And indeed, tuple interpretations give us much more

information, that we could use for both time and space bounds. Even just sticking to time (or: computation cost) bounds, it would be nice if we could express the complexity of functions, rather than full programs; for example:

Idea:

- complexity of map is $\mathcal{O}(n * F(n))$?
- complexity of **fold** is $\mathcal{O}(F^n(n))$?

However, this is speculative; there is no clear definition of what it would mean. We could likely define something, but would it be useful?

³² Basic Feasible Functions

But there is a higher-order version of PTIME! This is defined in terms of Turing Machines.

Idea:

- Oracle Turing Machines: these take n functions, k binary words
- to compute function *i*:
 - copy input to tape i
 - go to special state
 - output is written on tape n+i
- \implies function **cost** is assumed zero, but function **output size** is important
- Question: is the execution time limited by a higher-order polynomial over $F_1, \ldots, F_n, w_1, \ldots, w_k$?

Relevance: this is exactly determined by the existence of a higher-order polynomially-bounded tuple interpretation, provided we impose some restrictions on the interpretation of binary words.