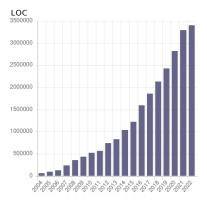


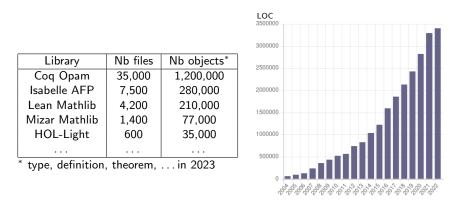
Introduction to Proof Systems Interoperability

Frédéric Blangui

Deduc⊢eam

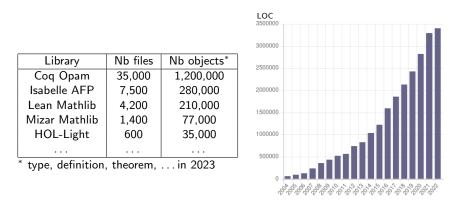
Ínría écle-normale-supéreure-paris-saclay




Libraries of formal proofs today

Library	Nb files	Nb objects*
Coq Opam	35,000	1,200,000
Isabelle AFP	7,500	280,000
Lean Mathlib	4,200	210,000
Mizar Mathlib	1,400	77,000
HOL-Light	600	35,000
*	. 1	

* type, definition, theorem, ... in 2023



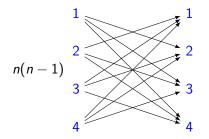
Libraries of formal proofs today

- Every system has basic libraries on integers, lists, ...
- Some definitions/theorems are available in one system only

Libraries of formal proofs today

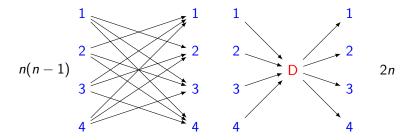
- Every system has basic libraries on integers, lists, ...
- Some definitions/theorems are available in one system only
- \Rightarrow Can't we translate a proof between two systems automatically?

Interest of proof systems interoperability


- Avoid duplicating developments and losing time
- Facilitate development of new proof systems
- Increase reliability of formal proofs (cross-checking)
- Facilitate validation by certification authorities
- Relativize the choice of a system (school, industry)
- Provide multi-system data to machine learning

Difficulties of interoperability

- Each system is based on different axioms and deduction rules
- It is usually non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a proof using impredicativity or proof irrelevance in a system not allowing these features)


Difficulties of interoperability

- Each system is based on different axioms and deduction rules
- It is usually non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a proof using impredicativity or proof irrelevance in a system not allowing these features)
- Is it reasonable to have n(n-1) translators for *n* systems?

Difficulties of interoperability

- Each system is based on different axioms and deduction rules
- It is usually non trivial and sometimes impossible to translate a proof from one system to the other (e.g. a proof using impredicativity or proof irrelevance in a system not allowing these features)
- Is it reasonable to have n(n-1) translators for *n* systems?

A common language for proof systems?

Logical framework D

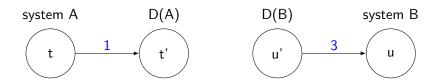
language for describing axioms, deduction rules and proofs of a system S as a theory D(S) in D

Example: D =predicate calculus

allows one to represent S=geometry, S=arithmetic, S=set theory, ... not well suited for computations and dependent types

A common language for proof systems?

Logical framework D

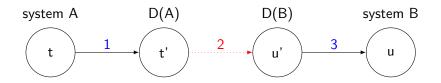

language for describing axioms, deduction rules and proofs of a system S as a theory D(S) in D

Example: D = predicate calculus allows one to represent S= geometry, S= arithmetic, S= set theory, ...

not well suited for computations and dependent types

Better: $D = \lambda \Pi$ -calculus modulo rewriting $(\lambda \Pi / \mathcal{R})$ allows one to represent also: S=HOL, S=Coq, S=Agda, S=PVS, ... How to translate a proof $t \in A$ in a proof $u \in B$?

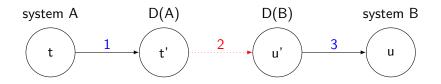
In a logical framework D:



1. translate $t \in A$ in $t' \in D(A)$

3. translate $u' \in D(B)$ in $u \in B$

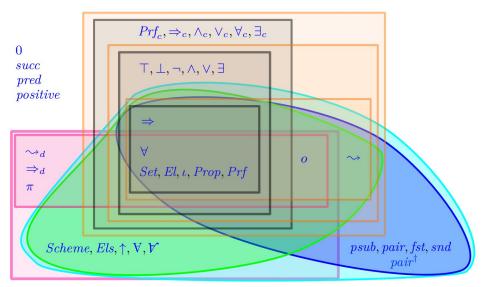
How to translate a proof $t \in A$ in a proof $u \in B$?


In a logical framework D:

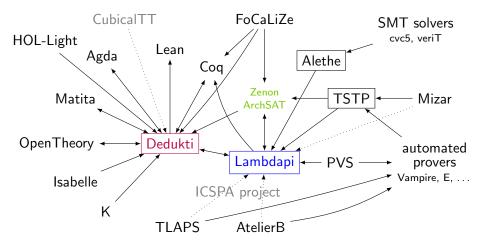
- 1. translate $t \in A$ in $t' \in D(A)$
- 2. identify the axioms and deduction rules of A used in t' translate $t' \in D(A)$ in $u' \in D(B)$ if possible
- 3. translate $u' \in D(B)$ in $u \in B$

How to translate a proof $t \in A$ in a proof $u \in B$?

In a logical framework D:



- 1. translate $t \in A$ in $t' \in D(A)$
- 2. identify the axioms and deduction rules of A used in t' translate $t' \in D(A)$ in $u' \in D(B)$ if possible
- 3. translate $u' \in D(B)$ in $u \in B$


 \Rightarrow represent in the same way functionalities common to A and B

The modular $\lambda \Pi / \mathcal{R}$ theory U and its sub-theories

38 symbols, 28 rules, 13 sub-theories

Dedukti, an assembly language for proof systems

Lambdapi = Dedukti + implicit arguments/coercions, tactics, ...

https://github.com/Deducteam/Dedukti https://github.com/Deducteam/lambdapi

Libraries currently available in Dedukti

System	Libraries	
HOL-Light	all libraries	
Matita	Arith	
Coq	Stdlib parts, GeoCoq	
Isabelle	HOL.Complex_Main (AFP soon?)	
Agda	Stdlib parts (\pm 25%)	
PVS	Stdlib parts (statements only)	
TPTP	E 69%, Vampire 83%	

Examples of library translations

- https://logipedia.inria.fr: Matita/Arith → OpenTheory, Coq, PVS, Lean
- https://github.com/Deducteam/matita_lib_in_agda: Matita/Arith → Agda
- https://github.com/Deducteam/hol2dk: https://github.com/Deducteam/coq-hol-light/: HOL-Light —> Coq