

 $λ$ Π-calculus modulo rewriting

Frédéric Blanqui

Deduc⊢eam

Inria superior

What is the λ Π-calculus modulo rewriting ?

Outline

[Lambda-calculus](#page-2-0)

[Simple types](#page-16-0)

[Dependent types](#page-25-0)

[Rewriting](#page-0-0)

What is λ -calculus ?

introduced by Alonzo Church in 1932

the (untyped or pure) λ -calculus is a general framework for defining functions (objects or propositions)

initially thought as a possible foundation for logic but turned out to be inconsistent

it however provided a foundation for computability theory and functional programming !

What is λ -calculus ?

only 3 constructions:

- variables x, y, \ldots
- application of a term t to another term u , written tu
- abstraction over a variable x in a term t, written λx , t

example: the function mapping x to $2x + 1$ is written

 λx , +(*2x)1

but, for the sake of readability, we may still use infix notations

α -equivalence

the names of abstracted variables are theoretically not significant:

 λx , +(*2x)1 denotes the same function as λy , +(*2y)1

terms equivalent modulo valid renamings are said α -equivalent

in theory, one usually works modulo α -equivalence, that is, on α -equivalence classes of terms (hence, one can always rename some abstracted variables if it is more convenient)

 \Rightarrow but, then, one has to be careful that functions and relations are actually invariant by α -equivalence!...

in practice, dealing with α -equivalence is not trivial

 \Rightarrow this gave raise to a lot of research and tools (still nowadays)!

Example: the set of free variables

a variable is free if it is not abstracted

the set $FV(t)$ of free variables of a term t is defined as follows:

- $FV(x) = \{x\}$
- $FV(tu) = FV(t) \cup FV(u)$
- $FV(\lambda x, t) = FV(t) \{x\}$

one can check that FV is invariant by α -equivalence:

if
$$
t \equiv_{\alpha} u
$$
 then $\text{FV}(t) = \text{FV}(u)$

Substitution

a substitution is a finite map from variables to terms

$$
\sigma = \{(x_1,t_1),\ldots,(x_n,t_n)\}
$$

the domain of a substitution σ is

$$
\text{dom}(\sigma) = \{x \in \mathcal{V} \mid \sigma(x) \neq x\}
$$

how to define the result of applying a substitution σ on a term t?

- $x\sigma = \sigma(x)$ if $x \in \text{dom}(\sigma)$
- $x\sigma = x$ if $x \notin \text{dom}(\sigma)$
- $(tu)\sigma = (t\sigma)(u\sigma)$
- $(\lambda x, t)\sigma = \lambda x, (t\sigma)$? example: $(\lambda x, y){(y, x)} = \lambda x, x$?

Substitution

a substitution is a finite map from variables to terms

$$
\sigma = \{(x_1,t_1),\ldots,(x_n,t_n)\}
$$

the domain of a substitution σ is

$$
\text{dom}(\sigma) = \{x \in \mathcal{V} \mid \sigma(x) \neq x\}
$$

how to define the result of applying a substitution σ on a term t?

- $x\sigma = \sigma(x)$ if $x \in \text{dom}(\sigma)$
- $x\sigma = x$ if $x \notin \text{dom}(\sigma)$
- $(tu)\sigma = (t\sigma)(u\sigma)$
- $(\lambda x, t)\sigma = \lambda x, (t\sigma)$? example: $(\lambda x, y)$ $\{(y, x)\} = \lambda x, x$?

definition not invariant by α -equivalence ! $\lambda x, y \equiv_{\alpha} \lambda z, y$

Substitution

in λ -calculus, substitution is not trivial!

we must rename abstracted variables to avoid name clashes:

$$
(\lambda x, t)\sigma = \lambda y, (t\sigma')
$$

where $\sigma' = \sigma|_{\mathrm{FV}(\lambda x,t)} \cup \{(\mathsf{x},\mathsf{y})\}$ and $\mathsf{y} \notin \mathrm{FV}(\lambda\mathsf{x},t) \cup \bigcup \{ \mathrm{FV}(\mathsf{z}\sigma) \mid \mathsf{z} \in \mathrm{dom}(\sigma|_{\mathrm{FV}(\lambda\mathsf{x},t)}) \}$

Operational semantics: β-reduction

applying the term λx , +(*2x)1 to 3 should return +(*23)1 this is the top β -rewrite relation:

 $(\lambda x, t)u \hookrightarrow_{\beta}^{\varepsilon} t_x^u$

the β -rewrite relation \hookrightarrow_β is the closure by context of $\hookrightarrow_\beta^\varepsilon$:

a term is in normal form if it cannot be reduced further

 \hookrightarrow _β is **confluent** or has the Church-Rosser property (CR):

this means that the order of reduction steps does not matter and every term has at most one normal form

 \hookrightarrow_{β} does not terminate:

```
(\lambda x, xx)(\lambda x, xx) \hookrightarrow_{\beta} (\lambda x, xx)(\lambda x, xx)
```
 \hookrightarrow_{β} does not terminate:

$$
(\lambda x, xx)(\lambda x, xx) \hookrightarrow_{\beta} (\lambda x, xx)(\lambda x, xx)
$$

every term t has a fixpoint $Y_t\coloneqq (\lambda x,t(x x))(\lambda x,t(x x))$:

 $Y_t \hookrightarrow_\beta tY_t$

 \hookrightarrow _β does not terminate:

$$
(\lambda x, xx)(\lambda x, xx) \hookrightarrow_{\beta} (\lambda x, xx)(\lambda x, xx)
$$

every term t has a fixpoint $Y_t\coloneqq (\lambda x,t(x x))(\lambda x,t(x x))$:

 $Y_t \hookrightarrow_\beta tY_t$

 λ -calculus is Turing-complete/can encode any recursive function

 \hookrightarrow _β does not terminate:

$$
(\lambda x, xx)(\lambda x, xx) \hookrightarrow_{\beta} (\lambda x, xx)(\lambda x, xx)
$$

every term t has a fixpoint $Y_t\coloneqq (\lambda x,t(x x))(\lambda x,t(x x))$:

 $Y_t \hookrightarrow_\beta tY_t$

 λ -calculus is Turing-complete/can encode any recursive function a natural number n can be encoded as

 $\lambda f, \lambda x, f^n x$

where $f^0x = x$ and $f^{n+1}x = f(f^nx)$

Outline

[Lambda-calculus](#page-2-0)

[Simple types](#page-16-0)

[Dependent types](#page-25-0)

[Rewriting](#page-0-0)

like in unrestricted set theory where every term is a set in pure λ -calculus, every term is a function

 \Rightarrow every term can be applied to another term, including itself!

like in unrestricted set theory where every term is a set in pure λ -calculus, every term is a function \Rightarrow every term can be applied to another term, including itself!

Russell's paradox: with $R := \{x \mid x \notin x\}$ we have $R \in R$ and $R \notin R$ λ -calculus: with $R := \lambda x, \neg (xx) = Y_\neg$ we have $RR \hookrightarrow_{\beta} \neg (RR)$

like in unrestricted set theory where every term is a set in pure λ -calculus, every term is a function \Rightarrow every term can be applied to another term, including itself!

Russell's paradox: with $R := \{x \mid x \notin x\}$ we have $R \in R$ and $R \notin R$ λ -calculus: with $R := \lambda x$, \neg (xx) = Y_→ we have RR \hookrightarrow _β \neg (RR)

proposals to overcome this problem:

• restrict comprehension axiom to already defined sets use $\{x \in A \mid P\}$ instead of $\{x \mid P\}$

 \rightsquigarrow modern set theory

like in unrestricted set theory where every term is a set in pure λ -calculus, every term is a function \Rightarrow every term can be applied to another term, including itself!

Russell's paradox: with $R := \{x \mid x \notin x\}$ we have $R \in R$ and $R \notin R$ λ -calculus: with $R := \lambda x$, \neg (xx) = Y_→ we have RR \hookrightarrow _β \neg (RR)

proposals to overcome this problem:

• restrict comprehension axiom to already defined sets use $\{x \in A \mid P\}$ instead of $\{x \mid P\}$

\rightsquigarrow modern set theory

- organize terms into a hierarchy
	- natural numbers are of type ι and propositions of type o
	- unary predicates/sets of natural numbers are of type $\iota \to o$
	- sets of sets of natural numbers are of type $(\iota \to o) \to o$

– . . .

\rightsquigarrow modern type theory

Church simply-typed λ -calculus

simple types:

$$
A, B \in \mathcal{S} := X \in \mathcal{V}_{\text{typ}} \mid A \to B
$$

- X is a user-defined type variable/constant
- $A \rightarrow B$ is the type of functions from A to B

terms:

$$
t, u \in \mathcal{T} \coloneqq x \in \mathcal{V}_{\textit{obj}} \mid \lambda x : A, t \mid tu
$$

Assigning types to terms

to assign a type to a term, we define a relation

$$
\vdash \quad \subseteq \quad (\mathcal{V}_{obj} \stackrel{fin}{\rightarrow} \mathcal{S}) \times \mathcal{T} \times \mathcal{S}
$$

where $\mathcal{V}_{obj} \stackrel{fin}{\rightarrow} \mathcal{S}$ is the set of finite maps from variables to types (typing environments) giving the types of free variables

a term t is well-formed in Γ if there is A such that:

Typing rules for objects

Some properties of simply-typed λ -terms

- xx is not typable
- a term has at most one type in a given typing environment
- \leftrightarrow _β preserves typing/has the subject-reduction property (SR_β): if $\Gamma \vdash t : A$ and $t \hookrightarrow_{\beta} u$, then $\Gamma \vdash u : A$
- $\bullet \hookrightarrow_{\beta}$ terminates on well-typed terms (SN)
- type-inference $\exists A, \Gamma \vdash t : A?$ is decidable
- type-checking $\Gamma \vdash t : A$? is decidable

Outline

[Lambda-calculus](#page-2-0)

[Simple types](#page-16-0)

[Dependent types](#page-25-0)

[Rewriting](#page-0-0)

Dependent types / λΠ-calculus

a dependent type is a type that depends on terms

example: the type $(Array n)$ of arrays of size n first introduced by de Bruijn in the Automath system in the 60's

dependent types:

$$
A, B \coloneqq X t_1 \dots t_n \mid \Pi_X: A, B
$$

 $A \rightarrow B$ is an abbreviation for $\Pi x:A, B$ when $x \notin FV(B)$

Example of objects with dependent types

concatenation function on arrays:

concat: $\Box p:\mathbb{N}$, Array $p \rightarrow \Box q:\mathbb{N}$, Array $q \rightarrow$ Array $(p+q)$

concat $2 a 3 b$: Array $(2 + 3)$

Typing rules for objects ?

the last rule allows one to identify the types

$$
A = \text{Array}((\lambda n : \mathbb{N}, n)3) \quad \text{and} \quad A' = \text{Array}(3)
$$

How to make sure that a dependent type is well-formed ?

definition of simply-typed terms:

- 1. we define types: $A, B \coloneqq X \in \mathcal{V}_{\text{two}} \mid A \to B$ all types are well-formed by definition
- 2. we define terms: $t, u := x \in V_{obj} | \lambda x : A, t | tu$
- 3. we define well-formed terms with typing

How to make sure that a dependent type is well-formed ?

definition of simply-typed terms:

- 1. we define types: $A, B \coloneqq X \in \mathcal{V}_{\text{two}} \mid A \to B$ all types are well-formed by definition
- 2. we define terms: $t, u := x \in V_{obj} | \lambda x : A, t | tu$
- 3. we define well-formed terms with typing

problem with dependent types: types depend on terms

- \Rightarrow not all types are well-formed
- \Rightarrow we need typing rules for dependent types

What is a simple type ?

a simple type refines the notion of arity:

- it indicates the number of arguments
- but also the type of each argument

instead of saying + takes 2 arguments, we say + : $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$ instead of saying that $2 + 2$ is well-formed, we say $2 + 2 : \mathbb{N}$

What is a simple type ?

a simple type refines the notion of arity:

- it indicates the number of arguments
- but also the type of each argument

instead of saying + takes 2 arguments, we say + : $\mathbb{N} \to \mathbb{N} \to \mathbb{N}$ instead of saying that $2 + 2$ is well-formed, we say $2 + 2 : \mathbb{N}$

 $2 + 2$: N also means that $2 + 2$ is an expression of arity 0 types extend arities from function symbols to any expression we can have partial applications: $2 + \ldots \mathbb{N} \to \mathbb{N}$

Arity and typing rules of simple types

we introduce a new constant TYPE for the arity of simple types

the fact that every simple type is well-formed can be represented by the following typing rules:

> $X \in {\cal V}_{typ}$ $\overline{\Gamma \vdash X \cdot \text{TYPE}}$ $\Gamma \vdash A$: TYPE $\Gamma \vdash B$: TYPE $\Gamma \vdash A \rightarrow B$ · TYPE

example: $N : TYPE \vdash N \rightarrow N : TYPE$

Arity and typing rules of dependent types

the typing rules for simple types can be easily extended to dependent types as follows:

> $Γ ⊢ A : TYPE Γ, x : A ⊢ B : TYPE$ $Γ ⊢ Πx:A, B : TYPE$

but what is the arity of Array ?

Arity and typing rules of dependent types

the typing rules for simple types can be easily extended to dependent types as follows:

> $Γ ⊢ A : TYPE Γ, x : A ⊢ B : TYPE$ $Γ ⊢ Πx:A.B : TYPE$

but what is the arity of Array ?

Array is a function taking a natural number as argument and returning a type: its arity is $\mathbb{N} \to \text{TYPE}$

Intermediate summary

we now have 3 sorts of expressions:

- objects: $0, +$, $2 + 2$, etc.
- families, the arities of objects: $\mathbb{N}, \mathbb{N} \to \mathbb{N} \to \mathbb{N}$, Array 3, $\Pi p : \mathbb{N}$, Array p, etc.
- kinds, the arities of families: TYPE, $\mathbb{N} \to \text{TYPE}$, Array $3 \rightarrow$ TYPE, etc.

we have typing rules to make sure that an object is well-formed we have typing rules to make sure that a family is well-formed

we have no typing rules to make sure that a kind is well-formed yet a kind may contain families and objects

How to make sure that a kind is well-formed ?

to type families, we introduced the constant TYPE and typing rules on families

to type kinds, we introduce a new constant KIND and the following typing rules:

Γ ⊢ TYPE : KIND

 $Γ ⊢ A : TYPE Γ, x : A ⊢ K : KIND$ $Γ ⊢ Πx:A, K :$ KIND

example: $N : TYPE \vdash N \rightarrow TYPE : KIND$

Adding abstractions in families

finally, we can easily add abstractions in families like

 $\lambda n : \mathbb{N}$, Array n

by adding the following rules:

$$
\frac{\Gamma, x:A \vdash B: K}{\Gamma \vdash \lambda x:A, B: \Pi x:A, K}
$$
\n
$$
\frac{\Gamma \vdash A: K \quad K \downarrow_{\beta} K' \quad \Gamma \vdash K': \text{KIND}}{\Gamma \vdash A: K'}
$$

the last rule allows one to identify the types

$$
K = (\lambda n : \mathbb{N}, \text{Array } n)3 \quad \text{and} \quad K' = \text{Array } 3
$$

Rules to make sure that a typing environment is well-formed

Γ ⊢ means that Γ is a well-formed:

$$
\frac{\Gamma \vdash A : \text{TYPE} \quad x \notin \text{dom}(\Gamma)}{\Gamma, x : A \vdash} \qquad \frac{\Gamma \vdash K : \text{KIND} \quad X \notin \text{dom}(\Gamma)}{\Gamma, X : K \vdash}
$$

All rules on one slide

typing environments:

$$
\frac{\Gamma \vdash A : \text{TYPE} \quad x \notin \text{dom}(\Gamma)}{\Gamma, x : A \vdash} \qquad \frac{\Gamma \vdash K : \text{KIND} \quad X \notin \text{dom}(\Gamma)}{\Gamma, X : K \vdash}
$$

objects:

$$
\frac{\Gamma \vdash (x, A) \in \Gamma}{\Gamma \vdash x : A} \qquad \frac{\Gamma \vdash t : A \quad A \downarrow_{\beta} A' \quad \Gamma \vdash A' : \text{Type}}{\Gamma \vdash t : A'}
$$
\n
$$
\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x : A, t : \Pi x : A, B} \qquad \frac{\Gamma \vdash t : \Pi x : A, B \quad \Gamma \vdash u : A}{\Gamma \vdash t u : B''_x}
$$

families:

$$
\frac{\Gamma \vdash (X,K) \in \Gamma}{\Gamma \vdash X : K} \qquad \frac{\Gamma, x : A \vdash B : \text{TYPE}}{\Gamma \vdash \Pi x : A, B : \text{TYPE}}
$$
\n
$$
\frac{\Gamma, x : A \vdash B : K}{\Gamma \vdash \lambda x : A, B : \Pi x : A, K} \qquad \frac{\Gamma \vdash T : \Pi x : A, K \quad \Gamma \vdash u : B}{\Gamma \vdash \tau u : K_x^u}
$$
\n
$$
\frac{\Gamma \vdash A : K \quad K \downarrow_{\beta} K' \quad \Gamma \vdash K' : \text{KIND}}{\Gamma \vdash A : K'}
$$

kinds:

$$
\frac{\Gamma \vdash}{\Gamma \vdash \text{TYPE}: \text{KIND}} \qquad \frac{\Gamma, x: A \vdash K: \text{KIND}}{\Gamma \vdash \Pi x: A, K: \text{KIND}}
$$

All rules on one slide (PTS presentation)

 $s \in \mathcal{S} = \{$ TYPE, KIND $\}$

$$
\frac{\Gamma\vdash t:A\qquad A\downarrow_{\beta}A'\qquad\Gamma\vdash A':s}{\Gamma\vdash t:A'}
$$