
EuroProofNet

λΠ-calculus modulo rewriting

Frédéric Blanqui

Deduc⊢eam

What is the λΠ-calculus modulo rewriting ?

λΠ/R =
λ simply-typed λ-calculus

+ Π dependent types, e.g. Array n
+ R identification of types modulo rewrites rules l ↪→ r

Outline

Lambda-calculus

Simple types

Dependent types

Rewriting

What is λ-calculus ?

introduced by Alonzo Church in 1932

the (untyped or pure) λ-calculus is a general framework for
defining functions (objects or propositions)

initially thought as a possible foundation for logic
but turned out to be inconsistent

it however provided a foundation for computability theory
and functional programming !

What is λ-calculus ?

only 3 constructions:

• variables x , y , . . .

• application of a term t to another term u, written tu

• abstraction over a variable x in a term t, written λx , t

example: the function mapping x to 2x + 1 is written

λx ,+(∗2x)1

but, for the sake of readability, we may still use infix notations

α-equivalence

the names of abstracted variables are theoretically not significant:

λx ,+(∗2x)1 denotes the same function as λy ,+(∗2y)1

terms equivalent modulo valid renamings are said α-equivalent

in theory, one usually works modulo α-equivalence, that is, on
α-equivalence classes of terms (hence, one can always rename
some abstracted variables if it is more convenient)

⇒ but, then, one has to be careful that functions and relations are
actually invariant by α-equivalence!. . .

in practice, dealing with α-equivalence is not trivial

⇒ this gave raise to a lot of research and tools (still nowadays)!

Example: the set of free variables

a variable is free if it is not abstracted

the set FV(t) of free variables of a term t is defined as follows:

• FV(x) = {x}
• FV(tu) = FV(t) ∪ FV(u)

• FV(λx , t) = FV(t)− {x}

one can check that FV is invariant by α-equivalence:

if t ≡α u then FV(t) = FV(u)

Substitution

a substitution is a finite map from variables to terms

σ = {(x1, t1), . . . , (xn, tn)}

the domain of a substitution σ is

dom(σ) = {x ∈ V | σ(x) ̸= x}

how to define the result of applying a substitution σ on a term t ?

• xσ = σ(x) if x ∈ dom(σ)

• xσ = x if x /∈ dom(σ)

• (tu)σ = (tσ)(uσ)

• (λx , t)σ = λx , (tσ) ? example: (λx , y){(y , x)} = λx , x ?

definition not invariant by α-equivalence ! λx , y ≡α λz , y

Substitution

a substitution is a finite map from variables to terms

σ = {(x1, t1), . . . , (xn, tn)}

the domain of a substitution σ is

dom(σ) = {x ∈ V | σ(x) ̸= x}

how to define the result of applying a substitution σ on a term t ?

• xσ = σ(x) if x ∈ dom(σ)

• xσ = x if x /∈ dom(σ)

• (tu)σ = (tσ)(uσ)

• (λx , t)σ = λx , (tσ) ? example: (λx , y){(y , x)} = λx , x ?

definition not invariant by α-equivalence ! λx , y ≡α λz , y

Substitution

in λ-calculus, substitution is not trivial!

we must rename abstracted variables to avoid name clashes:

(λx , t)σ = λy , (tσ′)

where σ′ = σ|FV(λx ,t) ∪ {(x , y)}

and y /∈ FV(λx , t) ∪
⋃
{FV(zσ) | z ∈ dom(σ|FV(λx ,t))}

Operational semantics: β-reduction

applying the term λx ,+(∗2x)1 to 3 should return +(∗23)1

this is the top β-rewrite relation:

(λx , t)u ↪→ε
β tux

the β-rewrite relation ↪→β is the closure by context of ↪→ε
β:

t ↪→ε
β u

t ↪→β u

t ↪→β u

tv ↪→β uv

t ↪→β u

vt ↪→β vu

t ↪→β u

λx , t ↪→β λx , u

a term is in normal form if it cannot be reduced further

Properties of β-reduction in pure λ-calculus

↪→β is confluent or has the Church-Rosser property (CR):

if t ↪→∗
β u and t ↪→∗

β v

then u ↓β v

i.e. there is w s.t.
u ↪→∗

β w and v ↪→∗
β w

∀t

∀u ∀v

∃w

this means that the order of reduction steps does not matter

and every term has at most one normal form

Properties of β-reduction in pure λ-calculus

↪→β does not terminate:

(λx , xx)(λx , xx) ↪→β (λx , xx)(λx , xx)

every term t has a fixpoint Yt := (λx , t(xx))(λx , t(xx)):

Yt ↪→β tYt

λ-calculus is Turing-complete/can encode any recursive function

a natural number n can be encoded as

λf , λx , f nx

where f 0x = x and f n+1x = f (f nx)

Properties of β-reduction in pure λ-calculus

↪→β does not terminate:

(λx , xx)(λx , xx) ↪→β (λx , xx)(λx , xx)

every term t has a fixpoint Yt := (λx , t(xx))(λx , t(xx)):

Yt ↪→β tYt

λ-calculus is Turing-complete/can encode any recursive function

a natural number n can be encoded as

λf , λx , f nx

where f 0x = x and f n+1x = f (f nx)

Properties of β-reduction in pure λ-calculus

↪→β does not terminate:

(λx , xx)(λx , xx) ↪→β (λx , xx)(λx , xx)

every term t has a fixpoint Yt := (λx , t(xx))(λx , t(xx)):

Yt ↪→β tYt

λ-calculus is Turing-complete/can encode any recursive function

a natural number n can be encoded as

λf , λx , f nx

where f 0x = x and f n+1x = f (f nx)

Properties of β-reduction in pure λ-calculus

↪→β does not terminate:

(λx , xx)(λx , xx) ↪→β (λx , xx)(λx , xx)

every term t has a fixpoint Yt := (λx , t(xx))(λx , t(xx)):

Yt ↪→β tYt

λ-calculus is Turing-complete/can encode any recursive function

a natural number n can be encoded as

λf , λx , f nx

where f 0x = x and f n+1x = f (f nx)

Outline

Lambda-calculus

Simple types

Dependent types

Rewriting

On the origin of type theory
like in unrestricted set theory where every term is a set
in pure λ-calculus, every term is a function
⇒ every term can be applied to another term, including itself!

Russell’s paradox: with R :={x | x /∈ x} we have R∈R and R /∈R
λ-calculus: with R := λx ,¬(xx) = Y¬ we have RR ↪→β ¬(RR)

proposals to overcome this problem:

• restrict comprehension axiom to already defined sets
use {x ∈ A | P} instead of {x | P}

; modern set theory

• organize terms into a hierarchy

– natural numbers are of type ι and propositions of type o
– unary predicates/sets of natural numbers are of type ι → o
– sets of sets of natural numbers are of type (ι → o) → o
– . . .

; modern type theory

On the origin of type theory
like in unrestricted set theory where every term is a set
in pure λ-calculus, every term is a function
⇒ every term can be applied to another term, including itself!

Russell’s paradox: with R :={x | x /∈ x} we have R∈R and R /∈R
λ-calculus: with R := λx ,¬(xx) = Y¬ we have RR ↪→β ¬(RR)

proposals to overcome this problem:

• restrict comprehension axiom to already defined sets
use {x ∈ A | P} instead of {x | P}

; modern set theory

• organize terms into a hierarchy

– natural numbers are of type ι and propositions of type o
– unary predicates/sets of natural numbers are of type ι → o
– sets of sets of natural numbers are of type (ι → o) → o
– . . .

; modern type theory

On the origin of type theory
like in unrestricted set theory where every term is a set
in pure λ-calculus, every term is a function
⇒ every term can be applied to another term, including itself!

Russell’s paradox: with R :={x | x /∈ x} we have R∈R and R /∈R
λ-calculus: with R := λx ,¬(xx) = Y¬ we have RR ↪→β ¬(RR)

proposals to overcome this problem:

• restrict comprehension axiom to already defined sets
use {x ∈ A | P} instead of {x | P}

; modern set theory

• organize terms into a hierarchy

– natural numbers are of type ι and propositions of type o
– unary predicates/sets of natural numbers are of type ι → o
– sets of sets of natural numbers are of type (ι → o) → o
– . . .

; modern type theory

On the origin of type theory
like in unrestricted set theory where every term is a set
in pure λ-calculus, every term is a function
⇒ every term can be applied to another term, including itself!

Russell’s paradox: with R :={x | x /∈ x} we have R∈R and R /∈R
λ-calculus: with R := λx ,¬(xx) = Y¬ we have RR ↪→β ¬(RR)

proposals to overcome this problem:

• restrict comprehension axiom to already defined sets
use {x ∈ A | P} instead of {x | P}

; modern set theory

• organize terms into a hierarchy

– natural numbers are of type ι and propositions of type o
– unary predicates/sets of natural numbers are of type ι → o
– sets of sets of natural numbers are of type (ι → o) → o
– . . .

; modern type theory

Church simply-typed λ-calculus

simple types:

A,B ∈ S := X ∈ Vtyp | A → B

• X is a user-defined type variable/constant

• A → B is the type of functions from A to B

terms:

t, u ∈ T := x ∈ Vobj | λx :A, t | tu

Assigning types to terms

to assign a type to a term, we define a relation

⊢ ⊆ (Vobj
fin→ S)× T × S

where Vobj
fin→ S is the set of finite maps from variables to types

(typing environments) giving the types of free variables

a term t is well-formed in Γ if there is A such that:

types of free variables term type

Γ ⊢ t : A

Typing rules for objects

x :A ∈ Γ

Γ ⊢ x : A

Γ, x :A ⊢ t : B x /∈ dom(Γ)

Γ ⊢ λx :A, t : A → B

Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ tu : B

Some properties of simply-typed λ-terms

• xx is not typable

• a term has at most one type in a given typing environment

• ↪→β preserves typing/has the subject-reduction property (SRβ):
if Γ ⊢ t : A and t ↪→β u, then Γ ⊢ u : A

• ↪→β terminates on well-typed terms (SN)

• type-inference ∃A, Γ ⊢ t : A? is decidable

• type-checking Γ ⊢ t : A? is decidable

Outline

Lambda-calculus

Simple types

Dependent types

Rewriting

Dependent types / λΠ-calculus

a dependent type is a type that depends on terms

example: the type (Array n) of arrays of size n

first introduced by de Bruijn in the Automath system in the 60’s

dependent types:

A,B := X t1 . . . tn | Πx :A,B

A → B is an abbreviation for Πx :A,B when x /∈ FV(B)

Example of objects with dependent types

concatenation function on arrays:

concat : Πp :N, Array p → Πq :N, Array q → Array(p + q)

concat 2 a 3 b : Array(2 + 3)

Typing rules for objects ?

with simple types with dependent types

(x ,A) ∈ Γ

Γ ⊢ x : A

(x ,A) ∈ Γ

Γ ⊢ x : A

Γ, x :A} ⊢ t : B x /∈ dom(Γ)

Γ ⊢ λx :A, t : A → B

Γ, x :A)} ⊢ t : B x /∈ dom(Γ)

Γ ⊢ λx :A, t : Πx :A,B

Γ ⊢ t : A → B Γ ⊢ u : A

Γ ⊢ tu : B

Γ ⊢ t : Πx :A,B Γ ⊢ u : A

Γ ⊢ tu : Bu
x

Γ ⊢ t : A A ↓β A′ Γ ⊢ A′ : TYPE

Γ ⊢ t : A′

the last rule allows one to identify the types

A = Array((λn : N, n)3) and A′ = Array(3)

How to make sure that a dependent type is well-formed ?

definition of simply-typed terms:

1. we define types: A,B := X ∈ Vtyp | A → B
all types are well-formed by definition

2. we define terms: t, u := x ∈ Vobj | λx :A, t | tu
3. we define well-formed terms with typing

problem with dependent types: types depend on terms

⇒ not all types are well-formed

⇒ we need typing rules for dependent types

How to make sure that a dependent type is well-formed ?

definition of simply-typed terms:

1. we define types: A,B := X ∈ Vtyp | A → B
all types are well-formed by definition

2. we define terms: t, u := x ∈ Vobj | λx :A, t | tu
3. we define well-formed terms with typing

problem with dependent types: types depend on terms

⇒ not all types are well-formed

⇒ we need typing rules for dependent types

What is a simple type ?

a simple type refines the notion of arity:

• it indicates the number of arguments

• but also the type of each argument

instead of saying + takes 2 arguments, we say + : N → N → N

instead of saying that 2 + 2 is well-formed, we say 2 + 2 : N

2 + 2 : N also means that 2 + 2 is an expression of arity 0

types extend arities from function symbols to any expression

we can have partial applications: 2 + : N → N

What is a simple type ?

a simple type refines the notion of arity:

• it indicates the number of arguments

• but also the type of each argument

instead of saying + takes 2 arguments, we say + : N → N → N

instead of saying that 2 + 2 is well-formed, we say 2 + 2 : N

2 + 2 : N also means that 2 + 2 is an expression of arity 0

types extend arities from function symbols to any expression

we can have partial applications: 2 + : N → N

Arity and typing rules of simple types

we introduce a new constant TYPE for the arity of simple types

the fact that every simple type is well-formed can be represented
by the following typing rules:

X ∈ Vtyp

Γ ⊢ X : TYPE

Γ ⊢ A : TYPE Γ ⊢ B : TYPE

Γ ⊢ A → B : TYPE

example: N : TYPE ⊢ N → N : TYPE

Arity and typing rules of dependent types

the typing rules for simple types can be easily extended to
dependent types as follows:

Γ ⊢ A : TYPE Γ, x :A ⊢ B : TYPE

Γ ⊢ Πx :A,B : TYPE

but what is the arity of Array ?

Array is a function taking a natural number as argument and
returning a type: its arity is N → TYPE

Arity and typing rules of dependent types

the typing rules for simple types can be easily extended to
dependent types as follows:

Γ ⊢ A : TYPE Γ, x :A ⊢ B : TYPE

Γ ⊢ Πx :A,B : TYPE

but what is the arity of Array ?

Array is a function taking a natural number as argument and
returning a type: its arity is N → TYPE

Intermediate summary

we now have 3 sorts of expressions:

• objects: 0, +, 2 + 2, etc.

• families, the arities of objects: N, N → N → N, Array 3,
Πp : N, Array p, etc.

• kinds, the arities of families: TYPE, N → TYPE,
Array 3 → TYPE, etc.

we have typing rules to make sure that an object is well-formed
we have typing rules to make sure that a family is well-formed

we have no typing rules to make sure that a kind is well-formed
yet a kind may contain families and objects

How to make sure that a kind is well-formed ?

to type families, we introduced the constant TYPE and typing rules
on families

to type kinds, we introduce a new constant KIND and the following
typing rules:

Γ ⊢ TYPE : KIND

Γ ⊢ A : TYPE Γ, x :A ⊢ K : KIND

Γ ⊢ Πx :A,K : KIND

example: N : TYPE ⊢ N → TYPE : KIND

Adding abstractions in families

finally, we can easily add abstractions in families like

λn : N, Array n

by adding the following rules:

Γ, x :A ⊢ B : K

Γ ⊢ λx :A,B : Πx :A,K

Γ ⊢ A : K K ↓β K ′ Γ ⊢ K ′ : KIND

Γ ⊢ A : K ′

the last rule allows one to identify the types

K = (λn : N, Array n)3 and K ′ = Array 3

Rules to make sure that a typing environment is
well-formed

Γ ⊢ means that Γ is a well-formed:

⊢
Γ ⊢ A : TYPE x /∈ dom(Γ)

Γ, x : A ⊢
Γ ⊢ K : KIND X /∈ dom(Γ)

Γ,X : K ⊢

All rules on one slide
typing environments:

⊢
Γ ⊢ A : TYPE x /∈ dom(Γ)

Γ, x : A ⊢
Γ ⊢ K : KIND X /∈ dom(Γ)

Γ,X : K ⊢

objects:
Γ ⊢ (x ,A) ∈ Γ

Γ ⊢ x : A

Γ ⊢ t : A A ↓β A′ Γ ⊢ A′ : TYPE

Γ ⊢ t : A′

Γ, x : A ⊢ t : B

Γ ⊢ λx : A, t : Πx : A,B

Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : Bu
x

families:
Γ ⊢ (X ,K) ∈ Γ

Γ ⊢ X : K

Γ, x : A ⊢ B : TYPE

Γ ⊢ Πx : A,B : TYPE

Γ, x : A ⊢ B : K

Γ ⊢ λx : A,B : Πx : A,K

Γ ⊢ T : Πx : A,K Γ ⊢ u : B

Γ ⊢ Tu : Ku
x

Γ ⊢ A : K K ↓β K ′ Γ ⊢ K ′ : KIND

Γ ⊢ A : K ′

kinds:
Γ ⊢

Γ ⊢ TYPE : KIND

Γ, x : A ⊢ K : KIND

Γ ⊢ Πx : A,K : KIND

All rules on one slide (PTS presentation)

s ∈ S = {TYPE, KIND}

⊢
Γ ⊢ A : s x /∈ dom(Γ)

Γ, x : A ⊢
Γ ⊢ (x ,A) ∈ Γ

Γ ⊢ x : A

Γ, x : A ⊢ t : B Πx : A,B : s

Γ ⊢ λx : A, t : Πx : A,B

Γ ⊢ t : Πx : A,B Γ ⊢ u : A

Γ ⊢ tu : Bu
x

Γ ⊢
Γ ⊢ TYPE : KIND

Γ ⊢ A : TYPE Γ, x : A ⊢ B : s

Γ ⊢ Πx : A,B : s

(s1, s2) ∈ A ((s1, s2), s3) ∈ P

Γ ⊢ t : A A ↓β A′ Γ ⊢ A′ : s

Γ ⊢ t : A′

	Lambda-calculus
	Simple types
	Dependent types
	Rewriting

