=h|_ EuroProofNet

Al-calculus modulo rewriting

Frédéric Blanqui

Deducteam

école

rd normale
supérieure
paris—saclay

What is the All-calculus modulo rewriting ?

AM/R =
A simply-typed A-calculus
+ 11 dependent types, e.g. Arrayn

+ R identification of types modulo rewrites rules | < r

Outline

Lambda-calculus

What is \-calculus 7

introduced by Alonzo Church in 1932

the (untyped or pure) A-calculus is a general framework for
defining functions (objects or propositions)

initially thought as a possible foundation for logic
but turned out to be inconsistent

it however provided a foundation for computability theory
and functional programming !

What is \-calculus 7

only 3 constructions:

e variables x, y, ...
e application of a term t to another term u, written tu

e abstraction over a variable x in a term t, written Ax,t
example: the function mapping x to 2x + 1 is written

Ax, +(*2x)1

but, for the sake of readability, we may still use infix notations

a-equivalence

the names of abstracted variables are theoretically not significant:
Ax,+(*2x)1 denotes the same function as Ay, +(*2y)1
terms equivalent modulo valid renamings are said a-equivalent

in theory, one usually works modulo a-equivalence, that is, on
a-equivalence classes of terms (hence, one can always rename
some abstracted variables if it is more convenient)

= but, then, one has to be careful that functions and relations are
actually invariant by a-equivalencel!. ..

in practice, dealing with a-equivalence is not trivial

= this gave raise to a lot of research and tools (still nowadays)!

Example: the set of free variables

a variable is free if it is not abstracted

the set F'V(t) of free variables of a term t is defined as follows:
e FV(x) = {x}

e FV(tu) =FV(t)UFV(u)

o FV(\x,t) = FV(t) — {x}

one can check that F'V is invariant by a-equivalence:

if t =4 u then FV(t) = FV(u)

Substitution

a substitution is a finite map from variables to terms

o={(xt,t1), -, (xmta)}

the domain of a substitution ¢ is
dom(o) = {x € V| o(x) # x}

how to define the result of applying a substitution ¢ on a term t 7
e xo = o(x) if x € dom(o)

e xo = x if x ¢ dom(o)

e (tu)o = (to)(uo)

o (Ax,t)o = Ax, (to) ? example: (Ax, y){(y,x)} = Ax,x ?

Substitution

a substitution is a finite map from variables to terms

o={(x1,t1),...,(xn, tn)}
the domain of a substitution ¢ is
dom(o) = {x € V| o(x) # x}

how to define the result of applying a substitution ¢ on a term t 7
e xo = o(x) if x € dom(o)

e xo = x if x ¢ dom(o)

e (tu)o = (to)(uo)

o (Ax,t)o = Ax, (to) ? example: (Ax, y){(y,x)} = Ax,x ?

definition not invariant by a-equivalence | Ax,y =, Az, y

Substitution

in A-calculus, substitution is not trivial!

we must rename abstracted variables to avoid name clashes:
(Ax, t)o = Ay, (to’)

where o’ = o[py(ax,e U 1% ¥)}

and y ¢ FV(Ax, t) U {FV(z0) | z € dom(o|py(rx,t))}

Operational semantics: [-reduction

applying the term Ax, +(*2x)1 to 3 should return +(*23)1
this is the top S-rewrite relation:
(Ax, t)u =G t¢
3

the [-rewrite relation <3 is the closure by context of —:

t(—>%u t—=gu t—gu t—gu

t—=gu tv—guv vt=gvu AIx,t<=gAx,u

a term is in normal form if it cannot be reduced further

Properties of S-reduction in pure A-calculus

<3 is confluent or has the Church-Rosser property (CR):

if t =% uand t % v ’,Vta
then u g v » «
Yu Vv
i.e. there is w s.t. “« s
4 »
u<—>2wandv=—>gw =

this means that the order of reduction steps does not matter

and every term has at most one normal form

Properties of S-reduction in pure A-calculus

— 3 does not terminate:

(Ax, xx)(Ax, xx) =g (Ax, xx)(Ax, xx)

Properties of S-reduction in pure A-calculus

— 3 does not terminate:
(Ax, xx)(Ax, xx) =g (Ax, xx)(Ax, xx)
every term t has a fixpoint Y; := (Ax, t(xx))(Ax, t(xx)):

Yt <—>ﬁ th

Properties of S-reduction in pure A-calculus

— 3 does not terminate:
(Ax, xx)(Ax, xx) =g (Ax, xx)(Ax, xx)
every term t has a fixpoint Y; := (Ax, t(xx))(Ax, t(xx)):
Y: =g tYs

A-calculus is Turing-complete/can encode any recursive function

Properties of S-reduction in pure A-calculus

— 3 does not terminate:
(Ax, xx)(Ax, xx) =g (Ax, xx)(Ax, xx)
every term t has a fixpoint Y; := (Ax, t(xx))(Ax, t(xx)):
Y: =g tYs

A-calculus is Turing-complete/can encode any recursive function

a natural number n can be encoded as
A A, Fx

where fOx = x and f™1x = f(f"x)

Outline

Simple types

On the origin of type theory

like in unrestricted set theory where every term is a set
in pure A\-calculus, every term is a function
= every term can be applied to another term, including itself!

On the origin of type theory

like in unrestricted set theory where every term is a set
in pure A\-calculus, every term is a function
= every term can be applied to another term, including itself!

Russell’s paradox: with R:={x | x ¢ x} we have RER and R¢ R
A-calculus: with R := Ax, =(xx) = Y- we have RR —3 —(RR)

On the origin of type theory

like in unrestricted set theory where every term is a set
in pure A\-calculus, every term is a function
= every term can be applied to another term, including itself!

Russell’s paradox: with R:={x | x ¢ x} we have RER and R¢ R
A-calculus: with R := Ax, =(xx) = Y- we have RR —3 —(RR)

proposals to overcome this problem:

e restrict comprehension axiom to already defined sets
use {x € A| P} instead of {x | P}
~> modern set theory

On the origin of type theory

like in unrestricted set theory where every term is a set
in pure A\-calculus, every term is a function
= every term can be applied to another term, including itself!

Russell’s paradox: with R:={x | x ¢ x} we have RER and R¢ R
A-calculus: with R := Ax, =(xx) = Y- we have RR —3 —(RR)

proposals to overcome this problem:

e restrict comprehension axiom to already defined sets
use {x € A| P} instead of {x | P}
~> modern set theory

e organize terms into a hierarchy

— natural numbers are of type ¢ and propositions of type o
— unary predicates/sets of natural numbers are of type ¢ — o
— sets of sets of natural numbers are of type (¢« — 0) — o

~> modern type theory

Church simply-typed A-calculus

simple types:

ABES=X€EVy,|A—B

e X is a user-defined type variable/constant
e A — B is the type of functions from A to B

terms:

tu€T =x€EVop | A At | tu

Assigning types to terms

to assign a type to a term, we define a relation
p
FC (Vo 5 8)xT xS

where Vo, S is the set of finite maps from variables to types
(typing environments) giving the types of free variables

a term t is well-formed in T if there is A such that:

r-+t : A

7 S

types of free variables term type

Typing rules for objects

x:Ael
TEx:A

Mx:AkFt:B x¢dom(l)
N-=XMx:At:A—> B

lrFt:A—=B TFu:A
M~tu:B

Some properties of simply-typed \-terms

xx is not typable
a term has at most one type in a given typing environment

< g preserves typing/has the subject-reduction property (SRg):
ffr-t:Aandt =g u, thenT Fu: A

g terminates on well-typed terms (SN)
type-inference A, I - t : A7 is decidable

type-checking I - t : A? is decidable

Outline

Dependent types

Dependent types / All-calculus

a dependent type is a type that depends on terms
example: the type (Array n) of arrays of size n

first introduced by de Bruijn in the Automath system in the 60's

dependent types:

AB:=Xt...t,|Nx:AB

A — B is an abbreviation for Nx: A, B when x ¢ FV(B)

Example of objects with dependent types

concatenation function on arrays:
concat: [Mp:N,Array p — Nq :N, Array ¢ — Array(p + q)

concat2a3b: Array(2 + 3)

Typing rules for objects 7
with simple types

(x,A) el
N=x:A

Mx:A}Ft:B x¢ dom(l)
N=Xx:At:A— B

with dependent types
(x,A) el
NEx:A

MNx:A)}Ft:B x¢ dom(IN)
N=Xx:A t:Tx:A B

N~t:A—=B TFu:A

N-t:MNx:AB TFu:A
N-tu:B

[+ tu: BY

rt:A AlgA THA TYPE
M=t A

the last rule allows one to identify the types

A= Array((An:N,n)3) and A’ = Array(3)

How to make sure that a dependent type is well-formed 7

definition of simply-typed terms:

1. we define types: A,B:=X €V, | A= B
all types are well-formed by definition

2. we define terms: t, u = x € Vopj | Ax: A, t | tu

3. we define well-formed terms with typing

How to make sure that a dependent type is well-formed 7

definition of simply-typed terms:

1. we define types: A,B:=X € V4, | A— B
all types are well-formed by definition

2. we define terms: t, u = x € Vopj | Ax: A, t | tu

3. we define well-formed terms with typing

problem with dependent types: types depend on terms
= not all types are well-formed

= we need typing rules for dependent types

What is a simple type ?

a simple type refines the notion of arity:
e it indicates the number of arguments

e but also the type of each argument

instead of saying + takes 2 arguments, we say +: N - N — N

instead of saying that 2 + 2 is well-formed, we say 2 +2: N

What is a simple type ?

a simple type refines the notion of arity:
e it indicates the number of arguments

e but also the type of each argument

instead of saying + takes 2 arguments, we say +: N - N — N

instead of saying that 2 + 2 is well-formed, we say 2 +2: N

2+ 2 : N also means that 2 4 2 is an expression of arity 0
types extend arities from function symbols to any expression

we can have partial applications: 2+ _: N = N

Arity and typing rules of simple types

we introduce a new constant TYPE for the arity of simple types

the fact that every simple type is well-formed can be represented
by the following typing rules:

=X : TYPE

'-A:TYPE [F B:TYPE
-A— B:TYPE

example: N:TYPE + N — N: TYPE

Arity and typing rules of dependent types

the typing rules for simple types can be easily extended to
dependent types as follows:

FA:TYPE [,x:AF B:TYPE
N=TIx:A, B : TYPE

but what is the arity of Array 7

Arity and typing rules of dependent types

the typing rules for simple types can be easily extended to
dependent types as follows:

FA:TYPE [,x:AF B:TYPE
N=TIx:A, B : TYPE

but what is the arity of Array 7

Array is a function taking a natural number as argument and
returning a type: its arity is N — TYPE

Intermediate summary

we now have 3 sorts of expressions:

e objects: 0, +, 24 2, etc.

o families, the arities of objects: N, N -+ N — N, Array 3,
Mp: N, Array p, etc.

e kinds, the arities of families: TYPE, N — TYPE,
Array 3 — TYPE, etc.

we have typing rules to make sure that an object is well-formed
we have typing rules to make sure that a family is well-formed

we have no typing rules to make sure that a kind is well-formed
yet a kind may contain families and objects

How to make sure that a kind is well-formed ?

to type families, we introduced the constant TYPE and typing rules
on families

to type kinds, we introduce a new constant KIND and the following
typing rules:

[+ TYPE : KIND

NA:TYPE [I,x:AF K :KIND
MFTx:A, K :KIND

example: N:TYPE - N — TYPE : KIND

Adding abstractions in families

finally, we can easily add abstractions in families like
An: N, Arrayn
by adding the following rules:

MNMx:AFB: K
N-Xx:A B :Tlx:A K

N-A:K KlgK T FK :KIND
rM=-A: K

the last rule allows one to identify the types

K = (An:N,Arrayn)3 and K’ =Array3

Rules to make sure that a typing environment is
well-formed

[+ means that I is a well-formed:

N A:TYPE x ¢ dom(IN) N K:XIND X ¢ dom(IN)

Tl

Mx:AF NMX:KE

All rules on one slide

typing environments:

M- A:TYPE x ¢ dom(") M= K:KIND X ¢ dom(I")

[Mox:AF X Kr
objects:
r- (x,A)er Frt:A AlgA THA :TYPE
lrEx: A Mr=t: A
Mx:AFt: B Fr-t:MNx:AB TFu:A
FEXx:At:NMx:AB I tu: BY
families:
r- (X,K)er lx:AF B:TYPE
rN-X:K =TNx: A B:TYPE
Nx:AFB: K FrET:Mx:AK TFu:B
FrEXx:AB:Mx: AK N-=Tu: KY
rNFA:K Klg K TFK :KIND
r-A: K’
kinds:
[Ix:AF K :KIND

I+ TYPE : KIND ETMNx: A K :KIND

All rules on one slide (PTS presentation)
s € S = {TYPE,KIND}

Nr-A:s x ¢ dom(I") N-= (x,A)er
= Mx:AF TEx:A

MNx:AFt:B Mx:AB:s N=t:MNMx:AB lFu:A

N=Ax:At:Mx: A B -tu:BY
M = A:TYPE Nx:AFB:s
[+ TYPE :KIND N=Mx:AB:s

MN-t: A Alg A rA:s
M-t: A

	Lambda-calculus
	Simple types
	Dependent types
	Rewriting

