Rewriting Tools

Nao Hirokawa

JAIST

14th ISR, August 26, 2024

https://www.jaist.ac.jp/~hirokawa/24isr/

Rewriting Tools 1/29

https://www.jaist.ac.jp/~hirokawa/24isr/

Schedule

Monday: rewriting tools

Rewriting Tools 2/29

Schedule

Monday: rewriting tools
Tuesday: termination tools

Rewriting Tools 2/29

Schedule

Monday: rewriting tools
Tuesday: termination tools
Wednesday: confluence tools

Rewriting Tools 2/29

Schedule

Monday: rewriting tools
Tuesday: termination tools
Wednesday: confluence tools
Friday: completion tools

Rewriting Tools 2/29

Schedule

Monday: rewriting tools
Tuesday: termination tools
Wednesday: confluence tools
Friday: completion tools

SAT/SMT, unification, tree automata, redundant rules

Rewriting Tools 2/29

Rewriting Tools: CafeOBJ, Maude, K, ...

m based on order-sorted conditional AC-rewriting

Rewriting Tools 3/29

Rewriting Tools: CafeOBJ, Maude, K, ...

m based on order-sorted conditional AC-rewriting

m support reachability analysis

Rewriting Tools 3/29

Rewriting Tools: CafeOBJ, Maude, K, ...

m based on order-sorted conditional AC-rewriting

m support reachability analysis

m used for software verification (rewriting logic)

Rewriting Tools 3/29

Example of CafeOBJ Code

open EQL .

[N]

op 0 : -—>N.
op s : N->N.

op _+_: NN ->N {assoc comm}.

vars X Y : N .

eq 0 +Y =Y .

eq sX) +Y=sX+Y)

red (X +0) + s(X) . -- reduces to s(X + X)

close .

Rewriting Tools 4/29

Contents

innermost rewriting

Rewriting Tools 5/29

Contents

innermost rewriting

AC rewriting

Rewriting Tools 5/29

Contents

innermost rewriting

AC rewriting

AC matching

Rewriting Tools 5/29

Innermost Rewriting

Rewriting Tools 6/29

Innermost Rewriting

s = C[lo], t = C|ro], and

Lrt < Y —reR,C,o.
TR " 7 {u € NF(R) for all proper subterms u of (o

Rewriting Tools 7/29

Innermost Rewriting

Definition

s = C[lo], t = C|ro], and

Lrt < Y —reR,C,o.
TR " 7 {u € NF(R) for all proper subterms u of (o

Example

TRS
O+z—=x S(:B)+y—>s($+y)

Rewriting Tools 7/29

Innermost Rewriting

Definition

s = C[lo], t = C|ro], and

Lrt < Y —reR,C,o.
TR " 7 {u € NF(R) for all proper subterms u of (o

Example

TRS
O+z—x s(x) +y — s(z+y)

m 0+5(s(0)+0) Sr 0+s(s(0+0))

Rewriting Tools 7/29

Innermost Rewriting

Definition

Cllo], t = C[ro], and

Lnt &= W —>reR,C,o.
CTR : ? {u € NF(R) for all proper subterms u of (o

Example

TRS
O+z—x s(x) +y — s(z+y)

m 0+5(s(0)+0) Sr 0+s(s(0+0))
m 0+5(s(0)+0) /r s(s(0)+0)

Rewriting Tools 7/29

Innermost Normalization — Naive Version

given TRS R, function ¢(¢) is defined as follows:

Rewriting Tools 8/29

Innermost Normalization — Naive Version

Definition

given TRS R, function ¢(¢) is defined as follows:

¢(r) =z

Rewriting Tools 8/29

Innermost Normalization — Naive Version

Definition

given TRS R, function ¢(¢) is defined as follows:
¢(z) =z
O(f(tr, - tn)) = {

¢(rr) ifl—reRandt =/l

t otherwise
NE

Rewriting Tools 8/29

Innermost Normalization — Naive Version

Definition

given TRS R, function ¢(¢) is defined as follows:

oe) =
o(rr) fl—reRandt' =41
P(f(tr, .. tn)) = i otherwise

NF

where ¢ = f(d(t1),...,0(tn))

NF NF

Rewriting Tools 8/29

Innermost Normalization — Naive Version
Definition

given TRS R, function ¢(¢) is defined as follows:

¢(r) =z

¢(rr) ifl—reRandt =/l
o(f) =1

NF

otherwise

where ¢ = f(d(t1),...,0(tn))

Theorem

&=
m
=
il

if t is innermost terminating then ¢(t) is normal form of t

Rewriting Tools 8/29

Example of Innermost Normalization
TRS

O+z—ux s(z) +y — s(z+y)

Rewriting Tools 9/29

Example of Innermost Normalization
TRS
O+z—ux s(z) +y — s(z+y)

innermost normalization:

Rewriting Tools 9/29

Example of Innermost Normalization
TRS
O+z—ux s(z) +y — s(z +y)

innermost normalization:

s(0) +s(s(s(0)))
NF NF
NF NF

NF
NF
matched

Rewriting Tools 9/29

Example of Innermost Normalization
TRS
O+z—ux s(z) +y — s(z +y)

innermost normalization:

s(0) +s(s(s(0))) — s(0 +5s(s(s(0))))
NF NF NF NF
NF NF NF

_NF __NF
NF NF
matched matched

Rewriting Tools 9/29

Example of Innermost Normalization
TRS
O+z—ux s(z) +y — s(z +y)

innermost normalization:

S(0) +5(s(s(0))) > s(0 +5(s(s(0)))) > s(s(s(s(0)))

Rewriting Tools 9/29

Example of Innermost Normalization
TRS
O+z—ux s(z) +y — s(z+y)

innermost normalization:

S(0) +5(s(s(0))) > s(0 +5(s(s(0)))) > s(s(s(s(0)))

substitutions employed in innermost steps are normalized

Rewriting Tools 9/29

Exploiting Normalized Substitutions
TRS

O+z—a s(x) +y — s(z+y)

Rewriting Tools 10/29

Exploiting Normalized Substitutions
TRS
O+z—a s(x) +y — s(z+y)

innermost normalization:

Rewriting Tools 10/29

Exploiting Normalized Substitutions
TRS
O+z—a s(x) +y — s(z+y)

innermost normalization:

s(0) +s(s(s(0)))
NF NF
NF NF

NF
NF
matched

Rewriting Tools 10/29

Exploiting Normalized Substitutions

TRS
O4+z—=x

innermost normalization:

S(0) +s(s(s(0))) = (s(x) + v
where 0 = {x =0 }
77 Ly s(s(s(x)))

Rewriting Tools

s(z) +y — s(z+y)

10/29

Exploiting Normalized Substitutions

TRS
O4+z—=x

innermost normalization:

() +5(s(5(0))) = (s(2) +)z

Rewriting Tools

5 s(z +y)

s(z) +y — s(z+y)

=s(0 +5(s(s(0)))) -

g

matched

10/29

Innermost Normalization — Efficient Version

given TRS R, operator t x ¢ is defined as follows:

Rewriting Tools 11/29

Innermost Normalization — Efficient Version

Definition
given TRS R, operator t x ¢ is defined as follows:

r*x0 = XT0

Rewriting Tools 11/29

Innermost Normalization — Efficient Version
given TRS R, operator t x ¢ is defined as follows:
T ko =10
rx7 fl—reRandt' =(1

thy oo tn) ko = NF NF
f(h) to otherwise

Rewriting Tools 11/29

Innermost Normalization — Efficient Version

Definition
given TRS R, operator t x ¢ is defined as follows:
T*0=1x0

rx7 fl—reRandt' =(1

tyy.oytp) *0 = NF NF
fltse) to otherwise
NF
where t' = f(ty xo,... t, *x0)
NF NF

Rewriting Tools 11/29

Innermost Normalization — Efficient Version

Definition

given TRS R, operator t x ¢ is defined as follows:
T*0=1x0

rx7 fl—reRandt' =(1

tr,... ty) ko =4 N .
fltys o tn) t'o otherwise
NF
wnere i = jlta *0,...,ln*0
h tl t t
NF NF

Theorem (folklore?)

if ¢ is innermost terminating and o is normalized substitution then
t % o is normal form of to

Rewriting Tools 11/29

AC Rewriting

Rewriting Tools 12/29

AC Rewriting

let Fac be set of binary symbols (AC symbols)

Rewriting Tools 13/29

AC Rewriting

let Fac be set of binary symbols (AC symbols)

Rewriting Tools 13/29

AC Rewriting

let Fac be set of binary symbols (AC symbols)

Definition

flz,y) = f(y,2) | }
AC = feF
{f(f(x, v),2) = f(x, f(y,2)) *
Example
a+b +c &ac b+a +c i c+ b+a if + is AC symbol

Rewriting Tools 13/29

AC Rewriting

let Fac be set of binary symbols (AC symbols)

flz,y) = f(y,) | }
AC = ferF
{f(f(x,y),Z) — [z, f(y,2 A
Example
a+b +c &ac b+a +c i c+ b+a if + is AC symbol

Definition (class rewriting)

S —R/AC tifs (—)ZC R (—)ZCt

Rewriting Tools 13/29

Example of AC Rewriting

TRS R with AC symbol +:

O+z—u
R=<s(x)+y—=s(x+y)

o0+ 00 — 00

AC{(x+y)+z—>fr+(y+Z)}
B Ty —y+o

AC rewriting
m (r+0)+s(x)

Rewriting Tools 14/29

Example of AC Rewriting

TRS R with AC symbol +:

O+z—u
R=<s(x)+y—=s(x+y)

o0+ 00 — 00

AC{(x+y)+z—>fr+(y+Z)}
B Ty —y+o

AC rewriting
m (z+0)+s(x) =rac @+ s(x)

Rewriting Tools 14/29

Example of AC Rewriting

TRS R with AC symbol +:

O+z—u
R=<s(x)+y—=s(x+y)

o0+ 00 — 00

AC{(x+y)+z—>fr+(y+Z)}
B Ty —y+o

AC rewriting
m (z+0)+s(x) wr/ac ©+5s(x) =r/ac s(z+)

Rewriting Tools 14/29

Example of AC Rewriting

TRS R with AC symbol +:

O4+x2—=x
R=<s(z)+y—s(x+y)

o0+ 00 — 00

AC{(x+y)+z—>w+(y+Z)}
B Ty —y+o

AC rewriting
m (z+0)+s(x) »rac ©+s(x) =r/ac s(z+x) € NF(—=g/ac)

Rewriting Tools 14/29

Example of AC Rewriting

TRS R with AC symbol +:

O+z—u
R=<s(x)+y—=s(x+y)

o0+ 00 — 00

AC{(x+y)+z—>w+(y+Z)}
B Ty —y+o

AC rewriting

m (z+0)+s(x) »rac ©+s(x) =r/ac s(z+x) € NF(—=g/ac)

B oo+ (x4 00) =rmac 00+ € NF(—=r/ac)

Rewriting Tools 14/29

Example of AC Rewriting

TRS R with AC symbol +:

O+z—u
R=<s(x)+y—=s(x+y)

o0+ 00 — 00

AC{(x+y)+z—>w+(y+Z)}
B Ty —y+o

AC rewriting
m (v +0)+s(x) =rmac ©+5s(x) =rmac s(x+2) € NF(—=g/ac)

B oo+ (x4 00) =rmac 00+ € NF(—=r/ac)
how to implement —z /ac”?

Rewriting Tools 14/29

Example of AC Rewriting

TRS R with AC symbol +:

O+z—u
R=<s(x)+y—=s(x+y)

o0+ 00 — 00

AC{(x+y)+z—>fr+(y+Z)}
B Ty —y+o

AC rewriting
m (z+0)+s(x) »rac ©+s(x) =r/ac s(z+x) € NF(—=g/ac)

B oo+ (x4 00) =rmac 00+ € NF(—=r/ac)
how to implement —/ac? = rewriting based on AC matching

Rewriting Tools 14/29

Rewriting based on AC Matching

Definition (Peterson and Stickel 1981)

s —pac tif 8|, <>ac fo and t = s[ra], for some p € Pos(s) and { - r € R

Rewriting Tools 15/29

Rewriting based on AC Matching

Definition (Peterson and Stickel 1981)

s —pac tif 8|, <>ac fo and t = s[ra], for some p € Pos(s) and { - r € R

Example

O+z—=x
R=<s(z)+y—s(x+y)

AC:{(x+y)+z—>a:+(y+z)}
00 + 00 — 00

rt+y—y+x

Rewriting Tools 15/29

Rewriting based on AC Matching

Definition (Peterson and Stickel 1981)

s —pac tif 8|, <>ac fo and t = s[ra], for some p € Pos(s) and { - r € R

Example
O+z—=x
R=<s(z)+y—s(x+y)

AC:{(x+y)+z—>a:+(y+z)}
00 + 00 — 00

rt+y—y+x

m(r+0)+s(x)

Rewriting Tools 15/29

Rewriting based on AC Matching

Definition (Peterson and Stickel 1981)

s —pac tif 8|, <>ac fo and t = s[ra], for some p € Pos(s) and { - r € R

Example
O+z—=2
R = {s(z) +y—s(z+y)

AC:{(x+y)+z—>a:+(y+z)}
00 + 00 — 00

rT+y—y+zx

m (2 +0)+s(z) —rac +s(z)

Rewriting Tools 15/29

Rewriting based on AC Matching

Definition (Peterson and Stickel 1981)

s —pac tif 8|, <>ac fo and t = s[ra], for some p € Pos(s) and { - r € R

Example
O+z—=x
R=<s(z)+y—s(x+y)

AC:{(x+y)+z—>a:+(y+z)}
00 + 00 — 00

rt+y—y+x

[| (l‘ -+ O) + S(.T) —RAC T -+ S(l’) —R,AC S(.I + (L’)

Rewriting Tools 15/29

Rewriting based on AC Matching

Definition (Peterson and Stickel 1981)

s —pac tif 8|, <>ac fo and t = s[ra], for some p € Pos(s) and { - r € R

Example
O+z—=2
R = {s(z) +y—s(z+y)

AC:{(x+y)+z—>a:+(y+z)}
00 + 00 — 00

rT+y—y+zx

[| (I+O>+S($) —R.AC .Z‘“FS(JI) —R,AC S(.T+IL') < NF(_>R,AC)

Rewriting Tools 15/29

Rewriting based on AC Matching

Definition (Peterson and Stickel 1981)

s —pac tif 8|, <>ac fo and t = s[ra], for some p € Pos(s) and { - r € R

Example

O+z—=x
R=<s(z)+y—s(x+y)

AC:{(x+y)+z—>a:+(y+z)}
00 + 00 — 00

rT+y—y+zx

[| (I+O>+S($) —R.AC .Z‘“FS(JI) —R,AC S(.T+IL') < NF(_>R,AC)

B oo+ (z+00) Arac oo+

Rewriting Tools 15/29

Rewriting based on AC Matching

Definition (Peterson and Stickel 1981)

s —pac tif 8|, <>ac fo and t = s[ra], for some p € Pos(s) and { - r € R

Example

O+z—=x
R=<s(z)+y—s(x+y)

AC:{(x+y)+z—>a:+(y+z)}
00 + 00 — 00

rT+y—y+zx

[| (I+O>+S($) —R.AC .Z‘“FS(JI) —R,AC S(.T+IL') < NF(_>R,AC)

B oo+ (z+00) Aracoo+ax!?

Rewriting Tools 15/29

Coherence Completion

Rewriting Tools 16/29

Coherence Completion

Definition
m f({,x) — f(r,z) is extension rule of { — r if
f =root({) € AC and x ¢ Var(¢)

Rewriting Tools 16/29

Coherence Completion

Definition

m f({,x) — f(r,z) is extension rule of { — r if
f =root({) € AC and x ¢ Var(¢)

m R° is extension of R with extension rules

Rewriting Tools 16/29

Coherence Completion

Definition

m f({,x) — f(r,z) is extension rule of { — r if
f =root({) € AC and x ¢ Var(¢)

m R° is extension of R with extension rules

Theorem

S —R/AC t < s —Re,AC (—)ZC t

Rewriting Tools 16/29

Example of AC Rewriting

O+z—2x O+z)+y—ax+y
RY =4 s(@)+y—=s(z+y) (s(r) +y)+2z = sz +y)+2
00 + 00 — 00 (co+00)+z =00+

00 + (00 +) —+ge ac 00 + T because

00 + (00 +) ¢3ac (00 +) + & ge 00 + T

Rewriting Tools 17/29

AC Matching

Rewriting Tools 18/29

AC Matching Problem

AC matching problem is following problem:

Rewriting Tools 19/29

AC Matching Problem

Definition
AC matching problem is following problem:

input: terms s and ¢ s is called pattern

Rewriting Tools 19/29

AC Matching Problem

Definition
AC matching problem is following problem:
input: terms s and ¢ s is called pattern
output: substitution o with so <>, t if it exists

Rewriting Tools 19/29

AC Matching Problem

Definition
AC matching problem is following problem:
input: terms s and ¢ s is called pattern
output: substitution o with so <>, t if it exists

Example
let + be AC symbol

(@a+z+b)o <3ac b+s(y)+a ifo=

Rewriting Tools 19/29

AC Matching Problem

Definition
AC matching problem is following problem:
input: terms s and ¢ s is called pattern
output: substitution o with so <>, t if it exists

Example
let + be AC symbol

(@a+x+b)o <3ac b+s(y)+a ifo={x—s(y)}

Rewriting Tools 19/29

AC Matching Problem

Definition

AC matching problem is following problem:
input: terms s and ¢ s is called pattern
output: substitution o with so <>, t if it exists

Example
let + be AC symbol

(@a+x+b)o <3ac b+s(y)+a ifo={x—s(y)}
(x+y)o <3ac a+b if o =

Rewriting Tools 19/29

AC Matching Problem

Definition

AC matching problem is following problem:
input: terms s and ¢ s is called pattern
output: substitution o with so <>, t if it exists

Example
let + be AC symbol

(@a+x+b)o <3ac b+s(y)+a ifo={x—s(y)}
(x+y)o <3ac a+b ifaz{z’_}a} oro =

Rewriting Tools 19/29

AC Matching Problem

Definition

AC matching problem is following problem:
input: terms s and ¢ s is called pattern
output: substitution o with so <>, t if it exists

Example
let + be AC symbol

(a+z+b)o <ac b+s(y)+a ifo={r—s(y)}

* e Jxr—a _Jz—=b
(x+y)o <3ac a+b |fa—{y'_)b} ora—{yHa}

Rewriting Tools 19/29

Exercises: Solve AC Matching Problems

] (x+a)o <ac a+b+b
2] (z+a)o <3ac a+a
B] (r+xz)o <3ac a+b
[4 (x+y+2)0 <ac a+b

(x+x)o0 <>ac a+a+b+b

Rewriting Tools 20/29

Exercises: Solve AC Matching Problems

] (x+a)o <ac a+b+b {r — b+b}
2] (z+a)o <3ac a+a

B] (r+xz)o <3ac a+b

[4 (x+y+2)0 <ac a+b

(x+x)o0 <>ac a+a+b+b

Rewriting Tools 20/29

Exercises: Solve AC Matching Problems

] (x+a)o <ac a+b+b {r — b+b}
2] (z+a)o <3ac a+a {z — a}
B] (r+xz)o <35c a+b

[4 (x+y+2)0 <ac a+b

(x+x)0 <ac a+a+b+b

Rewriting Tools 20/29

Exercises: Solve AC Matching Problems

] (x+a)o <ac a+b+b
2] (z+a)o <3ac a+a
Bl (x+x)o <ac a+b
[4] (x+y+2)0 <pc a+b

(x+x)0 <ac a+a+b+b

Rewriting Tools

{r — b+b}
{z +— a}

no solution

20/29

Exercises: Solve AC Matching Problems

] (x+a)o <ac a+b+b
2] (z+a)o <3ac a+a
Bl (x+x)o <ac a+b
[4] (x+y+2)0 <pc a+b

(x+x)o0 <>ac a+a+b+b

Rewriting Tools

{z — b+ b}
{z +— a}
no solution

no solution

20/29

Exercises: Solve AC Matching Problems

] (x+a)o <ac a+b+b
2] (z+a)o <3ac a+a
B] (r+xz)o <35c a+b
[4 (x+y+2)0 <ac a+b

(x+x)o0 <>ac a+a+b+b

Rewriting Tools

{z — b+ b}
{z +— a}

no solution
no solution

{r—a+b}, {xr—b+a}

20/29

Ordinary Matching Algorithm

flg(z,a), y ,x)

f(g(a,a), b ,a)

Rewriting Tools 21/29

Ordinary Matching Algorithm

fg(z,a), vy , o)

f(g(a,a), b ,a)

Rewriting Tools 21/29

Ordinary Matching Algorithm

g(r,a) ¥y

g(a,a) b a

Rewriting Tools 21/29

Ordinary Matching Algorithm

Rewriting Tools 21/29

Ordinary Matching Algorithm

Rewriting Tools 21/29

Ordinary Matching Algorithm

Rewriting Tools 21/29

Ordinary Matching Algorithm

Rewriting Tools 21/29

Ordinary Matching Algorithm

Rewriting Tools 21/29

Rewriting Tools

Ordinary Matching Algorithm

T+ a
y+—b

21/29

Ordinary Matching Algorithm
T a
y—b

Theorem (folklore)

ordinary matching problem is solvable in polynomial time

Rewriting Tools 21/29

AC Matching Algorithm for Linear Patterns

r-a + b-by 4+ =z

a-b-b 4+ a-a + b:-b + a

Rewriting Tools 22/29

AC Matching Algorithm for Linear Patterns

r-a + b-by + =z

a-b-b + a-a + b-b + a

Rewriting Tools 22/29

AC Matching Algorithm for Linear Patterns

r-a b-b-y z

Rewriting Tools 22/29

AC Matching Algorithm for Linear Patterns

x Y z

Rewriting Tools 22/29

AC Matching Algorithm for Linear Patterns

x Y z

3.t a b-b + a

Rewriting Tools 22/29

AC Matching Algorithm for Linear Patterns

x Y z

av a b-b + a

Rewriting Tools 22/29

AC Matching Algorithm for Linear Patterns

x Y z
rrH>a
Y+ a
z+—>b-b+a

a‘ a b-b + a

Rewriting Tools 22/29

AC Matching Algorithm for Linear Patterns

x Y z
rrH>a
Y+ a
z+—>b-b+a

av a b-b + a

Theorem (Benanav et al. 1987)

AC matching problem for linear patterns is solvable in polynomial time

Rewriting Tools 22/29

AC Matching Algorithm for Linear Patterns

x Y z
rrH>a
Y+ a
z+—>b-b+a

a- b a b-b + a

Theorem (Benanav et al. 1987)

AC matching problem for linear patterns is solvable in polynomial time

Proof.

use polynomial time algorithm for bipartite matching (Hopcroft and Karp 1973) [

Rewriting Tools 22/29

AC Matching Algorithm for General Patterns

f(a,z) + f(a,y) + =z

f(a,a) + f(a,b) + b

Rewriting Tools 23/29

AC Matching Algorithm for General Patterns

f(a,z) + f(a,y) + =z

f(a,a) + f(a,b) + b

Rewriting Tools 23/29

AC Matching Algorithm for General Patterns

f(a, x) f(a,y) x

Rewriting Tools 23/29

AC Matching Algorithm for General Patterns

x Y x

Rewriting Tools 23/29

AC Matching Algorithm for General Patterns

x Y x

failed

Rewriting Tools 23/29

AC Matching Algorithm for General Patterns

f(a, x) f(a,y) x

Rewriting Tools 23/29

AC Matching Algorithm for General Patterns

x Y x

Rewriting Tools 23/29

AC Matching Algorithm for General Patterns

x Y x

Rewriting Tools 23/29

AC Matching Algorithm for General Patterns

x Y x

\“ l‘l—)b
““ y—a

Rewriting Tools 23/29

AC Matching Algorithm for General Patterns

x Y x
\“ $'—)b
]} y+—a

Note

backtracking is necessary; efficient pruning technique is known (Eker 1995)

Rewriting Tools 23/29

AC Matching Algorithm for General Patterns

x Y x
\“ $'—)b
]} y+—a

Note

backtracking is necessary; efficient pruning technique is known (Eker 1995)

Note

AC matching is NP-complete; how to prove it?

Rewriting Tools 23/29

AC Matching Algorithm for General Patterns

x Y x
\“ $'—)b
]} y+—a

Note

backtracking is necessary; efficient pruning technique is known (Eker 1995)

Note

AC matching is NP-complete; how to prove it? — bin packing problem

Rewriting Tools 23/29

Bin Packing is NP-Complete

following bin packing problem is NP-complete:

Rewriting Tools 24/29

Bin Packing is NP-Complete

Theorem

following bin packing problem is NP-complete:
instance: multiset M of positive numbers and n, B € N

Rewriting Tools 24/29

Bin Packing is NP-Complete

Theorem

following bin packing problem is NP-complete:
instance: multiset M of positive numbers and n, B € N
question: is there partition M = My W --- W M,, with > M; < B

Rewriting Tools 24/29

Bin Packing is NP-Complete

Theorem

following bin packing problem is NP-complete:
instance: multiset M of positive numbers and n, B € N
question: is there partition M = My W --- W M,, with > M; < B

Example

let M = {2,2,2,4,5,6,6}

Rewriting Tools 24/29

Bin Packing is NP-Complete

Theorem

following bin packing problem is NP-complete:
instance: multiset M of positive numbers and n, B € N
question: is there partition M = My W --- W M,, with > M; < B

Example

let M = {2,2,2,4,5,6,6)
mif B=10and n =3 then M ={2,2,6} W{2,5} w{4,6}

Rewriting Tools 24/29

Bin Packing is NP-Complete

Theorem

following bin packing problem is NP-complete:
instance: multiset M of positive numbers and n, B € N
question: is there partition M = My W --- W M,, with > M; < B

Example

let M ={2,2,2,4,5,6,6}
mif B=10and n =3 then M = {2,2,6} W{2,5} W {4,6}
m if B =9 and n = 3 then suitable partition does not exist

Rewriting Tools 24/29

Bin Packing is NP-Complete

Theorem

following bin packing problem is NP-complete:
instance: multiset M of positive numbers and n, B € N
question: is there partition M = My W --- W M,, with > M; < B

Example

let M ={2,2,2,4,5,6,6}
mif B=10and n =3 then M = {2,2,6} W{2,5} W {4,6}
m if B =9 and n = 3 then suitable partition does not exist
m what if B =14 and n = 27

Rewriting Tools 24/29

AC Matching is NP-Complete

Theorem (Benanav et al. 1987)

AC matching is NP-complete

Rewriting Tools 25/29

AC Matching is NP-Complete

Theorem (Benanav et al. 1987)

AC matching is NP-complete

Proof (Chandra and Kanellakis 1985).

reduction from bin packing; consider {2,2,2,4,5 6,6} with 3 bins of size 10

Rewriting Tools 25/29

AC Matching is NP-Complete

Theorem (Benanav et al. 1987)
AC matching is NP-complete

Proof (Chandra and Kanellakis 1985).
reduction from bin packing; consider {2,2,2,4,5 6,6} with 3 bins of size 10

(272323 - 2] - 22 TS - 29 - Yog - Yoo - Y30)o = a'? - b0 - c1? has solution:

T1,%2,%e > A

0 = T3, Ts5, Y28, Y29, Y30 — b
Tyg,T7 = C

Rewriting Tools 25/29

AC Matching is NP-Complete

Theorem (Benanav et al. 1987)

AC matching is NP-complete

Proof (Chandra and Kanellakis 1985).
reduction from bin packing; consider {2,2,2,4,5 6,6} with 3 bins of size 10

(272323 - 2] - 22 TS - 29 - Yog - Yoo - Y30)o = a'? - b0 - c1? has solution:

x17$27'r6'_>a 32'32‘362310

_ 2 W5 _ W7
0 = T3, Ts5, Y28, Y29, Y30 — b b2.b° =b
Ty, T7 > C ct.c6 =0

Rewriting Tools 25/29

AC Matching is NP-Complete

Theorem (Benanav et al. 1987)
AC matching is NP-complete

Proof (Chandra and Kanellakis 1985).
reduction from bin packing; consider {2,2,2,4,5 6,6} with 3 bins of size 10

(272323 - 2] - 22 TS - 29 - Yog - Yoo - Y30)o = a'? - b0 - c1? has solution:

T1, %2, Tg —> A a?-.a%.af =alf
0 = (T3, Ts, Y28, Y29, Y30 > b b? - b% = b’
T4, Ty > C 0@ =
(2,2,6) W {2,5} w {4,6} = {2,2,2,4,5,6,6) O

Rewriting Tools 25/29

Demo

Rewriting Tools 26/29

Example: Proof by AC Rewriting
TRS R with AC symbols + and -

Rewriting Tools 27/29

Example: Proof by AC Rewriting
TRS R with AC symbols + and -

O+z—=x
s(z) +y —s(x+y)

Rewriting Tools 27/29

Example: Proof by AC Rewriting
TRS R with AC symbols + and -

O+z—=x 0O-z—0
s(r)+y—s(x+y) s(x)-y—x-y+y

Rewriting Tools 27/29

Example: Proof by AC Rewriting
TRS R with AC symbols + and -

O+2—x 0-2—0 f(0) — 0
s(z) +y—s(z+y) s@)y—az-y+y f(s(x)) = s(x) +f(x)

Rewriting Tools 27/29

Example: Proof by AC Rewriting
TRS R with AC symbols + and -

O+2—x 0-2—0 f(0) — 0
s(z) +y—s(z+y) s@)y—az-y+y f(s(x)) = s(x) +f(x)

f(n) +f(n) <% n-s(n) with Peano numbers n is shown as follows:

Rewriting Tools 27/29

Example: Proof by AC Rewriting
TRS R with AC symbols + and -

O+2—x 0-2—0 f(0) — 0
s(z) +y—s(z+y) s@)y—az-y+y f(s(x)) = s(x) +f(x)

f(n) +f(n) <% n-s(n) with Peano numbers n is shown as follows:
use fresh constant c to define extension & of R with

eq(z,z) — true claim(z) — eq(f(z) + f(z),z - s(z)) f(c)+f(c) = n-s(c)

Rewriting Tools 27/29

Example: Proof by AC Rewriting
TRS R with AC symbols + and -

O+2—x 0-2—0 f(0) — 0
s(z) +y—s(z+y) s@)y—az-y+y f(s(x)) = s(x) +f(x)

f(n) +f(n) <% n-s(n) with Peano numbers n is shown as follows:
use fresh constant c to define extension & of R with

eq(z,z) — true claim(z) — eq(f(z) + f(z),z - s(z)) f(c)+f(c) = n-s(c)

claim(0) —/ac true

Rewriting Tools 27/29

Example: Proof by AC Rewriting
TRS R with AC symbols + and -

O+2—x 0-2—0 f(0) — 0
s(z) +y—s(z+y) s@)y—az-y+y f(s(x)) = s(x) +f(x)

f(n) +f(n) <% n-s(n) with Peano numbers n is shown as follows:
use fresh constant c to define extension & of R with

eq(z,z) — true claim(z) — eq(f(z) + f(z),z - s(z)) f(c)+f(c) = n-s(c)
claim(0) —/ac true
claim(s(c)) —3/ac true

Rewriting Tools 27/29

open EQL .
(B]

op tt : ->
op ff : >

op xor : B

op or : B B -> B {assoc comm} .
op imply : B->B.
op equiv : B->B.

op not : B -> B .
vars Xy z : B .

Rewriting Tools

B

B .

B -> B {assoc comm} .
op and : B B -> B {assoc comm} .

B

B

B

Boolean Ring

eq and(x,x) = x .
eq and(x,ff) = ff .
eq and(x,tt) = x .
eq xor(x,x) = ff .
eq xor(x,ff) = x

eq and(x,xor(y, z)) = xor(and(x,y),and(x,z))

eq not(x) = xor(x,tt)

eq or(x,y) = not(and(not(x),not(y)))

eq imply(x,y) = or(mot(x),y)

eq equiv(x,y) = and(imply(x,y),imply(y,x))

red and(tt,or(ff,tt))

ops pqr : ->B.

red equiv(imply(p, imply(q, 1)),
imply(and(p, q), r))

close .

28/29

Summary

innermost rewriting
AC rewriting

AC matching

thanks for your attention!

Rewriting Tools 29/29

