Rewriting Tools

Nao Hirokawa
JAIST

14th ISR, August 26, 2024

https://www.jaist.ac.jp/~hirokawa/24isr/

1 Monday: rewriting tools

1 Monday: rewriting tools

2 Tuesday: termination tools

1 Monday: rewriting tools

2 Tuesday: termination tools

3 Wednesday: confluence tools

- 1 Monday: rewriting tools
- 2 Tuesday: termination tools
- 3 Wednesday: confluence tools
- 4 Friday: completion tools

- 1 Monday: rewriting tools
- 2 Tuesday: termination tools
- 3 Wednesday: confluence tools
- 4 Friday: completion tools

Keywords

SAT/SMT, unification, tree automata, redundant rules

Rewriting Tools: CafeOBJ, Maude, K, ...

■ based on order-sorted conditional AC-rewriting

Rewriting Tools: CafeOBJ, Maude, K, ...

■ based on order-sorted conditional AC-rewriting

support reachability analysis

Rewriting Tools: CafeOBJ, Maude, K, ...

■ based on order-sorted conditional AC-rewriting

support reachability analysis

used for software verification (rewriting logic)

Example of CafeOBJ Code

```
open EQL .
[N]
op 0 : -> N .
op s: N \rightarrow N.
op + : N N \rightarrow N \{assoc comm\}.
vars X Y : N .
eq 0 + Y = Y.
eq s(X) + Y = s(X + Y).
red (X + 0) + s(X) . -- reduces to s(X + X)
close .
```

Contents

1 innermost rewriting

Contents

1 innermost rewriting

2 AC rewriting

Contents

1 innermost rewriting

2 AC rewriting

3 AC matching

Definition

$$s \xrightarrow{i}_{\mathcal{R}} t \iff \exists \ell \to r \in \mathcal{R}, C, \sigma.$$

$$\begin{cases} s = C[\ell\sigma], \ t = C[r\sigma], \ \text{and} \\ u \in \mathsf{NF}(\mathcal{R}) \ \text{for all proper subterms} \ u \ \text{of} \ \ell\sigma \end{cases}$$

Definition

$$s \xrightarrow{\mathbf{i}}_{\mathcal{R}} t \iff \exists \ell \to r \in \mathcal{R}, C, \sigma. \ \begin{cases} s = C[\ell\sigma], \ t = C[r\sigma], \ \text{and} \\ u \in \operatorname{NF}(\mathcal{R}) \ \text{for all proper subterms} \ u \ \text{of} \ \ell\sigma \end{cases}$$

Example

TRS

$$0+x\to x$$

$$s(x) + y \rightarrow s(x+y)$$

Definition

$$s \xrightarrow{\mathbf{i}}_{\mathcal{R}} t \iff \exists \ell \to r \in \mathcal{R}, C, \sigma. \ \begin{cases} s = C[\ell\sigma], \ t = C[r\sigma], \ \text{and} \\ u \in \mathsf{NF}(\mathcal{R}) \ \text{for all proper subterms} \ u \ \text{of} \ \ell\sigma \end{cases}$$

Example

TRS

$$0+x\to x$$

$$s(x) + y \rightarrow s(x+y)$$

$$\quad \blacksquare \ 0 + s(s(0) + 0) \ \stackrel{i}{\rightarrow}_{\mathcal{R}} \ 0 + s(s(0+0))$$

Rewriting Tools

7/29

Definition

$$s \xrightarrow{\mathbf{i}}_{\mathcal{R}} t \iff \exists \ell \to r \in \mathcal{R}, C, \sigma. \ \begin{cases} s = C[\ell\sigma], \ t = C[r\sigma], \ \text{and} \\ u \in \mathsf{NF}(\mathcal{R}) \ \text{for all proper subterms} \ u \ \text{of} \ \ell\sigma \end{cases}$$

Example

TRS

$$0+x\to x$$

$$s(x) + y \rightarrow s(x+y)$$

$$\quad \blacksquare \ 0 + s(s(0) + 0) \ \stackrel{i}{\rightarrow}_{\mathcal{R}} \ 0 + s(s(0 + 0))$$

■
$$0 + s(s(0) + 0) \xrightarrow{i}_{\mathcal{R}} s(s(0) + 0)$$

Rewriting Tools

7/29

Innermost Normalization – Naive Version

Definition

given TRS \mathcal{R} , function $\phi(t)$ is defined as follows:

Innermost Normalization - Naive Version

Definition

given TRS \mathcal{R} , function $\phi(t)$ is defined as follows:

$$\phi(x) = x$$

Innermost Normalization - Naive Version

Definition

given TRS \mathcal{R} , function $\phi(t)$ is defined as follows:

$$\phi(x) = x$$

$$\phi(f(t_1, \dots, t_n)) = \begin{cases} \phi(r\tau) & \text{if } \ell \to r \in \mathcal{R} \text{ and } t' = \ell\tau \\ \frac{t'}{NE} & \text{otherwise} \end{cases}$$

Innermost Normalization - Naive Version

Definition

given TRS \mathcal{R} , function $\phi(t)$ is defined as follows:

$$\phi(x) = x$$

$$\phi(f(t_1, \dots, t_n)) = \begin{cases} \phi(r\tau) & \text{if } \ell \to r \in \mathcal{R} \text{ and } t' = \ell\tau \\ \frac{t'}{\mathsf{NF}} & \text{otherwise} \end{cases}$$

where
$$t' = f(\underline{\phi(t_1)}, \dots, \underline{\phi(t_n)})$$

Innermost Normalization – Naive Version

Definition

given TRS \mathcal{R} , function $\phi(t)$ is defined as follows:

$$\phi(x) = x$$

$$\phi(f(t_1, \dots, t_n)) = \begin{cases} \phi(r\tau) & \text{if } \ell \to r \in \mathcal{R} \text{ and } t' = \ell\tau \\ \frac{t'}{\mathsf{NE}} & \text{otherwise} \end{cases}$$

where
$$t' = f(\underline{\phi(t_1)}, \dots, \underline{\phi(t_n)})$$

Theorem

if t is innermost terminating then $\phi(t)$ is normal form of t

TRS

$$0 + x \rightarrow x$$

$$s(x) + y \rightarrow s(x+y)$$

TRS

$$0 + x \to x$$
 $s(x) + y \to s(x + y)$

innermost normalization:

TRS

$$0 + x \to x \qquad \qquad \mathsf{s}(x) + y \to \mathsf{s}(x+y)$$

innermost normalization:

$$\frac{\mathsf{s}(\underbrace{0}_{\mathsf{NF}}) + \mathsf{s}(\mathsf{s}(\mathsf{s}(\underbrace{0}_{\mathsf{NF}})))}{\mathsf{NF}} \\ \underbrace{\frac{\mathsf{NF}_{\mathsf{NF}}}{\mathsf{NF}}}_{\mathsf{NF}}$$
matched

TRS

$$0 + x \to x$$
 $s(x) + y \to s(x + y)$

innermost normalization:

$$\underbrace{\frac{s(\underline{0})}{NF} + s(s(s(\underline{0})))}_{NF} \xrightarrow{\stackrel{NF}{NF}} \underbrace{\frac{NF}{NF}}_{NF} \underbrace{\frac{NF}{NF}}_{NF} \underbrace{\frac{NF}{NF}}_{NF} \underbrace{\frac{NF}{NF}}_{NF}$$

TRS

$$0 + x \to x$$
 $s(x) + y \to s(x + y)$

innermost normalization:

$$\frac{s(\underline{0}) + s(s(s(\underline{0})))}{NF} \xrightarrow{NF} \frac{S(\underline{0} + s(s(s(\underline{0}))))}{NF} \xrightarrow{NF} \frac{S(s(s(s(\underline{0}))))}{NF} \xrightarrow{NF} \frac{S(s(s(\underline{0})))}{NF} \xrightarrow{NF} \frac{S(s(s(\underline{0})))}{NF} \xrightarrow{NF} \frac{S(s(s(\underline{0})))}{NF} \xrightarrow{NF} \frac{S(s(s(\underline{0})))}{NF} \xrightarrow{NF} \frac{S(s(s(\underline{0})))}{NF} \xrightarrow{NF} \frac{S(s(\underline{0}))}{NF} \xrightarrow{NF} \frac{S(s(\underline{0})$$

TRS

$$0 + x \to x$$
 $s(x) + y \to s(x + y)$

innermost normalization:

$$\underbrace{ \begin{array}{c} s(\underline{0}) \\ NF \\ NF \\ \hline \\ NF \\ \\ NF \\ \hline \\ NF \\ \\ NF$$

Observation

substitutions employed in innermost steps are normalized

TRS

$$0+x\to x$$

$$s(x) + y \rightarrow s(x+y)$$

TRS

$$0 + x \to x$$
 $s(x) + y \to s(x + y)$

innermost normalization:

TRS

$$0 + x \to x$$
 $s(x) + y \to s(x + y)$

innermost normalization:

$$\frac{\mathsf{s}(\underbrace{0}_{\mathsf{NF}}) + \mathsf{s}(\mathsf{s}(\mathsf{s}(\underbrace{0}_{\mathsf{NF}})))}{\mathsf{NF}} \\ \underbrace{\frac{\mathsf{NF}}{\mathsf{NF}}}_{\mathsf{NF}}$$
matched

TRS

$$0 + x \to x$$
 $s(x) + y \to s(x + y)$

innermost normalization:

$$\frac{\mathsf{s}(\underbrace{0}_{\mathsf{NF}}) + \mathsf{s}(\mathsf{s}(\mathsf{s}(\underbrace{0}_{\mathsf{NF}})))}{\underbrace{\frac{\mathsf{NF}}{\mathsf{NF}}}} = (\mathsf{s}(x) + y)\underbrace{\frac{\sigma}{\mathsf{NF}}} \overset{\mathsf{i}}{\to} \mathsf{s}(x + y)\underbrace{\frac{\sigma}{\mathsf{NF}}}_{\mathsf{NF}}$$

where
$$\sigma = \begin{cases} x \mapsto 0 \\ y \mapsto \mathsf{s}(\mathsf{s}(\mathsf{s}(x))) \end{cases}$$

TRS

$$0 + x \to x$$
 $s(x) + y \to s(x + y)$

innermost normalization:

$$\underbrace{\frac{\mathsf{s}(\underbrace{0})}{\mathsf{NF}}}_{\mathsf{NF}} + \underbrace{\mathsf{s}(\mathsf{s}(\mathsf{s}(\underbrace{0})))}_{\mathsf{NF}} = (\mathsf{s}(x) + y)\underbrace{\frac{\sigma}{\mathsf{NF}}}_{\mathsf{NF}} + \underbrace{\frac{1}{\mathsf{NF}}}_{\mathsf{matched}} + \underbrace{\mathsf{s}(\mathsf{s}(\mathsf{s}(0)))}_{\mathsf{NF}} + \underbrace{\frac{1}{\mathsf{NF}}}_{\mathsf{matched}} + \underbrace{\mathsf{s}(\mathsf{s}(\mathsf{s}(0)))}_{\mathsf{NF}} + \underbrace{\mathsf{s}(\mathsf{s}(\mathsf{s}(0)))}_{\mathsf{NF$$

where
$$\sigma = \begin{cases} x \mapsto 0 \\ y \mapsto \mathsf{s}(\mathsf{s}(\mathsf{s}(x))) \end{cases}$$

Innermost Normalization – Efficient Version

Definition

given TRS \mathcal{R} , operator $t * \sigma$ is defined as follows:

Innermost Normalization – Efficient Version

Definition

given TRS \mathcal{R} , operator $t * \sigma$ is defined as follows:

$$x * \sigma = x\sigma$$

Innermost Normalization – Efficient Version

Definition

given TRS \mathcal{R} , operator $t * \sigma$ is defined as follows:

$$x*\sigma = x\sigma$$

$$f(t_1, \dots, t_n)*\sigma = \begin{cases} r* \frac{\tau}{\mathsf{NF}} & \text{if } \ell \to r \in \mathcal{R} \text{ and } t' = \ell \frac{\tau}{\mathsf{NF}} \\ \frac{t'\sigma}{\mathsf{NF}} & \text{otherwise} \end{cases}$$

Innermost Normalization – Efficient Version

Definition

given TRS \mathcal{R} , operator $t * \sigma$ is defined as follows:

$$x*\sigma = x\sigma$$

$$f(t_1,\ldots,t_n)*\sigma = \begin{cases} r* \frac{\tau}{N\mathsf{F}} & \text{if } \ell o r \in \mathcal{R} \text{ and } t' = \ell \frac{\tau}{N\mathsf{F}} \\ \frac{t'\sigma}{N\mathsf{F}} & \text{otherwise} \end{cases}$$

where
$$t' = f(\underbrace{t_1 * \sigma}_{\mathsf{NF}}, \dots, \underbrace{t_n * \sigma}_{\mathsf{NF}})$$

Innermost Normalization – Efficient Version

Definition

given TRS \mathcal{R} , operator $t * \sigma$ is defined as follows:

$$x*\sigma = x\sigma$$

$$f(t_1,\ldots,t_n)*\sigma = \begin{cases} r* \frac{ au}{\mathsf{NF}} & \text{if } \ell o r \in \mathcal{R} \text{ and } t' = \ell \frac{ au}{\mathsf{NF}} \\ \frac{t'\sigma}{\mathsf{NF}} & \text{otherwise} \end{cases}$$

where
$$t' = f(\underline{t_1 * \sigma}, \dots, \underline{t_n * \sigma})$$

Theorem (folklore?)

if t is innermost terminating and σ is normalized substitution then $t*\sigma$ is normal form of $t\sigma$

let \mathcal{F}_{AC} be set of binary symbols (AC symbols)

let \mathcal{F}_{AC} be set of binary symbols (AC symbols)

Definition

$$AC = \begin{cases} f(x,y) \to f(y,x) \\ f(f(x,y),z) \to f(x,f(y,z)) \end{cases} \middle| f \in \mathcal{F}_{AC}$$

let \mathcal{F}_{AC} be set of binary symbols (AC symbols)

Definition

$$AC = \begin{cases} f(x,y) \to f(y,x) \\ f(f(x,y),z) \to f(x,f(y,z)) \end{cases} \middle| f \in \mathcal{F}_{AC}$$

Example

$$(a + b) + c \leftrightarrow_{\Delta C}^* (b + a) + c \leftrightarrow_{\Delta C}^* c + (b + a)$$
 if + is AC symbol

let \mathcal{F}_{AC} be set of binary symbols (AC symbols)

Definition

$$AC = \begin{cases} f(x,y) \to f(y,x) \\ f(f(x,y),z) \to f(x,f(y,z)) \end{cases} \middle| f \in \mathcal{F}_{AC}$$

Example

$$(a + b) + c \leftrightarrow_{AC}^{*} (b + a) + c \leftrightarrow_{AC}^{*} c + (b + a)$$
 if $+$ is AC symbol

Definition (class rewriting)

$$s \rightarrow_{\mathcal{R}/AC} t$$
 if $s \leftrightarrow_{AC}^* \cdot \rightarrow_{\mathcal{R}} \cdot \leftrightarrow_{AC}^* t$

TRS \mathcal{R} with AC symbol +:

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \quad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

$$AC = \begin{cases} (x+y) + z \to x + (y+z) \\ x+y \to y + x \end{cases}$$

AC rewriting

$$(x + 0) + s(x)$$

TRS \mathcal{R} with AC symbol +:

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \quad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

AC rewriting

$$\blacksquare (x+0) + \mathsf{s}(x) \rightarrow_{\mathcal{R}/\mathsf{AC}} x + \mathsf{s}(x)$$

TRS \mathcal{R} with AC symbol +:

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \quad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

AC rewriting

$$(x+0) + s(x) \rightarrow_{\mathcal{R}/AC} x + s(x) \rightarrow_{\mathcal{R}/AC} s(x+x)$$

TRS \mathcal{R} with AC symbol +:

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \quad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

AC rewriting

$$(x+0) + s(x) \rightarrow_{\mathcal{R}/AC} x + s(x) \rightarrow_{\mathcal{R}/AC} s(x+x) \in NF(\rightarrow_{\mathcal{R}/AC})$$

TRS \mathcal{R} with AC symbol +:

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \quad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

AC rewriting

$$\blacksquare \infty + (x + \infty) \rightarrow_{\mathcal{R}/AC} \infty + x \in \mathsf{NF}(\rightarrow_{\mathcal{R}/AC})$$

TRS \mathcal{R} with AC symbol +:

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \quad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

AC rewriting

$$\blacksquare \infty + (x + \infty) \rightarrow_{\mathcal{R}/AC} \infty + x \in \mathsf{NF}(\rightarrow_{\mathcal{R}/AC})$$

how to implement $\rightarrow_{\mathcal{R}/AC}$?

TRS \mathcal{R} with AC symbol +:

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \quad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

AC rewriting

$$\blacksquare (x + 0) + s(x) \rightarrow_{\mathcal{R}/AC} x + s(x) \rightarrow_{\mathcal{R}/AC} s(x + x) \in NF(\rightarrow_{\mathcal{R}/AC})$$

$$\blacksquare \infty + (x + \infty) \rightarrow_{\mathcal{R}/AC} \infty + x \in \mathsf{NF}(\rightarrow_{\mathcal{R}/AC})$$

how to implement $\rightarrow_{\mathcal{R}/AC}$? rewriting based on AC matching

Definition (Peterson and Stickel 1981)

$$s \to_{\mathcal{R},\mathsf{AC}} t$$
 if $s|_p \leftrightarrow_{\mathsf{AC}}^* \ell \sigma$ and $t = s[r\sigma]_p$ for some $p \in \mathcal{P}\mathsf{os}(s)$ and $\ell \to r \in \mathcal{R}$

Definition (Peterson and Stickel 1981)

$$s \to_{\mathcal{R},\mathsf{AC}} t$$
 if $s|_p \leftrightarrow_{\mathsf{AC}}^* \ell \sigma$ and $t = s[r\sigma]_p$ for some $p \in \mathcal{P}\mathsf{os}(s)$ and $\ell \to r \in \mathcal{R}$

Example

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \qquad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

Definition (Peterson and Stickel 1981)

$$s \to_{\mathcal{R},\mathsf{AC}} t$$
 if $s|_p \leftrightarrow_{\mathsf{AC}}^* \ell \sigma$ and $t = s[r\sigma]_p$ for some $p \in \mathcal{P}\mathsf{os}(s)$ and $\ell \to r \in \mathcal{R}$

Example

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \end{cases} \qquad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

$$(x + 0) + s(x)$$

Definition (Peterson and Stickel 1981)

$$s \to_{\mathcal{R},\mathsf{AC}} t$$
 if $s|_p \leftrightarrow_{\mathsf{AC}}^* \ell \sigma$ and $t = s[r\sigma]_p$ for some $p \in \mathcal{P}\mathsf{os}(s)$ and $\ell \to r \in \mathcal{R}$

Example

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \qquad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

$$\blacksquare (x + 0) + s(x) \rightarrow_{\mathcal{R},AC} x + s(x)$$

Definition (Peterson and Stickel 1981)

$$s \to_{\mathcal{R},\mathsf{AC}} t$$
 if $s|_p \leftrightarrow_{\mathsf{AC}}^* \ell \sigma$ and $t = s[r\sigma]_p$ for some $p \in \mathcal{P}\mathsf{os}(s)$ and $\ell \to r \in \mathcal{R}$

Example

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \qquad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

$$\blacksquare (x+0) + s(x) \rightarrow_{\mathcal{R},AC} x + s(x) \rightarrow_{\mathcal{R},AC} s(x+x)$$

Definition (Peterson and Stickel 1981)

$$s \to_{\mathcal{R},\mathsf{AC}} t$$
 if $s|_p \leftrightarrow_{\mathsf{AC}}^* \ell \sigma$ and $t = s[r\sigma]_p$ for some $p \in \mathcal{P}\mathsf{os}(s)$ and $\ell \to r \in \mathcal{R}$

Example

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \qquad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

$$\mathbf{s}(x+\mathbf{0}) + \mathbf{s}(x) \rightarrow_{\mathcal{R},\mathsf{AC}} x + \mathbf{s}(x) \rightarrow_{\mathcal{R},\mathsf{AC}} \mathbf{s}(x+x) \in \mathsf{NF}(\rightarrow_{\mathcal{R},\mathsf{AC}})$$

Definition (Peterson and Stickel 1981)

$$s \to_{\mathcal{R},\mathsf{AC}} t$$
 if $s|_p \leftrightarrow_{\mathsf{AC}}^* \ell \sigma$ and $t = s[r\sigma]_p$ for some $p \in \mathcal{P}\mathsf{os}(s)$ and $\ell \to r \in \mathcal{R}$

Example

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \qquad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

$$\blacksquare (x + 0) + \mathsf{s}(x) \to_{\mathcal{R},\mathsf{AC}} x + \mathsf{s}(x) \to_{\mathcal{R},\mathsf{AC}} \mathsf{s}(x + x) \in \mathsf{NF}(\to_{\mathcal{R},\mathsf{AC}})$$

$$\blacksquare \infty + (x + \infty) \not\rightarrow_{\mathcal{R},AC} \infty + x$$

Definition (Peterson and Stickel 1981)

$$s \to_{\mathcal{R},\mathsf{AC}} t$$
 if $s|_p \leftrightarrow_{\mathsf{AC}}^* \ell \sigma$ and $t = s[r\sigma]_p$ for some $p \in \mathcal{P}\mathsf{os}(s)$ and $\ell \to r \in \mathcal{R}$

Example

$$\mathcal{R} = \begin{cases} 0 + x \to x \\ \mathsf{s}(x) + y \to \mathsf{s}(x+y) \\ \infty + \infty \to \infty \end{cases} \qquad \mathsf{AC} = \begin{cases} (x+y) + z \to x + (y+z) \\ x + y \to y + x \end{cases}$$

$$\blacksquare (x + 0) + s(x) \rightarrow_{\mathcal{R},AC} x + s(x) \rightarrow_{\mathcal{R},AC} s(x + x) \in NF(\rightarrow_{\mathcal{R},AC})$$

$$\blacksquare \infty + (x + \infty) \not\rightarrow_{\mathcal{R},AC} \infty + x !?$$

Definition

Definition

■ $f(\ell,x) \to f(r,x)$ is extension rule of $\ell \to r$ if $f = \operatorname{root}(\ell) \in \mathsf{AC}$ and $x \notin \mathcal{V}\operatorname{ar}(\ell)$

Definition

- $f(\ell, x) \to f(r, x)$ is extension rule of $\ell \to r$ if $f = \operatorname{root}(\ell) \in \mathsf{AC}$ and $x \notin \mathcal{V}\operatorname{ar}(\ell)$
- $\blacksquare \mathcal{R}^e$ is extension of \mathcal{R} with extension rules

Definition

- $f(\ell,x) \to f(r,x)$ is extension rule of $\ell \to r$ if $f = \operatorname{root}(\ell) \in \mathsf{AC}$ and $x \notin \mathcal{V}\operatorname{ar}(\ell)$
- $\blacksquare \mathcal{R}^e$ is extension of \mathcal{R} with extension rules

Theorem

$$s \to_{\mathcal{R}/\mathsf{AC}} t \iff s \to_{\mathcal{R}^e,\mathsf{AC}} \cdot \leftrightarrow_{\mathsf{AC}}^* t$$

$$\mathcal{R}^{e} = \begin{cases}
0 + x \to x & (0 + x) + y \to x + y \\
\mathsf{s}(x) + y \to \mathsf{s}(x + y) & (\mathsf{s}(x) + y) + z \to \mathsf{s}(x + y) + z \\
\infty + \infty \to \infty & (\infty + \infty) + x \to \infty + x
\end{cases}$$

$$\infty + (\infty + x) \to_{\mathcal{R}^e, AC} \infty + x$$
 because

$$\infty + (\infty + x) \leftrightarrow_{AC} (\infty + \infty) + x \xrightarrow{\epsilon}_{\mathcal{R}^e} \infty + x$$

AC Matching

Definition

AC matching problem is following problem:

Definition

AC matching problem is following problem:

input: terms s and t

 \boldsymbol{s} is called pattern

Definition

AC matching problem is following problem:

input: terms s and t s is called pattern

output: substitution σ with $s\sigma \leftrightarrow_{\mathsf{AC}}^* t$ if it exists

Definition

AC matching problem is following problem:

input: terms s and t s is called pattern

output: substitution σ with $s\sigma \leftrightarrow_{\mathsf{AC}}^* t$ if it exists

Example

let + be AC symbol

$$(\mathsf{a} + x + \mathsf{b})\sigma \ \leftrightarrow^*_{\mathsf{AC}} \ \mathsf{b} + \mathsf{s}(y) + \mathsf{a} \quad \text{if } \sigma =$$

Definition

AC matching problem is following problem:

input: terms s and t s is called pattern

output: substitution σ with $s\sigma \leftrightarrow_{\mathsf{AC}}^* t$ if it exists

Example

let + be AC symbol

$$(\mathsf{a} + x + \mathsf{b})\sigma \leftrightarrow^*_{\mathsf{AC}} \mathsf{b} + \mathsf{s}(y) + \mathsf{a} \quad \text{if } \sigma = \{x \mapsto \mathsf{s}(y)\}$$

Definition

AC matching problem is following problem:

input: terms s and t

s is called pattern

output: substitution σ with $s\sigma \leftrightarrow_{AC}^* t$ if it exists

Example

let + be AC symbol

$$(\mathbf{a} + x + \mathbf{b})\sigma \ \leftrightarrow^*_{\mathsf{AC}} \ \mathbf{b} + \mathbf{s}(y) + \mathbf{a} \qquad \text{if } \sigma = \{x \mapsto \mathbf{s}(y)\}$$

$$(x + y)\sigma \ \leftrightarrow^*_{\mathsf{AC}} \ \mathbf{a} + \mathbf{b} \qquad \qquad \text{if } \sigma =$$

Definition

AC matching problem is following problem:

input: terms s and t s is called pattern

output: substitution σ with $s\sigma \leftrightarrow_{AC}^* t$ if it exists

Example

let + be AC symbol

$$(\mathsf{a} + x + \mathsf{b})\sigma \ \leftrightarrow^*_{\mathsf{AC}} \ \mathsf{b} + \mathsf{s}(y) + \mathsf{a} \qquad \text{if } \sigma = \{x \mapsto \mathsf{s}(y)\}$$

$$(x + y)\sigma \ \leftrightarrow^*_{\mathsf{AC}} \ \mathsf{a} + \mathsf{b} \qquad \text{if } \sigma = \begin{cases} x \mapsto \mathsf{a} \\ y \mapsto \mathsf{b} \end{cases} \text{ or } \sigma =$$

AC Matching Problem

Definition

AC matching problem is following problem:

input: terms s and t s is called pattern

output: substitution σ with $s\sigma \leftrightarrow_{AC}^* t$ if it exists

Example

let + be AC symbol

$$\begin{array}{ccc} (\mathsf{a} + x + \mathsf{b})\sigma & \leftrightarrow_{\mathsf{AC}}^* & \mathsf{b} + \mathsf{s}(y) + \mathsf{a} & \quad \mathsf{if} \ \sigma = \left\{x \mapsto \mathsf{s}(y)\right\} \\ \\ (x + y)\sigma & \leftrightarrow_{\mathsf{AC}}^* & \mathsf{a} + \mathsf{b} & \quad \mathsf{if} \ \sigma = \left\{x \mapsto \mathsf{a} \atop y \mapsto \mathsf{b}\right\} \ \mathsf{or} \ \sigma = \left\{x \mapsto \mathsf{b} \atop y \mapsto \mathsf{a}\right\} \end{array}$$

1
$$(x+a)\sigma \leftrightarrow^*_{AC} a+b+b$$

$$(x+a)\sigma \leftrightarrow^*_{\Delta C} a+a$$

$$(x+x)\sigma \leftrightarrow_{AC}^* a+b$$

$$(x+y+z)\sigma \leftrightarrow^*_{\Delta C} a+b$$

$$(x+x)\sigma \leftrightarrow_{AC}^* a+a+b+b$$

$$\{x \mapsto \mathsf{b} + \mathsf{b}\}$$

$$(x+a)\sigma \leftrightarrow_{AC}^* a+a$$

$$(x+x)\sigma \leftrightarrow_{AC}^* a+b$$

$$(x+x)\sigma \leftrightarrow^*_{AC} a+a+b+b$$

$$1 (x+a)\sigma \leftrightarrow_{AC}^* a+b+b$$

$$\{x \mapsto \mathsf{b} + \mathsf{b}\}$$

$$(x+a)\sigma \leftrightarrow_{AC}^* a+a$$

$$\{x \mapsto \mathsf{a}\}$$

$$3 (x+x)\sigma \leftrightarrow_{AC}^* a+b$$

$$(x+x)\sigma \leftrightarrow^*_{AC} a+a+b+b$$

$$\{x \mapsto \mathsf{b} + \mathsf{b}\}$$

$$(x+a)\sigma \leftrightarrow_{AC}^* a+a$$

$$\{x \mapsto \mathsf{a}\}$$

$$3 (x+x)\sigma \leftrightarrow_{AC}^* a+b$$

$$(x+x)\sigma \leftrightarrow_{AC}^* a+a+b+b$$

$$\{x \mapsto \mathsf{b} + \mathsf{b}\}$$

$$(x+a)\sigma \leftrightarrow_{AC}^* a+a$$

$$\{x \mapsto \mathsf{a}\}$$

$$3 (x+x)\sigma \leftrightarrow_{AC}^* a+b$$

$$(x+x)\sigma \leftrightarrow^*_{AC} a+a+b+b$$

$$1 (x+a)\sigma \leftrightarrow_{AC}^* a+b+b$$

$$\{x \mapsto \mathsf{b} + \mathsf{b}\}$$

$$(x+a)\sigma \leftrightarrow_{AC}^* a+a$$

$$\{x\mapsto \mathsf{a}\}$$

$$(x+x)\sigma \leftrightarrow_{AC}^* a+b$$

$$[5]$$
 $(x+x)\sigma \leftrightarrow^*_{\Delta C} a+a+b+b$

$$\{x \mapsto \mathsf{a} + \mathsf{b}\}, \{x \mapsto \mathsf{b} + \mathsf{a}\}$$

Theorem (folklore)

ordinary matching problem is solvable in polynomial time

$$x \cdot a + b \cdot b \cdot y + z$$

$$a \cdot b \cdot b + a \cdot a + b \cdot b + a$$

$$x \cdot a + b \cdot b \cdot y + z$$

$$a \cdot b \cdot b + a \cdot a + b \cdot b + a$$

$$egin{pmatrix} x \mapsto \mathsf{a} \ y \mapsto \mathsf{a} \ z \mapsto \mathsf{b} \cdot \mathsf{b} + \mathsf{a} \end{pmatrix}$$

$$\begin{cases} x \mapsto \mathsf{a} \\ y \mapsto \mathsf{a} \\ z \mapsto \mathsf{b} \cdot \mathsf{b} + \mathsf{a} \end{cases}$$

Theorem (Benanav et al. 1987)

AC matching problem for linear patterns is solvable in polynomial time

$$\begin{cases} x \mapsto \mathsf{a} \\ y \mapsto \mathsf{a} \\ z \mapsto \mathsf{b} \cdot \mathsf{b} + \mathsf{a} \end{cases}$$

Theorem (Benanav et al. 1987)

AC matching problem for linear patterns is solvable in polynomial time

Proof.

use polynomial time algorithm for bipartite matching (Hopcroft and Karp 1973)

$$f(a, x) + f(a, y) + x$$

$$f(a, a) + f(a, b) + b$$

$$f(a, x) + f(a, y) + x$$

$$f(a, a) + f(a, b) + b$$

$$\left\{ egin{array}{l} x\mapsto \mathsf{b} \\ y\mapsto \mathsf{a} \end{array} \right\}$$

Note

backtracking is necessary; efficient pruning technique is known (Eker 1995)

AC Matching Algorithm for General Patterns

$$\left\{ egin{array}{l} x\mapsto \mathsf{b} \\ y\mapsto \mathsf{a} \end{array} \right\}$$

Note

backtracking is necessary; efficient pruning technique is known (Eker 1995)

Note

AC matching is NP-complete; how to prove it?

AC Matching Algorithm for General Patterns

Note

backtracking is necessary; efficient pruning technique is known (Eker 1995)

Note

AC matching is NP-complete; how to prove it? — bin packing problem

Theorem

following bin packing problem is NP-complete:

Theorem

following bin packing problem is NP-complete:

instance: multiset M of positive numbers and $n, B \in \mathbb{N}$

Theorem

following bin packing problem is NP-complete:

instance: multiset M of positive numbers and $n, B \in \mathbb{N}$

question: is there partition $M=M_1 \uplus \cdots \uplus M_n$ with $\sum M_i \leqslant B$

Theorem

following bin packing problem is NP-complete:

instance: multiset M of positive numbers and $n, B \in \mathbb{N}$

question: is there partition $M = M_1 \uplus \cdots \uplus M_n$ with $\sum M_i \leqslant B$

Example

let
$$M = \{2, 2, 2, 4, 5, 6, 6\}$$

Theorem

following bin packing problem is NP-complete:

instance: multiset M of positive numbers and $n, B \in \mathbb{N}$

question: is there partition $M=M_1 \uplus \cdots \uplus M_n$ with $\sum M_i \leqslant B$

Example

let
$$M = \{2, 2, 2, 4, 5, 6, 6\}$$

■ if B = 10 and n = 3 then $M = \{2, 2, 6\} \uplus \{2, 5\} \uplus \{4, 6\}$

Theorem

following bin packing problem is NP-complete:

instance: multiset M of positive numbers and $n, B \in \mathbb{N}$

question: is there partition $M = M_1 \uplus \cdots \uplus M_n$ with $\sum M_i \leqslant B$

Example

let $M = \{2, 2, 2, 4, 5, 6, 6\}$

- \blacksquare if B=10 and n=3 then $M=\{2,2,6\} \uplus \{2,5\} \uplus \{4,6\}$
- \blacksquare if B=9 and n=3 then suitable partition does not exist

Theorem

following bin packing problem is NP-complete:

instance: multiset M of positive numbers and $n, B \in \mathbb{N}$

question: is there partition $M=M_1 \uplus \cdots \uplus M_n$ with $\sum M_i \leqslant B$

Example

let $M = \{2, 2, 2, 4, 5, 6, 6\}$

- if B = 10 and n = 3 then $M = \{2, 2, 6\} \uplus \{2, 5\} \uplus \{4, 6\}$
- \blacksquare if B=9 and n=3 then suitable partition does not exist
- \blacksquare what if B=14 and n=2?

Theorem (Benanav et al. 1987)

AC matching is NP-complete

Theorem (Benanav et al. 1987)

AC matching is NP-complete

Proof (Chandra and Kanellakis 1985).

reduction from bin packing; consider $\{2, 2, 2, 4, 5, 6, 6\}$ with 3 bins of size 10

Theorem (Benanav et al. 1987)

AC matching is NP-complete

Proof (Chandra and Kanellakis 1985).

reduction from bin packing; consider $\{2, 2, 2, 4, 5, 6, 6\}$ with 3 bins of size 10

$$\boxed{1} \ (x_1^2 \cdot x_2^2 \cdot x_3^2 \cdot x_4^4 \cdot x_5^5 \cdot x_6^6 \cdot x_7^6 \cdot y_{28} \cdot y_{29} \cdot y_{30}) \sigma = \mathsf{a}^{10} \cdot \mathsf{b}^{10} \cdot \mathsf{c}^{10} \ \mathsf{has} \ \mathsf{solution} :$$

$$\sigma = \begin{cases} x_1, x_2, x_6 \mapsto \mathsf{a} \\ x_3, x_5, y_{28}, y_{29}, y_{30} \mapsto \mathsf{b} \\ x_4, x_7 \mapsto \mathsf{c} \end{cases}$$

Theorem (Benanav et al. 1987)

AC matching is NP-complete

Proof (Chandra and Kanellakis 1985).

reduction from bin packing; consider $\{2, 2, 2, 4, 5, 6, 6\}$ with 3 bins of size 10

$$\boxed{1} (x_1^2 \cdot x_2^2 \cdot x_3^2 \cdot x_4^4 \cdot x_5^5 \cdot x_6^6 \cdot x_7^6 \cdot x_7^6 \cdot y_{28} \cdot y_{29} \cdot y_{30}) \sigma = \mathsf{a}^{10} \cdot \mathsf{b}^{10} \cdot \mathsf{c}^{10} \text{ has solution:}$$

$$\sigma = \begin{cases} x_1, x_2, x_6 \mapsto \mathsf{a} \\ x_3, x_5, y_{28}, y_{29}, y_{30} \mapsto \mathsf{b} \\ x_4, x_7 \mapsto \mathsf{c} \end{cases} \qquad \qquad \begin{aligned} \mathsf{a}^2 \cdot \mathsf{a}^2 \cdot \mathsf{a}^6 &= \mathsf{a}^{10} \\ \mathsf{b}^2 \cdot \mathsf{b}^5 &= \mathsf{b}^7 \\ \mathsf{c}^4 \cdot \mathsf{c}^6 &= \mathsf{c}^{10} \end{aligned}$$

Theorem (Benanav et al. 1987)

AC matching is NP-complete

Proof (Chandra and Kanellakis 1985).

reduction from bin packing; consider $\{2, 2, 2, 4, 5, 6, 6\}$ with 3 bins of size 10

$$(x_1^2 \cdot x_2^2 \cdot x_3^2 \cdot x_4^4 \cdot x_5^5 \cdot x_6^6 \cdot x_7^6 \cdot y_{28} \cdot y_{29} \cdot y_{30}) \sigma = \mathsf{a}^{10} \cdot \mathsf{b}^{10} \cdot \mathsf{c}^{10} \text{ has solution:}$$

$$\sigma = \begin{cases} x_1, x_2, x_6 \mapsto \mathsf{a} \\ x_3, x_5, y_{28}, y_{29}, y_{30} \mapsto \mathsf{b} \\ x_4, x_7 \mapsto \mathsf{c} \end{cases} \qquad \qquad \begin{aligned} \mathsf{a}^2 \cdot \mathsf{a}^2 \cdot \mathsf{a}^6 &= \mathsf{a}^{10} \\ \mathsf{b}^2 \cdot \mathsf{b}^5 &= \mathsf{b}^7 \\ \mathsf{c}^4 \cdot \mathsf{c}^6 &= \mathsf{c}^{10} \end{aligned}$$

Demo

TRS ${\cal R}$ with AC symbols + and \cdot

TRS $\mathcal R$ with AC symbols + and \cdot

$$0 + x \to x$$
$$s(x) + y \to s(x + y)$$

TRS $\mathcal R$ with AC symbols + and \cdot

$$0 + x \to x$$
 $0 \cdot x \to 0$
 $s(x) + y \to s(x + y)$ $s(x) \cdot y \to x \cdot y + y$

TRS $\mathcal R$ with AC symbols + and \cdot

$$\begin{array}{lll} 0+x\to x & 0 & \mathsf{f}(0)\to 0 \\ \mathsf{s}(x)+y\to \mathsf{s}(x+y) & \mathsf{s}(x)\cdot y\to x\cdot y+y & \mathsf{f}(\mathsf{s}(x))\to \mathsf{s}(x)+\mathsf{f}(x) \end{array}$$

TRS $\mathcal R$ with AC symbols + and \cdot

$$\begin{array}{lll} \mathbf{0} + x \to x & \mathbf{0} \cdot x \to \mathbf{0} & \mathbf{f}(\mathbf{0}) \to \mathbf{0} \\ \mathbf{s}(x) + y \to \mathbf{s}(x+y) & \mathbf{s}(x) \cdot y \to x \cdot y + y & \mathbf{f}(\mathbf{s}(x)) \to \mathbf{s}(x) + \mathbf{f}(x) \end{array}$$

 $f(n) + f(n) \leftrightarrow_{\mathcal{P}}^* n \cdot s(n)$ with Peano numbers n is shown as follows:

TRS $\mathcal R$ with AC symbols + and \cdot

$$\begin{array}{lll} \mathbf{0} + x \to x & \mathbf{0} \cdot x \to \mathbf{0} & \mathbf{f}(\mathbf{0}) \to \mathbf{0} \\ \mathbf{s}(x) + y \to \mathbf{s}(x+y) & \mathbf{s}(x) \cdot y \to x \cdot y + y & \mathbf{f}(\mathbf{s}(x)) \to \mathbf{s}(x) + \mathbf{f}(x) \end{array}$$

 $f(n) + f(n) \leftrightarrow_{\mathcal{P}}^* n \cdot s(n)$ with Peano numbers n is shown as follows:

 \square use fresh constant c to define extension $\mathcal S$ of $\mathcal R$ with

$$\operatorname{eq}(x,x) \to \operatorname{true} \operatorname{claim}(x) \to \operatorname{eq}(\operatorname{f}(x) + \operatorname{f}(x), x \cdot \operatorname{s}(x)) \operatorname{f}(\operatorname{c}) + \operatorname{f}(\operatorname{c}) \to \operatorname{n} \cdot \operatorname{s}(\operatorname{c})$$

TRS $\mathcal R$ with AC symbols + and \cdot

$$\begin{array}{lll} 0+x\to x & 0 & \mathsf{f}(0)\to 0 \\ \mathsf{s}(x)+y\to \mathsf{s}(x+y) & \mathsf{s}(x)\cdot y\to x\cdot y+y & \mathsf{f}(\mathsf{s}(x))\to \mathsf{s}(x)+\mathsf{f}(x) \end{array}$$

- $f(n) + f(n) \leftrightarrow_{\mathcal{P}}^* n \cdot s(n)$ with Peano numbers n is shown as follows:
 - $\boxed{1}$ use fresh constant c to define extension $\mathcal S$ of $\mathcal R$ with

$$eq(x, x) \rightarrow true \quad claim(x) \rightarrow eq(f(x) + f(x), x \cdot s(x)) \quad f(c) + f(c) \rightarrow n \cdot s(c)$$

2 claim(0) $\rightarrow_{S/AC}^*$ true

TRS $\mathcal R$ with AC symbols + and \cdot

$$\begin{array}{lll} 0+x\to x & 0 & \mathsf{f}(0)\to 0 \\ \mathsf{s}(x)+y\to \mathsf{s}(x+y) & \mathsf{s}(x)\cdot y\to x\cdot y+y & \mathsf{f}(\mathsf{s}(x))\to \mathsf{s}(x)+\mathsf{f}(x) \end{array}$$

- $f(n) + f(n) \leftrightarrow_{\mathcal{P}}^* n \cdot s(n)$ with Peano numbers n is shown as follows:
- \square use fresh constant c to define extension $\mathcal S$ of $\mathcal R$ with

$$eq(x, x) \rightarrow true \ claim(x) \rightarrow eq(f(x) + f(x), x \cdot s(x)) \ f(c) + f(c) \rightarrow n \cdot s(c)$$

- 2 claim(0) $\rightarrow_{S/AC}^*$ true
- 3 claim(s(c)) $\rightarrow^*_{\mathcal{S}/AC}$ true

Boolean Ring

```
open EQL .
                                  eq and(x,x) = x.
ГВΊ
                                  eq and(x,ff) = ff.
op tt : -> B .
                                  eq and(x.tt) = x.
op ff : -> B .
                                  eq xor(x,x) = ff.
op xor : B B -> B {assoc comm} .
                                 eq xor(x,ff) = x.
op and : B B -> B {assoc comm} .
                                  eq and(x,xor(y,z)) = xor(and(x,y),and(x,z)).
op or : B B -> B {assoc comm} .
                                 eq not(x) = xor(x,tt).
op implv : B B -> B .
                                  eq or(x,v) = not(and(not(x),not(v))).
op equiv : B B -> B .
                                  eq imply(x,y) = or(not(x),y).
op not : B -> B .
                                  eq equiv(x,y) = and(imply(x,y),imply(y,x)).
vars x v z : B .
                                  red and(tt.or(ff.tt)) .
                                  ops p q r : -> B.
                                  red equiv(imply(p, imply(q, r)),
                                            imply(and(p, q), r)).
                                  close .
```

Summary

1 innermost rewriting

2 AC rewriting

3 AC matching

thanks for your attention!