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session 1 Monday background: SAT solving, propositional logic, DPLL and CDCL
application: search for lexicographic path orders
session 2 Tuesday background: SMT solving, arithmetic theories, lazy approach

application: search for Knuth-Bendix orders
session 3 Wednesday background: eager approach, certification

application: polynomial interpretations, max-poly certification
session 4  Friday SAT/SMT for infeasibility and confluence, logically constraint TRSs
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2. Propositional Logic
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Definition (Propositional Logic: Syntax)

® propositional formulas are built from

® atoms p,q,r, p1, P2, --- propositional variables
® top,bottom T,L “true” and “false”

® negation - -p “not p”

® conjunction A pPAQ “pandq”

® disjunction \Y, pVQqg “porq”

® implication — p—q “if p then g”

® equivalence — p+<q “p if and only if q”

according to BNF grammar ¢ == p|[ L[ T [(=¢) [(¢A@)|[(eVe)|(p— @) (e ¢)
® notational conventions:
® binding precedence - > A > V > —, &> omit outer parentheses

® —, A, Vareright-associative: p — g — r denotes p — (g — r)
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https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

Definition (Propositional Logic: Semantics)

® valuation (truth assignment) is mapping v: {p | pis atom} — {T,F}

® extension to formulas:

e v(T)=T

°* y(L)=F

. )T ifv(p)=F
V(o) = {F otherwise

‘VWAﬁo_{T ifvp) =v() =T

F otherwise

truth values

. v(ovi) = {F if V() = v(y) = F

T otherwise

F if =Tand v(y) =F
o ooy [F Vo) =Tand v(y)

T otherwise

F otherwise

,W¢Hw_{Twww=ww
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Definitions
® semantic entailment
01,92, ..., 0 FE Y
if v(¢) = T whenever v(p1) = v(p2) = --- = v(pp) =T, for every valuation v
e formula @ is valid if v(¢) = T for every valuation v

e formula ¢ is satisfiable if v(¢) = T for some valuation v

® formula g isvalid <= - is unsatisfiable

® validity and satisfiability are decidable

Satisfiability (SAT)

instance:  (propositional) formula ¢
question: is ¢ satisfiable?
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3. SAT Application: Search for Lexicographic Path Orders
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SAT Applications

Applications of SAT

® Encode logic puzzles
® Cryptanalysis
® Bounded model checking

e Component of reasoning in more complex logics (sessions 2 and 3)
® Encode non-deterministic computations (SAT is NP complete)
® Encode problems in proof search, e.g., in context of term rewriting
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Application: SAT for LPO Parameter Search

Definition (Lexicographic Path Order (LPO))
® |Let F be some first-order signature

® Letp: F — N be some precedence
® LPO is a relation on terms >,pp (>~ for short), defined by these inference rules

Si=tVsi=t
s=f(s1,...,5n) = t (sub)
p(f) >p(g) Vie{l,....m}. s>t
s=f(...)>=g(ts,...,tm) =t (prec)
Vie{l,...,i—1}.sj=¢ s>t Vjie{i+1,...,n}.s>t
s=f(s1,...,5n) = f(t1,...,ty) =t (lex)

Theorem

LPO is a reduction order (stable, monotone, strongly normalizing)
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Consider a TRS for the Ackermann function

ack(0,m) — s(m)
ack(s(n),0) — ack(n, s(0))
ack(s(n),s(m)) — ack(n, ack(s(n),m))

assuming p(ack) > p(s), all rules are decreasing w.r.t. LPO;
witness for second rule

0=0
b
n=n p(ack) > p(s) ack(s(n),0) >~ 0 (suo)
—— (sub) (prec)
s(n) = n ack(s(n),0) > s(0)

ack(s(n),0) > ack(n,s(0)) (1ex)
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A Search Problem for Termination Proving

Theorem

The following “LPO-problem” is NP-complete.

An opportunity

Given some TRS R, is there some precedence such that ¢ >=,po r forall ¢ — r € R?

Since the LPO-problem is in NP, and SAT is NP-complete, we can encode the
LPO-problem to SAT

in early times, dedicated solvers have been implemented to search for precedences
encoding to SAT is by far simpler and also quite flexible w.r.t. extensions
experiments revealed: due to high efficiency of modern SAT solvers, the encoding
approach is faster than existing dedicated solvers

encoding problems to SAT: bit-blasting
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Encoding of LPO

¢ first consider the search for an inference tree (postpone the precedence encoding)
® given two terms s and t we construct an encoding as formula ps. ¢
® since > only occurs positively, soundness suffices:
satisfiability of ps.t implies s >t
® ¢ IS a large conjunction, each conjunct is called a constraint
e forevery s; Jsand t; <t we use one propositional variable "s; > t;
® add constraint"s >t to s ¢

® add the following constraints to s, + for all subterm pairs of s and t
® x>t 1

® Tf(s1,-580) =Y = Vieqw, .y Sz Y
L4 ’_f(Sl,.... )>—g(t1,.. ,tm)
Vieq,.. n} Tsiz g(ta, ..., tm) " VIP(F) > P(9) " A Njea,.omy (1, 550) = &7 iff#£g
® "f(s1,...,Sn) = f( ..... ,tn)7: similar, encode (sub) or (lex)
® remark: 's; = t;7:=T,ifs; =t;, and "s; = t; ' :="5s; - t; |, otherwise
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* encoding size: O(n?) with O(n?) variables
® optimizations
® sharing: if same subterm pair occurs several times, only use one atom
® static analysis: use knowledge about LPO to reduce encoding size
T, ify € V(f(s1,..-,5n))
1, otherwise
® early successes: "s; = ;' = T ifs; > ¢
¢ early failures: "s; > ;7 — L if V(si) 2 V() ors; < t;
* example on ack(s(n),0) > ack(n,s(0))
® "ack(s(n),0) = ack(n,s(0))" — "s(n) > ack(n,s(0))" Vv "ack(s(n),0) >~ s(0)™
® "s(n) > ack(n,s(0))" — "p(s) > p(ack)TA"s(n) > s(0)"
® Tack(s(n),0) = s(0)" — "p(ack) > p(s)?V "s(n) > s(0)"
® "s(n)>s(0)"— L
® bottom-up computation: "ack(s(n),0) = ack(n,s(0))" — "p(ack) > p(s)™

® short cuts: "f(s1,...,5,) =y ' — {
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Encoding of Precedence

e for signature F with |F| = n it suffices to guess p(f) € {0,...,n — 1} foreach f € F
® several possibilities
® encode p(f) as tally sequence in n — 1 atoms and "p(f) > p(g)" uses unary comparison
® example for n = 8 and p(f) = 3: 0000111
® comparison: fefsfafsfafifo > 96959493929190 becomes \/ie{o,“.,e} fi A @i
® invariant: Arcx Nicqr,. 6y (fi = fic1)
® advantage: good structure for SAT solvers
® disadvantage: large size
® encode p(f) in log(n) atoms and "p(f) > p(g)" uses binary comparison
® example for n = 8 and p(f) = 3: 011

® comparison: frfifo > 929190 becomes 2 A =g> V (g2 — ) A (A A =91V (91 — f) A fo A —go)
® advantage: small size

® disadvantage: more complex structure for SAT solving
® use stronger logic than SAT, e.g., SMT with arithmetic primitives (see next sessions)
® selecting suitable encoding is often done with help of experiments
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Summary of LPO encoding

¢ the search for parameters of LPO and similar orders can be encoded to SAT
e this bit-blasting approach is usually faster than dedicated solvers
e fact: many tools for (termination | confluence) analysis use SAT or SMT solvers

® LPO on its own is quite weak for termination proving
® preprocessing term order constraints by argument filters greatly improves power
® an AF is a function 7 that maps every n-ary function symbol to some argument
position, or to a subset of argument positions
° 7(x)=x
o 7(f(ts, . ) = {”“")’ . . V)=
f([x(t;) | i < [1..n],i € =(f)]), if w(f)is a set
® given s and t, encode whether there is some 7 and LPO such that 7(s) =;po 7(t)
® hints: (1) ; (2)
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4. Appying SAT Solvers
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® many SAT solvers require conjunctive normal form (CNF) as input
® CNFs have the following structure

® a literal is an atom or a negated atom: x, -y, ...
® a clause is disjunction of literals: x \V z VV =y or short: {x, z, ~y}
® a CNF is a conjunction of clauses

DIMACS Input Format

c
c comments

C

p cnf 4 3 4 atoms and 3 clauses
1 -240 X1V —X2 V Xg
-12-3-40 —X1 VX2 VX3V Xy
3-20 X3 V =Xy
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Accessing SAT Solvers

® |ook at recent SAT competitions to find solver
https://satcompetition.github.io
® either use DIMACS and binary of arbitrary solver
e or search for language binding, e.qg.,
https://hackage.haskell.org/package/minisat-solver-0.1/candidate/docs/
SAT-MiniSat.html
® example

cd [USB-stick]/ISR24_sat_smt_isr_2024
cabal install miniTT

miniTT encoding lpo examples/ack.ari # see basic encoding
miniTT encoding lpo2 examples/ack.ari # see optimized encoding
miniTT txt lpo examples/ack.ari # textual proof output

# inspect miniTT/src/LP0.hs miniTT/src/LP02.hs
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® translation from arbitrary formula to equivalent CNF is expensive
® Tseitin’s transformation is linear-time translation to equisatisfiable CNF

® here: only consider formulas without — and <«

Example (Tseitin’s Transformation)

ai
* p=-(qVv-p)Ap A
® introduce new variable for each propositional connective: ay / \p
ap ~(qV-p)Ap as gVv-p |
a
a; —(qV-p) as —p /3V\
® o~ aypA(ar < axAp)A(az <> —as)A(as < qVag)A(as < —p) q ~
|
p
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O (¢ ) = (pVY)A(mp V)
O (pePvAX) = (VYA (e VX)A(pV PV —X)
O (=Y Vx) = (eVP)A(pVX)A (e VYV X)

Example (cont’d)

p~aiA(ar < axAp)A(az < —as)A(as <> qVag) A(as < —p)

a1 A(mai1Vax)A(—a1 Vp)A(arV—a;V-p)A(azVas)A(—-az V—as)
A(azV—=q) A(asV—ag)A(-as VvV agVas)A(asVp)A(—as V—p)

Improvement (Plaisted & Greenbaum)

replace equivalence (+») by implication (— or <) based on polarity of subformulas
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Example (cont’d)
* p==(qVv-p)Ap

i
>

°* prajA(ar —axAp)A(az — —az)A(as < gVag)A(ag < —p) . / N\
® a;—axAp = (—ai1Vax)A(—a1Vp) n
® 3, - az = (—az V —as) |
® a3« qgVay = (asV—qg)A(asV —as) / \ o

® as < p=(asVp) |
°* pr~ajA(-ayVax)A(-a1Vp)A(—azV-asz)A(asV—-qg)A(azsV—-az)A(asVvp) p

replace a <> v by a — 1 if 1 occurs only positively, and by a < ¢ if ¢ never occurs positively

subformula 1) occurs positively in formula ¢ if number of negations on path from root of ¢
to root of ¥ in parse tree of ¢ is even
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5. SAT Solving: DPLL and CDCL
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® most state-of-the-art SAT solvers are based on variations of
Davis-Putnam-Logemann-Loveland (DPLL) procedure (1960, 1962)

® abstract version of DPLL described in JACM paper of Nieuwenhuis, Oliveras, Tinelli (2006)

Definition (Abstract DPLL)

e states M || F consist of
® list M of (possibly annotated) non-complementary literals
® CNFF

® transition rules
M|F = M| F or failstate
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https://doi.org/10.1145/1217856.1217859

e=(-1V-2)AQRV3)A(-1V-3VA)A(RQV-3V-4)A(1V4)
| [1v-2,2Vv3, -1v-3Vv4 2v-3Vv-4 1V4
Cll | "1v=2,2Vv3, -1V=3Vv4 2V-3Vv-4 1V4 decide

iﬁz | -1v-2,2Vv3, -1V-3V4 2V-3V—-4 1V4 unit propagate
i—|23 | "1v=-2,2Vv3, -1V-3V4 2V-3V-4 1V4 unit propagate
c11ﬂ234 | -1v-2,2Vv3, -1V-3Vv4, 2V-3V—4 1V4 unit propagate

-1 || -1v-2,2Vv3, -1V-3V4 2V-3Vv-4 1V4 backtrack

-14 || -1Vv-2,2Vv3, -1v-3V4, 2v-3V-4 1V4 unit propagate
ﬁ14ﬁg | -1v=-2,2Vv3, -1V-3V4, 2V-3V-4 1V4 decide

d
-14-32 || 71V —-2,2V3,-1V-3V4,2Vv-3V-4 1V4 unit propagate

el
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Definition (Transition Rules)

® unit propagate M| F,CvI = MI|F,CVI
if M = -C and [ is undefined in M unit clause
e pure literal M|F = MI|F

if / occurs in F and /¢ (complement of /) does not occur in F and / is undefined in M

d
® decide M|F = MI|F

if / or /€ occurs in F and / is undefined in M

e fail M| F,C = (fail-state

if M E —-C and M contains no decision literals

d
e backtrack MIN|F,C = MI°|FC

d
if M | N E —=C and N contains no decision literals
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©=("1V2)A(=3V4)A(-5V6)A(6V-5V-2)

-1Vv2, -3V4, =5V =6, 6 V-5V -2

— i|| ~1V2, =3V4, -5V -6, 6V -5V -2 decide

= c112 | -1v2, -3V4, =5V =6, 6 V-5V -2 unit propagate
= i'2§||ﬁ1v2, -3V4, =5V =6, 6 V-5V -2 decide

= c112§4 | -1v2, -3Vv4, =5V -6, 6 V-5V -2 unit propagate
= i2§4g||ﬁ1\/2, -3V4, -5V-6, 6V-5V-2 decide

= iZ g4gﬂ6 |-1v2, -3V4, -5V =6, 6V -5V -2 unit propagate
= iZﬂS | -1v2, =3Vv4, -5V -6, 6 V-5V -2 backjump

d d
conflictisdue to 1l 2 and 5 =6 hence =1 V =5 can be inferred
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d
e backtrack MIN|F,C = MI°|FC

d
if M | N E —=C and N contains no decision literals

d
® backjump MIN|F,C = MI|FC
d
if M | NE —C and 3 clause C’ VV /" such that
e FCEC V/ backjump clause
° ME-C

® |"is undefined in M

d
® /"or/'“occursin ForinM I[N

Example (cont’d)

d d d
=1V =5 and =2 V =5 are backjump clauses with respectto 12345 —6 || ¢
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backjump can simulate backtrack

Terminology

backjump is also called non-chronological backtracking or conflict-driven backtracking

how to find good backjump clauses ?

use conflict graph

W universitat

innsbruck uniE ISR 2024 SAT/SMT Solving and Applications in Rewriting session 1 5. SAT Solving: DPLL and CDCL 29/34



1 1 —\5 -3 -4 g -6 7 g 9 —|1d0 11 1d2 —-13 14 =15 =16 17 =18 19 20 2
a B ¢n K v 5 0 & AL o ™ p €

2V -3

2V -4 -3

3v-l2v 13 s

4V -17Vv 18V —-19V 21 \ N

;‘r’v\;ﬁG o1 \ R M“

6v-12Vv14 d SN e / \

-7VvV1eV 17 ®

-8V 9 X

~8V =11V 15V 16 - |

~9v-19v 21 4 unique implication point

10V 11 -6

13V —-14V =15

16 v —18 -9V 19V 21 conflict clause ()

16 v 19 4V =7V -9V 16 resolve withe, 7,0,
—19Vv 20

VY OMITET >FI © DI NV 2 W

backjump clause
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® computed clauses are clauses that correspond to cut in conflict graph, separating conflict
node from current decision literal and literals at earlier decision levels

® not all cuts are computed in this way

® clauses corresponding to UIPs are backjump clauses

® UIPs always exist (last decision literal)

® backjumping with respect to last UIP amounts to backtracking

® most SAT solvers use backjump clause corresponding to 1st UIP

Observation

adding backjump clauses to clause database (learning) helps to prune search space

® learn M|F = M]|FC

if F E C and each atom of C occurs in F orin M
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Observation

restarts are useful to avoid wasting too much time in parts of search space without satisfying
assignments

® restart M|F = |F

Final Remarks

® restarts do not compromise completeness if number of steps between consecutive restarts
strictly increases

® modern SAT solvers additionally incorporate
® heuristics for selecting next decision literal

® special data structures that allow for efficient unit propagation (two watched literals)
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6. Further Reading
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