

SAT/SMT Solving and Applications in Rewriting

René Thiemann ¹ Sarah Winkler ²

¹University of Innsbruck

²Free University of Bolzano

Outline

- 1. Overview
- 2. Propositional Logic
- 3. SAT Application: Search for Lexicographic Path Orders
- 4. Appying SAT Solvers
- 5. SAT Solving: DPLL and CDCL
- 6. Further Reading

Schedule

session 1	Monday	background: SAT solving, propositional logic, DPLL and CDCL
		application: search for lexicographic path orders
session 2	Tuesday	background: SMT solving, arithmetic theories, lazy approach
		application: search for Knuth–Bendix orders
session 3	Wednesday	background: eager approach, certification
		application: polynomial interpretations, max-poly certification
session 4	Friday	SAT/SMT for infeasibility and confluence, logically constraint TRSs

Outline

1. Overview

2. Propositional Logic

- 3. SAT Application: Search for Lexicographic Path Orders
- 4. Appying SAT Solvers
- 5. SAT Solving: DPLL and CDCL
- 6. Further Reading

Definition (Propositional Logic: Syntax)

propositional formulas are built from

• atoms $p, q, r, p_1, p_2, \ldots$ propositional variables

• top,bottom \top , \perp "true" and "false"

• negation \neg $\neg p$ "not p"

• conjunction $\land p \land q$ "p and q"

• disjunction \vee $p \vee q$ "p or q"

• implication o p o q "if p then q"

• equivalence \leftrightarrow $p \leftrightarrow q$ "p if and only if q"

according to BNF grammar $\varphi ::= p \mid \bot \mid \top \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid (\varphi \leftrightarrow \varphi)$

notational conventions:

• binding precedence $\neg > \land > \lor > \rightarrow, \leftrightarrow$ omit outer parentheses

• \rightarrow , \wedge , \vee are right-associative: $p \rightarrow q \rightarrow r$ denotes $p \rightarrow (q \rightarrow r)$

Definition (Propositional Logic: Semantics)

- valuation (truth assignment) is mapping $v : \{p \mid p \text{ is atom}\} \rightarrow \{T, F\}$
- extension to formulas: truth values

•
$$v(\top) = T$$

•
$$v(\neg \varphi) = \begin{cases} \mathsf{T} & \text{if } v(\varphi) = \mathsf{F} \\ \mathsf{F} & \text{otherwise} \end{cases}$$

•
$$v(\varphi \wedge \psi) = \begin{cases} \mathsf{T} & \text{if } v(\varphi) = v(\psi) = \mathsf{T} \\ \mathsf{F} & \text{otherwise} \end{cases}$$

•
$$v(\varphi \lor \psi) = \begin{cases} \mathsf{F} & \text{if } v(\varphi) = v(\psi) = \mathsf{F} \\ \mathsf{T} & \text{otherwise} \end{cases}$$

•
$$v(\varphi \to \psi) = \begin{cases} \mathsf{F} & \text{if } v(\varphi) = \mathsf{T} \text{ and } v(\psi) = \mathsf{F} \\ \mathsf{T} & \text{otherwise} \end{cases}$$

•
$$v(\varphi \leftrightarrow \psi) = \begin{cases} \mathsf{T} & \text{if } v(\varphi) = v(\psi) \\ \mathsf{F} & \text{otherwise} \end{cases}$$

Definitions

semantic entailment

$$\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$$

if $v(\psi) = T$ whenever $v(\varphi_1) = v(\varphi_2) = \cdots = v(\varphi_n) = T$, for every valuation v

- formula φ is valid if $v(\varphi) = T$ for every valuation v
- formula φ is satisfiable if $v(\varphi) = T$ for some valuation v

Theorem

- formula φ is valid $\iff \neg \varphi$ is unsatisfiable
- validity and satisfiability are decidable

Satisfiability (SAT)

(propositional) formula φ instance:

auestion: is φ satisfiable?

Outline

- 1. Overview
- 2. Propositional Logic
- 3. SAT Application: Search for Lexicographic Path Orders

- 4. Appying SAT Solvers
- 5. SAT Solving: DPLL and CDCL
- 6. Further Reading

SAT Applications

Applications of SAT

- Encode logic puzzles
- Cryptanalysis
- Bounded model checking
- . .
- Component of reasoning in more complex logics (sessions 2 and 3)
- Encode non-deterministic computations (SAT is NP complete)
- Encode problems in proof search, e.g., in context of term rewriting

Application: SAT for LPO Parameter Search

Definition (Lexicographic Path Order (LPO))

- Let \mathcal{F} be some first-order signature
- Let $p: \mathcal{F} \to \mathbb{N}$ be some precedence
- LPO is a relation on terms \succ_{LPO} (\succ for short), defined by these inference rules

session 1

$$\frac{s_{i} \succ t \lor s_{i} = t}{s = f(s_{1}, \dots, s_{n}) \succ t}$$
(sub)
$$\frac{p(f) > p(g) \quad \forall i \in \{1, \dots, m\}. \ s \succ t_{i}}{s = f(\dots) \succ g(t_{1}, \dots, t_{m}) = t}$$
(prec)
$$\frac{\forall j \in \{1, \dots, i-1\}. \ s_{j} = t_{j} \quad s_{i} \succ t_{i} \quad \forall j \in \{i+1, \dots, n\}. \ s \succ t_{i}}{s = f(s_{1}, \dots, s_{n}) \succ f(t_{1}, \dots, t_{n}) = t}$$
(lex)

Theorem

LPO is a reduction order (stable, monotone, strongly normalizing)

Example

Consider a TRS for the Ackermann function

$$\mathsf{ack}(0,m) o \mathsf{s}(m) \ \mathsf{ack}(\mathsf{s}(n),0) o \mathsf{ack}(n,\mathsf{s}(0)) \ \mathsf{ack}(\mathsf{s}(n),\mathsf{s}(m)) o \mathsf{ack}(n,\mathsf{ack}(\mathsf{s}(n),m))$$

assuming p(ack) > p(s), all rules are decreasing w.r.t. LPO; witness for second rule

$$\frac{n=n}{\frac{s(n)\succ n}{s(s)}} \text{(sub)} \qquad \frac{\frac{0=0}{\mathsf{ack}(\mathsf{s}(n),0)\succ 0} \text{(sub)}}{\mathsf{ack}(\mathsf{s}(n),0)\succ \mathsf{s}(0)} \text{(prec)}}{\mathsf{ack}(\mathsf{s}(n),0)\succ \mathsf{ack}(n,\mathsf{s}(0))} \text{(lex)}$$

A Search Problem for Termination Proving

Theorem

The following "LPO-problem" is NP-complete.

Given some TRS \mathcal{R} , is there some precedence such that $\ell \succ_{LPO} r$ for all $\ell \to r \in \mathcal{R}$?

An opportunity

Since the LPO-problem is in NP, and SAT is NP-complete, we can encode the LPO-problem to SAT

- in early times, dedicated solvers have been implemented to search for precedences
- encoding to SAT is by far simpler and also guite flexible w.r.t. extensions
- experiments revealed: due to high efficiency of modern SAT solvers, the encoding approach is faster than existing dedicated solvers

session 1

encoding problems to SAT: bit-blasting

Encoding of LPO

- first consider the search for an inference tree (postpone the precedence encoding)
- given two terms s and t we construct an encoding as formula $\varphi_{s\succ t}$
- since > only occurs positively, soundness suffices:

satisfiability of
$$\varphi_{s\succ t}$$
 implies $s\succ t$

- $\varphi_{s\succ t}$ is a large conjunction, each conjunct is called a constraint
- for every $s_i \unlhd s$ and $t_j \unlhd t$ we use one propositional variable $\lceil s_i \succ t_j \rceil$
- add constraint $\lceil s \succ t \rceil$ to $\varphi_{s \succ t}$
- add the following constraints to $\varphi_{s\succ t}$ for all subterm pairs of s and t
 - $\lceil x \succ t_i \rceil \rightarrow \bot$
 - $\lceil f(s_1,\ldots,s_n) \succ y \rceil \rightarrow \bigvee_{i \in \{1,\ldots,n\}} \lceil s_i \succeq y \rceil$
 - $\lceil f(s_1,\ldots,s_n) \succ g(t_1,\ldots,t_m) \rceil \rightarrow \bigvee_{i \in [1,\ldots,1]} \lceil s_i \succeq g(t_1,\ldots,t_m) \rceil \searrow$

$$\bigvee_{i \in \{1,\ldots,n\}} \lceil s_i \succeq g(t_1,\ldots,t_m) \rceil \lor \lceil p(f) > p(g) \rceil \land \bigwedge_{j \in \{1,\ldots,m\}} \lceil f(s_1,\ldots,s_n) \succ t_j \rceil$$

session 1

- $\lceil f(s_1, \ldots, s_n) \rangle \geq f(t_1, \ldots, t_n) \rceil$: similar, encode (sub) or (lex)
- remark: $\lceil s_i \succeq t_j \rceil := \top$, if $s_i = t_j$, and $\lceil s_i \succeq t_j \rceil := \lceil s_i \succ t_j \rceil$, otherwise

if $f \neq a$

Remarks

- encoding size: $\mathcal{O}(n^3)$ with $\mathcal{O}(n^2)$ variables
- optimizations
 - sharing: if same subterm pair occurs several times, only use one atom
 - static analysis: use knowledge about LPO to reduce encoding size

• short cuts:
$$\lceil f(s_1,\ldots,s_n) \succ y \rceil \to \begin{cases} \top, & \text{if } y \in \mathcal{V}(f(s_1,\ldots,s_n)) \\ \bot, & \text{otherwise} \end{cases}$$

- early successes: $\lceil s_i \succ t_j \rceil \rightarrow \top$ if $s_i \rhd t_j$
- early failures: $\lceil s_i \succ t_i \rceil \rightarrow \bot$ if $\mathcal{V}(s_i) \not\supseteq \mathcal{V}(t_i)$ or $s_i \subseteq t_i$
- example on $ack(s(n), 0) \succ ack(n, s(0))$
 - $\lceil ack(s(n),0) \succ ack(n,s(0)) \rceil \rightarrow \lceil s(n) \succ ack(n,s(0)) \rceil \lor \lceil ack(s(n),0) \succ s(0) \rceil$
 - $\lceil s(n) \succ ack(n, s(0)) \rceil \rightarrow \lceil p(s) > p(ack) \rceil \land \lceil s(n) \succ s(0) \rceil$
 - $\lceil ack(s(n), 0) \succ s(0) \rceil \rightarrow \lceil p(ack) > p(s) \rceil \lor \lceil s(n) \succ s(0) \rceil$
 - $\lceil s(n) \succ s(0) \rceil \rightarrow \bot$
 - bottom-up computation: $\lceil ack(s(n), 0) \succ ack(n, s(0)) \rceil \rightarrow \lceil p(ack) > p(s) \rceil$

Encoding of Precedence

- for signature \mathcal{F} with $|\mathcal{F}| = n$ it suffices to guess $p(f) \in \{0, \dots, n-1\}$ for each $f \in \mathcal{F}$
- several possibilities
 - encode p(f) as tally sequence in n-1 atoms and $\lceil p(f) > p(g) \rceil$ uses unary comparison
 - example for n = 8 and p(f) = 3: 0000111
 - comparison: $f_6f_5f_4f_3f_2f_1f_0 > g_6g_5g_4g_3g_2g_1g_0$ becomes $\bigvee_{i \in I_0} f_i \land \neg g_i$
 - invariant: $\bigwedge_{f \in \mathcal{F}} \bigwedge_{i \in \{1, \dots, 6\}} (f_i \to f_{i-1})$
 - advantage: good structure for SAT solvers
 - disadvantage: large size
 - encode p(f) in log(n) atoms and $\lceil p(f) > p(g) \rceil$ uses binary comparison
 - example for n = 8 and p(f) = 3: 011
 - comparison: $f_2f_1f_0 > g_2g_1g_0$ becomes $f_2 \wedge \neg g_2 \vee (g_2 \rightarrow f_2) \wedge (f_1 \wedge \neg g_1 \vee (g_1 \rightarrow f_1) \wedge f_0 \wedge \neg g_0)$
 - advantage: small size
 - disadvantage: more complex structure for SAT solving
 - use stronger logic than SAT, e.g., SMT with arithmetic primitives (see next sessions)

session 1

selecting suitable encoding is often done with help of experiments

Summary of LPO encoding

- the search for parameters of LPO and similar orders can be encoded to SAT
- this bit-blasting approach is usually faster than dedicated solvers
- fact: many tools for (termination | confluence) analysis use SAT or SMT solvers

Exercise

- LPO on its own is guite weak for termination proving
- preprocessing term order constraints by argument filters greatly improves power
- an AF is a function π that maps every n-ary function symbol to some argument position, or to a subset of argument positions
- $\pi(x) = x$
- $\pi(f(t_1,\ldots,t_n)) = \begin{cases} \pi(t_i), & \text{if } \pi(f) = i \\ f([\pi(t_i) \mid i \leftarrow [1..n], i \in \pi(f)]), & \text{if } \pi(f) \text{ is a set} \end{cases}$
- given s and t, encode whether there is some π and LPO such that $\pi(s) \succ_{LPO} \pi(t)$

session 1

hints: (1) : (2)

Outline

- 1. Overview
- 2. Propositional Logic
- 3. SAT Application: Search for Lexicographic Path Orders
- 4. Appying SAT Solvers
- 5. SAT Solving: DPLL and CDCL
- 6. Further Reading

Remark

- many SAT solvers require conjunctive normal form (CNF) as input
- CNFs have the following structure
 - a literal is an atom or a negated atom: x, $\neg y$, . . .
 - a clause is disjunction of literals: $x \lor z \lor \neg y$ or short: $\{x, z, \neg y\}$
 - a CNF is a conjunction of clauses

DIMACS Input Format

```
С
```

c comments

С

p cnf 4 3 4 atoms and 3 clauses

1 -2 4 0

 $x_1 \vee \neg x_2 \vee x_4$

-1 2 -3 -4 0

 $\neg x_1 \lor x_2 \lor \neg x_3 \lor \neg x_4$

3 - 2 0

 $x_3 \vee \neg x_2$

Accessing SAT Solvers

look at recent SAT competitions to find solver

https://satcompetition.github.io

- either use DIMACS and binary of arbitrary solver
- or search for language binding, e.g.,

https://hackage.haskell.org/package/minisat-solver-0.1/candidate/docs/ SAT-MiniSat.html

example

Remarks

- translation from arbitrary formula to equivalent CNF is expensive
- Tseitin's transformation is linear-time translation to equisatisfiable CNF
- here: only consider formulas without \rightarrow and \leftrightarrow

Example (Tseitin's Transformation)

- $\varphi = \neg (q \vee \neg p) \wedge p$
- introduce new variable for each propositional connective:

$$a_1 \neg (q \lor \neg p) \land p$$
 $a_3 q \lor \neg p$
 $a_2 \neg (q \lor \neg p)$ $a_4 \neg p$

$$\bullet \ \varphi \approx a_1 \wedge (a_1 \leftrightarrow a_2 \wedge p) \wedge (a_2 \leftrightarrow \neg a_3) \wedge (a_3 \leftrightarrow q \vee a_4) \wedge (a_4 \leftrightarrow \neg p)$$

Lemma

- $(\varphi \leftrightarrow \psi \lor \chi) \equiv (\varphi \lor \neg \psi) \land (\varphi \lor \neg \chi) \land (\neg \varphi \lor \psi \lor \chi)$

Example (cont'd)

$$\varphi \approx a_1 \wedge (a_1 \leftrightarrow a_2 \wedge p) \wedge (a_2 \leftrightarrow \neg a_3) \wedge (a_3 \leftrightarrow q \vee a_4) \wedge (a_4 \leftrightarrow \neg p)$$

$$\equiv a_1 \wedge (\neg a_1 \vee a_2) \wedge (\neg a_1 \vee p) \wedge (a_1 \vee \neg a_2 \vee \neg p) \wedge (a_2 \vee a_3) \wedge (\neg a_2 \vee \neg a_3)$$

$$\wedge (a_3 \vee \neg q) \wedge (a_3 \vee \neg a_4) \wedge (\neg a_3 \vee q \vee a_4) \wedge (a_4 \vee p) \wedge (\neg a_4 \vee \neg p)$$

Improvement (Plaisted & Greenbaum)

replace equivalence (\leftrightarrow) by implication $(\to$ or $\leftarrow)$ based on polarity of subformulas

Example (cont'd)

- $\varphi = \neg (q \vee \neg p) \wedge p$
- $\varphi \approx a_1 \wedge (a_1 \rightarrow a_2 \wedge p) \wedge (a_2 \rightarrow \neg a_3) \wedge (a_3 \leftarrow q \vee a_4) \wedge (a_4 \leftarrow \neg p)$
- $a_1 \rightarrow a_2 \land p \equiv (\neg a_1 \lor a_2) \land (\neg a_1 \lor p) \land (a_1 \lor \neg a_2 \lor \neg p)$
- $a_2 \rightarrow \neg a_3 \equiv (a_2 \lor a_3) \land (\neg a_2 \lor \neg a_3)$
- $a_3 \leftarrow q \lor a_4 \equiv (a_3 \lor \neg q) \land (a_3 \lor \neg a_4) \land (\neg a_3 \lor q \lor a_4)$
- $a_4 \leftarrow \neg p \equiv (a_4 \lor p) \land (\neg a_4 \lor \neg p)$
- $\varphi \approx a_1 \wedge (\neg a_1 \vee a_2) \wedge (\neg a_1 \vee p) \wedge (\neg a_2 \vee \neg a_3) \wedge (a_3 \vee \neg q) \wedge (a_3 \vee \neg a_4) \wedge (a_4 \vee p)$

replace $a\leftrightarrow\psi$ by $a\to\psi$ if ψ occurs only positively, and by $a\leftarrow\psi$ if ψ never occurs positively

Definition

subformula ψ occurs positively in formula φ if number of negations on path from root of φ to root of ψ in parse tree of φ is even

Outline

- 1. Overview
- 2. Propositional Logic
- 3. SAT Application: Search for Lexicographic Path Orders
- 4. Appying SAT Solvers
- 5. SAT Solving: DPLL and CDCL
- 6. Further Reading

Remarks

- most state-of-the-art SAT solvers are based on variations of Davis - Putnam - Logemann - Loveland (DPLL) procedure (1960, 1962)
- abstract version of DPLL described in JACM paper of Nieuwenhuis, Oliveras, Tinelli (2006)

Definition (Abstract DPLL)

- states M || F consist of
 - list M of (possibly annotated) non-complementary literals
 - CNF F
- transition rules

 $M \parallel F \implies M' \parallel F'$ or fail-state

Example

Definition (Transition Rules)

unit propagate

$$M \parallel F, C \vee I \implies M I \parallel F, C \vee I$$

if $M \models \neg C$ and I is undefined in M

unit clause

pure literal

$$M \parallel F \implies M I \parallel F$$

if I occurs in F and I^c (complement of I) does not occur in F and I is undefined in M

decide

$$M \parallel F \implies M \stackrel{d}{I} \parallel F$$

if I or I^c occurs in F and I is undefined in M

fail

$$M \parallel F, C \implies \text{fail-state}$$

if $M \models \neg C$ and M contains no decision literals

backtrack

$$M\stackrel{d}{I}N \parallel F,C \implies MI^c \parallel F,C$$

if $M \mid N \models \neg C$ and N contains no decision literals

Example

conflict is due to $\overset{d}{1}$ 2 and $\overset{d}{5}$ $\neg 6$ hence $\neg 1 \lor \neg 5$ can be inferred

Definitions

backtrack

$$M\stackrel{a}{I}N \parallel F,C \implies MI^c \parallel F,C$$

if $M \mid N \models \neg C$ and N contains no decision literals.

backjump

$$M\stackrel{d}{\mid} N \parallel F, C \implies M \mid l' \parallel F, C$$

if $M \mid N \models \neg C$ and \exists clause $C' \lor I'$ such that

- $F, C \models C' \lor I'$
- backjump clause

- $M \models \neg C'$
- I' is undefined in M
- I' or I'^c occurs in F or in $M \stackrel{?}{I} N$

Example (cont'd)

 \neg 1 \lor \neg 5 and \neg 2 \lor \neg 5 are backjump clauses with respect to $\overset{d}{1}$ 2 $\overset{d}{3}$ 4 $\overset{d}{5}$ \neg 6 \parallel φ

Lemma

backjump can simulate backtrack

Terminology

backjump is also called non-chronological backtracking or conflict-driven backtracking

session 1

Question

how to find good backjump clauses?

Answer

use conflict graph

Example

$$\beta$$
 2 \vee \neg 3

$$\gamma$$
 2 \vee \neg 4

$$\delta$$
 3 \vee \neg 12 \vee \neg 13

$$\epsilon$$
 4 \vee \neg 17 \vee 18 \vee \neg 19 \vee 21

$$\eta$$
 6 \vee 7

$$\theta$$
 6 \vee \neg 12 \vee **14**

$$\iota$$
 $\neg 7 \lor 16 \lor 17$

$$\kappa = -8 \vee 9$$

$$\lambda$$
 $\neg 8 \lor \neg 11 \lor 15 \lor \neg 16$

$$\mu$$
 $\neg 9 \lor \neg 19 \lor \neg 21$

10 V 11

$$\xi$$
 13 $\vee \neg 14 \vee \neg 15$

$$\pi$$
 16 \vee 19

 $\neg 19 \lor 20$

$$\neg 9 \lor \neg 19 \lor \neg 21$$
 conflict clause (μ)

session 1

 $4 \vee \neg 7 \vee \neg 9 \vee 16$ resolve with ϵ, π, o, ι

Remarks

- computed clauses are clauses that correspond to cut in conflict graph, separating conflict node from current decision literal and literals at earlier decision levels
- not all cuts are computed in this way
- clauses corresponding to UIPs are backjump clauses
- UIPs always exist (last decision literal)
- backjumping with respect to last UIP amounts to backtracking
- most SAT solvers use backjump clause corresponding to 1st UIP

Observation

adding backjump clauses to clause database (learning) helps to prune search space

 $M \parallel F \implies M \parallel F, C$ learn

if $F \models C$ and each atom of C occurs in F or in M

Observation

restarts are useful to avoid wasting too much time in parts of search space without satisfying assignments

restart

$$M \parallel F \implies \parallel F$$

Final Remarks

- restarts do not compromise completeness if number of steps between consecutive restarts strictly increases
- modern SAT solvers additionally incorporate
 - heuristics for selecting next decision literal
 - special data structures that allow for efficient unit propagation (two watched literals)

Outline

- 1. Overview
- 2. Propositional Logic
- 3. SAT Application: Search for Lexicographic Path Orders
- 4. Appying SAT Solvers
- 5. SAT Solving: DPLL and CDCL
- 6. Further Reading

Further Reading

- David A. Plaisted and Steven Greenbaum
 A Structure-Preserving Clause Form Translation
 Journal of Symbolic Computation 2(3), pp. 293–304, 1986
- Michael Codish, Vitaly Lagoon, Peter J. Stuckey Solving Partial Order Constraints for LPO Termination Proceedings RTA 2006, pp. 4–18, 2006
- Martin Davis and Hilary Putnam
 A Computing Procedure for Quantification Theory
 Journal of the ACM 7(3), pp. 201–215, 1960
- Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli
 Solving SAT and SAT Modulo Theories: From an Abstract Davis–Putnam–Logemann–Loveland
 Procedure to DPLL(T)
 Journal of the ACM 53(6), pp. 937–977, 2006
- Moshe Y. Vardi
 Boolean Satisfiability: Theory and Engineering
 Communications of the ACM 57(3), editor's letter, 2014