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EEEEEEEEEE Outline

session 1 Monday background: SAT solving, propositional logic, DPLL and CDCL
application: search for lexicographic path orders
session 2 Tuesday background: SMT solving, arithmetic theories, lazy approach
application: search for Knuth-Bendix orders 2. Propositional Logic

session 3 Wednesday background: eager approach, certification
application: polynomial interpretations, max-poly certification
session 4  Friday SAT/SMT for infeasibility and confluence, logically constraint TRSs
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Definition (Propositional Logic: Syntax) Definition (Propositional Logic: Semantics)

® propositional formulas are built from ® valuation (truth assignment) is mapping v: {p | pis atom} — {T,F}
® atoms p,q,r, P, P2, ... propositional variables ® extension to formulas: truth values
® top,bottom T,L1 “true” and “false” )
. hecot ot o *V(T)=T o vy {F V) =viv) =F
negation = = no eVY) = i
9 P P i T otherwise
® conjunction A pAG “p and g” °v(L)=F
® disjunction \Y, \Y, “porq” n F ifv(p)=Tandv(y)=F
ol : . . pra “'.D g ” ° V(‘w’p‘) _ T if V((rj) =Ir ’ V((,D — ’L}) = { (Y) . (w)
implication — p—q if p then q B eihaniee T otherwise
® equivalence > p<q “p if and only if g”
i = o) 1 (A0 | (0Ve) | (0 , T i) =v) =T o ypoy) = V) =v)
according to BNF grammar ¢ == p | L| T [(=9) [ (¢A@)|(pVe)[(p =) (e« ) o V(pAY) = v Ve 2 9) =10 iorwise
® notational conventions: F otherwise
® binding precedence - > A > V > — omit outer parentheses
® —, A, Vare right-associative: p — g — r denotes p — (q —r)
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Definitions Out”ne
® semantic entailment

©1,902, -0 F O
if v(1)) = T whenever v(¢1) = v(p2) = -+ = v(pp) =T, for every valuation v
e formula ¢ is valid if v(p) = T for every valuation v

e formula ¢ is satisfiable if v(¢) = T for some valuation v
3. SAT Application: Search for Lexicographic Path Orders

e formula pisvalid <= -y is unsatisfiable

® validity and satisfiability are decidable

Satisfiability (SAT)

instance:  (propositional) formula ¢
question: is ¢ satisfiable?
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SAT Applications

Applications of SAT

® Encode logic puzzles
® Cryptanalysis
Bounded model checking

e Component of reasoning in more complex logics (sessions 2 and 3)
® Encode non-deterministic computations (SAT is NP complete)
® Encode problems in proof search, e.g., in context of term rewriting
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Consider a TRS for the Ackermann function

ack(0,m) — s(m)
ack(s(n),0) — ack(n,s(0))
ack(s(n),s(m)) — ack(n,ack(s(n),m))

assuming p(ack) > p(s), all rules are decreasing w.r.t. LPO;
witness for second rule

0=0
——— (sub)
n=n p(ack) > p(s) ack(s(n),0) =0

——— (sub) (prec)
s(n) = n ack(s(n),0) > s(0) -

ex

ack(s(n),0) = ack(n,s(0))
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Application: SAT for LPO Parameter Search

Definition (Lexicographic Path Order (LPO))

® Let F be some first-order signature
® lLetp: F — N be some precedence
® LPO is a relation on terms >,pp (> for short), defined by these inference rules

si=tVsi=t
s=f(s1,...,5n) =t (sub)
p(f) >p(g) Vie{l,....m}.s>¢
s=f(...)=9g(tr,....tm) =t (prec)
VjE{l,...,i—l}.Sthj Siv— Vje{i+1,...,n}.s>t,-
s="1(s1,...,8p) = f(t1,...,ty) =t (lex)

Theorem

LPO is a reduction order (stable, monotone, strongly normalizing)
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A Search Problem for Termination Proving

Theorem

The following “LPO-problem” is NP-complete.

Given some TRS R, is there some precedence such that ¢ =po r forall ¢ —r € R?

An opportunity

Since the LPO-problem is in NP, and SAT is NP-complete, we can encode the

LPO-problem to SAT

® in early times, dedicated solvers have been implemented to search for precedences

® encoding to SAT is by far simpler and also quite flexible w.r.t. extensions

® experiments revealed: due to high efficiency of modern SAT solvers, the encoding
approach is faster than existing dedicated solvers

® encoding problems to SAT: bit-blasting
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Encoding of LPO

first consider the search for an inference tree (postpone the precedence encoding)
given two terms s and t we construct an encoding as formula @s. ¢
since > only occurs positively, soundness suffices:
satisfiability of ps.+ implies s > t
st IS a large conjunction, each conjunct is called a constraint
for every s; < s and t; <t we use one propositional variable "s; - t;

® add constraint "s > t ' to s ¢
® add the following constraints to s, + for all subterm pairs of s and t

e Tx>ti'— 1

® "fls,8n) =y 2 Viep, m Sz Y7
® "f(s1,...,50) = g(t1,...,tm)" —

Vieq,.m"Si = 9(ta, -, tm) "V P(F) > p(9)" A N,y "F(S1,---550) = &7 iff#g
® Tf(sy,...,Sp) = f(t1,...,ty)": similar, encode (sub) or (lex)

remark: "s; = ;' =T, ifs;=t,and"s; = ;' :="s; > t;, otherwise
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Encoding of Precedence

for signature F with |F| = n it suffices to guess p(f) € {0,...,n — 1} foreachf € F
several possibilities
® encode p(f) as tally sequence in n — 1 atoms and "p(f) > p(g)™ uses unary comparison
® example for n = 8 and p(f) = 3: 0000111
® comparison: fefsfafsfafifo > 96959493929190 becomes Vig{0 _____ 6} fi A\ —gi
° invariant: A~ /\re{l,,..,e}(f/ — fi_1)
® advantage: good structure for SAT solvers
® disadvantage: large size
® encode p(f) in log(n) atoms and "p(f) > p(g)" uses binary comparison
® example forn = 8 and p(f) = 3: 011
® comparison: f>fifo > g2g1g0 becomes > A =92 V (g2 — ) A (i A=g1 V (91 — f1) A fo A =90)
® advantage: small size
® disadvantage: more complex structure for SAT solving
® use stronger logic than SAT, e.g., SMT with arithmetic primitives (see next sessions)

selecting suitable encoding is often done with help of experiments
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* encoding size: O(n3) with O(n?) variables
® optimizations
® sharing: if same subterm pair occurs several times, only use one atom
® static analysis: use knowledge about LPO to reduce encoding size
T, ify e V(f(s1,...,Sn))
1, otherwise
® early successes: s; > t;' — T if 5, > ;
® early failures: "s; > ;7 — Lif V(s;)) 2 V() orsi <t
e example on ack(s(n), 0) > ack(n,s(0))
® Tack(s(n),0) > ack(n,s(0))" — "s(n) > ack(n,s(0))"V "ack(s(n),0) > s(0)™
® 's(n) > ack(n,s(0))" — "p(s) > p(ack)™ A"s(n) > s(0)™
® Tack(s(n),0) > s(0)" — "p(ack) > p(s)* vV "s(n) > s(0)™"
® "s(n)>s(0)"— L
® bottom-up computation: "ack(s(n),0) > ack(n,s(0))" — "p(ack) > p(s)™

® short cuts: "f(s1,...,5,) =y — {
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Summary of LPO encoding

e the search for parameters of LPO and similar orders can be encoded to SAT
¢ this bit-blasting approach is usually faster than dedicated solvers
e fact: many tools for (termination | confluence) analysis use SAT or SMT solvers

® LPO on its own is quite weak for termination proving

® preprocessing term order constraints by argument filters greatly improves power

® an AF is a function 7 that maps every n-ary function symbol to some argument
position, or to a subset of argument positions

® 7(x) =x

m(t), if 7(f) =i

f([x(t;) | i+ [1..n],i € =(F)]), if =(f)is a set

e given s and t, encode whether there is some 7 and LPO such that 7 (s) >.po 7(t)

® hints: (1) ;i (2)

M universitat
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Outline

4. Appying SAT Solvers
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Accessing SAT Solvers

® |ook at recent SAT competitions to find solver
https://satcompetition.github.io

e either use DIMACS and binary of arbitrary solver
e or search for language binding, e.g.,

https://hackage.haskell.org/package/minisat-solver-0.1/candidate/docs/
SAT-MiniSat.html

® example

cd [USB-stick]/ISR24_sat_smt_isr_2024
cabal install miniTT

miniTT encoding lpo examples/ack.ari # see basic encoding
miniTT encoding lpo2 examples/ack.ari # see optimized encoding
miniTT txt lpo examples/ack.ari # textual proof output

# inspect miniTT/src/LPO.hs miniTT/src/LP02.hs

] :Jnnrj‘slg{ﬂ(tgl unibz ISR 2024 SAT/SMT Solving and Applications in Rewriting session 1 4. Appying SAT Solvers 19/34

® many SAT solvers require conjunctive normal form (CNF) as input
® CNFs have the following structure

® a literal is an atom or a negated atom: x, -y, ...
® aclause is disjunction of literals: x VV z V -y or short: {x,z,~y}
® a CNF is a conjunction of clauses

DIMACS Input Format

|

c comments

C

p cnf 4 3 4 atoms and 3 clauses
1-240 X1V X2V Xg
-12-3-40 —X1 VX2V X3V Xg
3-20 X3 V —X3
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® translation from arbitrary formula to equivalent CNF is expensive
® Tseitin's transformation is linear-time translation to equisatisfiable CNF
® here: only consider formulas without — and «>

Example (Tseitin’s Transformation)

|

* p=-(qV-p)Ap

® introduce new variable for each propositional connective: a> / \
air ~(gqv-p)Ap a gqVvV-p
a; —(qV-p) as —p

° praiA(ar<raxAp)A(az < —az)A(asz <> qVaa)A(as <> —p)
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Example (cont’d)

0 (v o v) = (pVe)A(-pV ) *e=-@vop)ap A
e p~ajA(ar—axAp)A(a, — —as)A(as < qVag)A(ag +
O (povAX) = (CeVP)A(meVX)A(pV YV -X) o an(a (2 p))(i 1 (85 qVas) A (@ < =p) w/ \p
®a; vayAp = (-a1Vay)A(-aiVp B
O (peovVX) = (pVY)A(eVX)A (e VYV x)
® a, > —az = (—az V —as) By
® az<qVas = (asV—q)A(asV -as) / \ o
1 q —_
Example (cont’d) ® as <+ —p = (as Vp) ‘
¢ ~ a1 A (a1 ¢ @ Ap)A(az <> —as) A(as <> qVas) A(as <+ —p) * pmarA(-a1Va)A(-a1Vp)A(-az vV -as)A(asV-g)A(asV—as)A(aaVvp) p
= a1 A(ma1Vax)A(—a1Vp)A(arV—azV-p)A(azVas)A(-az V-as)
A(azsV—=q)A(azsV—-as)A(—asVqgVas)A(asVp)A(—asV-—p) replace a <+ v by a — v if ¢ occurs only positively, and by a «+ ) if 1) never occurs positively
T ——— T —— pefinition |
] o ) subformula ¢ occurs positively in formula ¢ if number of negations on path from root of ¢
replace equivalence (+) by implication (— or <) based on polarity of subformulas to root of ¢ in parse tree of ¢ is even
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Outline Remarks |
® most state-of-the-art SAT solvers are based on variations of
Davis—Putnam-Logemann-Loveland (DPLL) procedure (1960, 1962)
e abstract version of DPLL described in JACM paper of Nieuwenhuis, Oliveras, Tinelli (2006)
Definition (Abstract DPLL)
® states M || F consist of
5. SAT Solving: DPLL and CDCL ® list M of (possibly annotated) non-complementary literals

° CNFF

® transition rules
M|F = M| F or fail-state
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@=("1V-2)A(2V3)A(-1V-3V4)A(2V-3V-4)A(1V4) ® unit propagate M||F,.Ccvl = MI|FCVI
| -1v=2,2Vv3, -1V-3Vv4 2v-3V-4, 1V4a if M E =C and / is undefined in M unit clause
d
= 1 || 1v=2,2Vv3, 1V-3V4,2vV-3V-4,1Vv4 decide e pure literal M|F = MI|F
d
S 1-2 || "1v=2,2Vv3, ~1Vv-3V4, 2V-3V-4 1V4 unit propagate if | occurs in F and /¢ (complement of /) does not occur in F and / is undefined in M
d
- 1 - 1 1 - i d
= dl 23 || \1v—=2,2V3, -1Vv-3Vv4,2Vv-3V-4,1V4 unit propagate o decide M|F — MI|F
= 1-234 || \1v—=2,2Vv3, -1v-3V4, 2Vv-3V—4,1V4 unit propagate if | or I occurs in F and I is undefined in M
=i -1 || 21v=2,2Vv3, -1V-3Vv4,2v-3Vv—-4, 1V4 backtrack
) * fail M| F,C = fail-state
= =14 || -1Vv—-2,2V3, -1V-=3V4, 2V-3V-4, 1V4 unit propagate
d ) if M = =C and M contains no decision literals
= -14-3 || 21v—=2,2V3, -1V-3V4,2V-3V -4, 1V4  decide P
d
= -14-32 || -1V 2,2Vv3, -1v-3V4,2V-3V 4 1v4 unit propagate ° backdtrack MIN|F,C = MI°|F,C

if M | N E —C and N contains no decision literals
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p=("1V2)A(=3V4)A(-5V-6)A(6V -5V -2) ® backtrack M7N||F,C = MI°|F,C
| =1V 2, -3V4, -5V -6, 6V -5V -2 it M CI’N E —C and N contains no decisio: literals
— f||—1v2, -3V 4, =5V 6, 6V 5V -2 decide ® backjump MIN|F.C = MI|FC
= i 2||-1v2, -3V4, -5V 6, 6 V-5V 2 unit propagate ifMCI’N F —C and 3 clause C' VV I’ such that
— 123 1v2, 3v4 —5V—6 6V -5V 2 decide * F,CEC' VI (6 U] EENERS
= i2g4 | -1v2, -3v4, -5V -6, 6V -5V -2 unit propagate * ME-C
= 12345 1v2, 3v4, 5V=6 6V 5V 2 decide * I'is undefined in M ;
= i2g>4gﬂ6 | -1v2, -3Vv4, -5V =6, 6V -5V -2 unit propagate - @l GEELs I el i 9 4 5
— c112ﬂ5 | -1v2, -3V4, -5V =6, 6 V-5V 2 backjump

Example (cont’'d)

d d . ; d _d d
conflict is due to 1 2 and 5 =6 hence —1 \V =5 can be inferred =1V =5 and =2 V =5 are backjump clauses with respectto 12345 -6 || ¢

B universitat
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backjump can simulate backtrack

Terminology

backjump is also called non-chronological backtracking or conflict-driven backtracking

> F s DI A 2
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o <
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— N
it

how to find good backjump clauses ?

use conflict graph
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® computed clauses are clauses that correspond to cut in conflict graph, separating conflict
node from current decision literal and literals at earlier decision levels

® not all cuts are computed in this way

® clauses corresponding to UIPs are backjump clauses

e UIPs always exist (last decision literal)

® backjumping with respect to last UIP amounts to backtracking

® most SAT solvers use backjump clause corresponding to 1st UIP

Observation

adding backjump clauses to clause database (learning) helps to prune search space

® |earn M|F = M| FC

if F = C and each atom of C occurs in F orin M
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Observation

restarts are useful to avoid wasting too much time in parts of search space without satisfying
assignments

® restart M|F = | F

Final Remarks

® restarts do not compromise completeness if number of steps between consecutive restarts
strictly increases

® modern SAT solvers additionally incorporate
® heuristics for selecting next decision literal

® special data structures that allow for efficient unit propagation (two watched literals)
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Outline Further Reading
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A Structure-Preserving Clause Form Translation
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