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Exercise

® LPO is a relation on terms >,pp (> for short), parametrized by precedence p

Si=tVs; >t

s=f(s1,...,Sn) =t (sub)
p(f) >p(g9) Vie{l,...,m}. s>t
s=f(...)=9g(ts,...,tm) =t (prec)

VjE{l,...,i—l}.Sj:tj Si =t Vjé{i+1,...,n}.5>—t/
s=f(s1,...,5n) = f(t1,...,th) =t

(lex)
® given some argument filter 7 define
° 1(x) =x
. L)) if m(f) =i
m(f(ts, o)) = {f([w(t,») | i+ [1..n],i € w(F)]), if n(f)is a set

* exercise: given s and t, encode “3r p. 7(S) =;po(p) 7(t)" as SAT problem
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Towards an Encoding of "7r(s) > 7 (t)

encoding is based on variables i € 7(f), set(f), "n(s;) > w(t;)", "7w(s;) = 7(t;)"

(and precedence encoding as before)

Ca(s;) = () = "(s;) = ()T V Ta(sy) = m(ty)”
add the following constraint about "7 (s;) = 7(t;)"
"r(x)=n(y)"—= L ifx#y

Tr(f(s1,...,5n)) = w(t)" = —set(f) =i € n(f) = "n(si) = w(t;)"

"n(si) =7m(g(tr,...,gm))" — —set(g) = j € n(g) — "n(si) = w(t;)"
—set(f) — "exactlyOne(1 € n(f),...,n € n(f))"? forn-ary f
"m(f(...)) = 7(y)" — —set(f)

"m(x) =m(g(...))" = —set(g)

T (f(.. ) m(9(...))" — —set(f) vV —set(g) iff#g
Tr(f(s1,...,5n)) = w(f(t1,...,tn))" — set(f) — i € n(f) = "n(si) = w(t;)”
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An Encoding of "7r(s) > 7(t)

® add all of the following constraints
® "x(s) > w(t)"

° ’_71'( )>7T(tj) — 1
"r(f(s1,...,5n)) = w(t) " = —set(f) =i € w(f) = "n(s;) = w(t;)”
Tr(si) > ( (t,..., tm))" — —set(g) — j € n(9) = "n(si) > w(t;)”
° r7r(f(sl ..... sn)) = w(y)" — set(f) — (i € w(f) A" (s;) = w(y)™)
* "n(f(s1,. .-, sn)) = m(9(t, ..., tm))" — set(f) — set(g) —
("p(f) > p(g) " AN € m(g) = "m(f(s1,...,5n)) = 7(t)7))
V V(i€ n(F)ATr(si) = 7r(g(t1, stm))T) iff#£g
® "n(f(s1,..-, sn)) = w(f(t1,..., th))" — set(f) —

(
Vi(i € n(f) AT(si) = w(f(te, . -, tn)) ")
V V(i € w(f) ATn(si) = m(t;)” /\/\,<,(J€7T( ) = () = () ) A
NisiU € (F) = Tm(f(s1,. .., 5n)) = 7(8) 7))
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Outline

2. Beyond SAT: Motivation via Knuth-Bendix Orders
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Definition (Knuth-Bendix Order (KBO))

® letp: F — N be some precedence

* letwp € N\ {0} and let w : ¥ — N be some weight function
Wo, if t is a variable

e define w(t) = _
w(f) +w(ty) + ... +w(ty), ift=~f(ts,...,tn)
e KBO is a relation on terms >~xgo (> for short), defined by these inference rules

V(s) D V(t) w(s) > w(t)

s>t (weight)
V(s) D2 V(t) w(s) > w(t)
s=f(...)=x=t (variable)
V(s) 2 V(t) w(s) = w(t) p(f) > p(9)
s=f(...)=9g(...)=t (precedence)
V(s) 2 V(t) () w(t) Vje{l,....,i—1}.sj=t s>t
=f(s1,...,Sn) = f(t,...,ty) =t (lexicographic)
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Definition (Admissibility)
KBO parameters are admissible if

e for all constants f: w(f) > wyp, and
e for all unary symbols f: w(f) = 0 implies that p(f) > p(g) for all g # f

Theorem

every KBO with admissible parameters is a reduction order

Task: given TRS, search for KBO parameters

® search for suitable rules is easier than LPO: no overlap

® problem: calculation and comparisons of weights requires arithmetic
® solution:

® switch from SAT to SMT (SAT modulo theories)

® required theory for KBO: linear arithmetic
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SAT Modulo Theories (SMT)

® theory defines sorted first-order terms with standard semantics

® theory atom is term of Boolean sort

SMT formulas are formulas as in propositional case, extended by theory atoms

SMT solving: given SMT formula, determine whether there is a satisfying assignment
® such an assignment may contain theory variables and propositional variables

Example (Theories)

e |RA: linear real arithmetic; NRA: non-linear real arithmetic
® domain: R
® arbitrary addition; in linear case multiplication only by constants

* example formula: aAx+2y >5— —(2x—7=5z)vVz> ¥ v-b
* asolution: a(a) = a(b) =T, a(x) = 3, aly) = 2, af2) = - L
® LIA: linear integer arithmetic; NIA: non-linear integer arithmetic

® same as LRA and NRA, except that theory variables and constants are restricted to Z
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Definition (KBO encoding into LIA)

® encoding uses integer variables p(f), w(f), wo and w(t)

® constraints are now straight-forward for TRS 'R over signature F
e w(f)>0forallf e F

> wyq for all constants f

(f)

* w(f) =0 — Ay p(f) > p(g) forall unary f
(
(

* w(x) = wo for all variables x in R
f(ty,...,tn)) = w(f) +w(ty) + --- + w(ty) for all subterms in R

o res o b if V(s) 2 V(t)
' () w(t) vV w(s) > w(t) A (s> t), ifV(s)DV(t)

(f(.
{

* (f(.. )>g( ) = p(f) > p(9). iff # g
{

f(s1,...,5n) > f(t1 ty)) == L, if (51,...,5n) = (t1,...,tn)
) »2n ) ytn)/ - s>t if(517-~->5i71):(tl,...,t,-,l) and SI'#ti
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Exercise

Design a LIA encoding that searches for an argument filter 7 and KBO parameters; in
particular you need an encoding for constraints of the form

'—7T(S) >KBO 7T(t)_‘

hints
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Outline

3. Applying SMT Solvers
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Applying an SMT Solver

Two Alternatives

@ use any SMT solver and standard format

® SMT-Lib is widely used format
https://smt-1lib.org/language.shtml
® for successful SMT solvers, look at competition
https://smt-comp.github.io/2024/
® demos have been tested with Z3 (Microsoft Research)
https://github.com/Z3Prover/z3

® use some language-binding for your programming language and SMT solver
® simple-smt: https://hackage.haskell.org/package/simple-smt
® sbv: https://hackage.haskell.org/package/sbv
® Z3-bindings: https://github.com/Z3Prover/z3#z3-bindings
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SMT-LIB 2 Format — KBO for {plus(s(x),y) — s(plus(x,y)); plus(0,y) — y} (1/4)

(set-logic QF_LIA) ; QF_LIA, QF_LRA, QF_NIA, QF_NRA; QF = quantifier free

(declare-fun

(declare-fun
(declare-fun

(declare-fun
(declare-fun

(declare-fun
(declare-fun
(declare-fun
(declare-fun

w0 () Int ) ; declare theory variables (type: Int or Real)
; declare propositional variables (type: Bool)

wf_plus () Int ) ; weights for symbols
wf_s OO Int )

pf_plus () Int ) ; precedences
pf_s O Int )

w_s__x () Int ) ; weights for terms, all variables = x

w_plus__s__x__x () Int )

w_plus__x__x () Int )

w_s__plus__x__x () Int )
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SMT-LIB 2 Format - KBO for {plus(s(x),y) — s(plus(x,y)); plus(0,y) — y} (2/4)

; assertion are added using S-expressions

; predefined on Booleans: and, or, not, true, false, => (implication), = (equivalence)
; predefined on numbers: numerals, +, *, - (beware: (- 5), not: -5)
; predefined comparisons: =, <, >, >=, <=

(assert (and (<= 0 pf_plus ) (<= pf_plus 1 ) ) )
(assert (and (<= 0 pf_s ) (<= pf_s 1) ) )

(assert (> w0 0 ) )

(assert (>= wf_s 0 ) )

(assert (>= wf_plus 0 ) )

(assert (=> (= wf_s 0 ) (> pf_s pf_plus ) ) )

(assert (= w_s__x (+ wf_s wO ) ) )

>

; restrict precedence range

admissibility

weight computation

(assert (= w_plus__s__x__x (+ wf_plus w_s__x w0 ) ) )

(assert (= w_plus__x__x (+ wf_plus wO wO ) ) )

(assert (= w_s__plus__x__x (+ wf_s w_plus__x__x ) ) )
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SMT-LIB 2 Format - KBO for {plus(s(x),y) — s(plus(x,y)); plus(0,y) — y} (3/4)

; rule constraints
(assert (or (> w_plus__s__x__x w_s__plus__x__Xx )

(and (>= w_plus__s__x__x w_s__plus__x__x ) (> pf_plus pf_s ) ) ) )
(assert true )

(check-sat ) ; invoke solver

(get-value (wO ) ) ; extract solution for variable wO
(get-value (wf_plus ) ) ; weight of plus

(get-value (pf_plus ) ) ; precedence of plus

(get-value (wf_s ) ) ; weight of s

(get-value (pf_s ) ) ; precedence of s

; precedence and weight of symbol 0 was not required -> set to defaults: O and wO

Remarks

e declarations and assertions can be mixed
e SMT-Lib also supports incremental invocations, cf. assertion stacks, push, pop
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SMT-LIB 2 Format - KBO for {plus(s(x),y) — s(plus(x,y)); plus(0,y) — y}

® store encoding in file, e.g., kbo_plus_encoding.smt2

® invoke SMT solver, e.g., z3
$ z3 kbo_plus_encoding.smt2

sat

(w0 1))
((wf_plus 0))
((pf_plus 2))
((wf_s 1))
((pf_s 1))

(4/4)
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SMT-Solving via Language-Bindings

® have a look at demos/miniTT/src/KBO.hs

® there, simple-smt is used

® a bit more complex to use than SAT-MiniSat
® variables need to be declared before usage
® variable names must be valid

(encoding must take care of forbidden characters and keywords in SMT, cf. stringToSMT,
wSym, pSym, ...)
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Design Choices

e which theory to select?

fragment | RA | LA | NRA | NIA

quantifier-free NPC NPC 0(2%") | undecidable
gf, only conjunctions P NPC 0(2%") | undecidable
allowing quantors decidable | decidable | 0(2%") | undecidable

table indicates that LRA is theoretically the easiest (LRA is convex, LIA is not)

¢ choice should be backed by experiments

® KBO can also be encoded in LRA instead of LIA (miniTT/src/KB02.hs)
® jntuition: LRA should be faster than LIA

® experiments: KBO-LRA is 2x slower than KBO-LIA on termination problem database
¢ another tradeoff: encoding time vs solving time
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Outline

4. SMT Solving, DPLL(T) and CDCL(T)
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SMT Problem

decide satisfiability of formulas in

propositional logic + domain-specific background theories

Two Approaches

@ eager approach:
translate formula into equisatisfiable propositional formula

® lazy approach:
combine SAT solver with specialized solvers for background theories

Terminology

theory solver for T (T-solver) is procedure for deciding T-satisfiability of conjunction of
quantifier-free literals
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SMT Solving: Lazy Approach

|

propositional
SAT solver model M
skeleton

explanation C @

|
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Example

formula x=1A(-(y=1) V =(x+2y=3)) A x+y=2 isunsatisfiable
a b € d

® input to SAT solver (propositional skeleton)

an(-bVv-c)AdA(-aVbV-d)A(—-aV-bVc)
blocking clause

SAT solver reports unsatisfiable
anbAN—-cANd

input to LIA solver
X=1ANy=1AXx+2y#3 N x+y=2

LIA solver reports unsatisfiable
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most state-of-the-art SMT solvers use DPLL(T) (including CDCL extensions)

general framework for lazy SMT solving with theory propagation

Definitions

first-order theory T, formulas F and G, list of literals M

® fFis T-satisfiable if F AT is satisfiable

F E+ G if F /A —G is not T-satisfiable

FETGIfF':TGandG’:TF

M =1,...,lgis T-consistentif [y A --- A lx is T-satisfiable
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DPLL(T) consists of DPLL rules unit propagate, decide, fail, restart and
® T-backjump M7N |F,C = MI]|FC

if M 7 N E —=C and 3 clause C' Vv I' such that

® F.CErC'VIand ME -C'

® /" is undefined in M and /" or /'“ occurs in F or in M 7 N
® T-learn M|F = MJ|F,C

if F Er C and all atoms of C occur in M or F

e T-forget M| F,C = M|F
if Fler C
® T-propagate M|F = MI|F

if M E7 1, | is undefined in M, and / or /€ occurs in F
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(EUF) formula g(a)=c A (=(f(g(a)) =f(c)) Vv g(a)=d) A =(c=d)

1 2 3 4
| 1, -2Vv3, -4

== 1 || 1, -2Vv3, -4 unit propagate
= 1-4 || 1, -2V 3, -4 unit propagate
S 1-4 —éj | 1, =2V 3, -4 decide
— 1-4 ﬂg | 1, =2V 3, =4, -1V?2 T-learn
= 1-42 || 1, 2Vv3, -4, 71V2 T-backjump
— 1-423 || 1, 2V3, -4, 11V2 unit propagate
— 1-423 || 1, 2Vv3, -4, -1V2, -1v-2V-3Vv4 T-learn
= fail-state fail
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Remark

lazy SMT approach is modeled in DPLL(T) as follows:
if state M || F is reached such that unit propagate, decide, fail, T-backjump are not applicable
check T-consistency of M with T-solver

@ if Mis T-consistent then F is T-satisfiable

@ if Mis not T-consistent then FEr —(/y A---Aly) forsome literals [y, ..., Ik in M

add blocking clause —/; V ---V =l by T-learn and apply restart

Improvements

@ apply fail or T-backjump after T-learn (instead of restart)
@® check T-consistency of M or apply T-propagate before decide

© find small unsatisfiable cores to minimize k in blocking clauses
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Outline

5. Further Reading
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Further Reading

® Harald Zankl, Nao Hirokawa, and Aart Middeldorp
KBO Orientability

Journal of Automated Reasoning 43(2), pp. 173-201, 2009

® Michael Codish, Jirgen Giesl, Peter Schneider-Kamp, and René Thiemann
SAT Solving for Termination Proofs with Recursive Path Orders and Dependency Pairs
Journal of Automated Reasoning, 49(1), pp. 53-93, 2012

® Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli

Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland
Procedure to DPLL(T)

Journal of the ACM 53(6), pp. 937-977, 2006
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