

SAT/SMT Solving and Applications in Rewriting

René Thiemann ¹ Sarah Winkler ²

¹University of Innsbruck

²Free University of Bolzano

Outline

- 1. Solution of Exercise of Session 1
- 2. Beyond SAT: Motivation via Knuth-Bendix Orders
- 3. Applying SMT Solvers
- 4. SMT Solving, DPLL(T) and CDCL(T)
- 5. Further Reading

Exercise

• LPO is a relation on terms \succ_{LPO} (\succ for short), parametrized by precedence p

$$\frac{s_i = t \vee s_i \succ t}{s = f(s_1, \dots, s_n) \succ t}$$
 (sub)
$$\frac{p(f) > p(g) \quad \forall i \in \{1, \dots, m\}. \ s \succ t_i}{s = f(\dots) \succ g(t_1, \dots, t_m) = t}$$
 (prec)
$$\frac{\forall j \in \{1, \dots, i-1\}. \ s_j = t_j \quad s_i \succ t_i \quad \forall j \in \{i+1, \dots, n\}. \ s \succ t_i}{s = f(s_1, \dots, s_n) \succ f(t_1, \dots, t_n) = t}$$
 (lex)

- given some argument filter π define
 - $\pi(x) = x$

•
$$\pi(f(t_1,\ldots,t_n)) = \begin{cases} \pi(t_i), & \text{if } \pi(f) = i \\ f([\pi(t_i) \mid i \leftarrow [1..n], i \in \pi(f)]), & \text{if } \pi(f) \text{ is a set} \end{cases}$$

• exercise: given s and t, encode " $\exists \pi \ p. \ \pi(s) \succ_{LPO(p)} \pi(t)$ " as SAT problem

Towards an Encoding of $\lceil \pi(s) \succ \pi(t) \rceil$

- encoding is based on variables $i \in \pi(f)$, set(f), $\lceil \pi(s_i) \succ \pi(t_j) \rceil$, $\lceil \pi(s_i) = \pi(t_j) \rceil$ (and precedence encoding as before)
- $\lceil \pi(s_i) \succeq \pi(t_j) \rceil := \lceil \pi(s_i) \succ \pi(t_j) \rceil \lor \lceil \pi(s_i) = \pi(t_j) \rceil$
- ullet add the following constraint about ${}^{ au}\pi(s_i)=\pi(t_j){}^{ au}$
- $\lceil \pi(x) = \pi(y) \rceil \rightarrow \bot$ if $x \neq y$
- $\lceil \pi(f(s_1,\ldots,s_n)) = \pi(t_j) \rceil \rightarrow \neg set(f) \rightarrow i \in \pi(f) \rightarrow \lceil \pi(s_i) = \pi(t_j) \rceil$
- $\bullet \ \, \lceil \pi(s_i) = \pi(g(t_1,\ldots,g_m)) \rceil \to \neg \mathsf{set}(g) \to j \in \pi(g) \to \lceil \pi(s_i) = \pi(t_j) \rceil$
- $\neg set(f) \rightarrow \lceil exactlyOne(1 \in \pi(f), \dots, n \in \pi(f)) \rceil$ for n-ary f
- $\lceil \pi(f(\dots)) = \pi(y) \rceil \rightarrow \neg set(f)$
- $\lceil \pi(x) = \pi(g(\dots)) \rceil \rightarrow \neg set(g)$
- $\lceil \pi(f(\dots)) = \pi(g(\dots)) \rceil \rightarrow \neg set(f) \lor \neg set(g)$ if $f \neq g$
- $\lceil \pi(f(s_1,\ldots,s_n)) = \pi(f(t_1,\ldots,t_n)) \rceil \rightarrow set(f) \rightarrow i \in \pi(f) \rightarrow \lceil \pi(s_i) = \pi(t_i) \rceil$

An Encoding of $\lceil \pi(s) \succ \pi(t) \rceil$

- add all of the following constraints
- $\lceil \pi(s) \succ \pi(t) \rceil$
- $\lceil \pi(\mathbf{x}) \succ \pi(t_i) \rceil \rightarrow \bot$
- $\lceil \pi(f(s_1,\ldots,s_n)) \succ \pi(t_i) \rceil \rightarrow \neg set(f) \rightarrow i \in \pi(f) \rightarrow \lceil \pi(s_i) \succ \pi(t_i) \rceil$
- $\bullet \ \lceil \pi(s_i) \succ \pi(g(t_1, \dots, t_m)) \rceil \to \neg set(g) \to j \in \pi(g) \to \lceil \pi(s_i) \succ \pi(t_j) \rceil$
- $\lceil \pi(f(s_1,\ldots,s_n)) \succ \pi(y) \rceil \rightarrow set(f) \rightarrow \bigvee_i (i \in \pi(f) \land \lceil \pi(s_i) \succeq \pi(y) \rceil)$
- $\lceil \pi(f(s_1,\ldots,s_n)) \succ \pi(g(t_1,\ldots,t_m)) \rceil \rightarrow set(f) \rightarrow set(g) \rightarrow (\lceil p(f) > p(g) \rceil \land \bigwedge_j (j \in \pi(g) \rightarrow \lceil \pi(f(s_1,\ldots,s_n)) \succ \pi(t_j) \rceil))$ $\lor \bigvee_i (i \in \pi(f) \land \lceil \pi(s_i) \succ \pi(g(t_1,\ldots,t_m)) \rceil)$ if $f \neq g$
- $\lceil \pi(f(s_1, \ldots, s_n)) \succ \pi(f(t_1, \ldots, t_n)) \rceil \rightarrow set(f) \rightarrow \bigvee_i (i \in \pi(f) \land \lceil \pi(s_i) \succeq \pi(f(t_1, \ldots, t_n)) \rceil)$ $\lor \bigvee_i (i \in \pi(f) \land \lceil \pi(s_i) \succ \pi(t_i) \rceil \land \bigwedge_{j < i} (j \in \pi(f) \rightarrow \lceil \pi(s_j) = \pi(t_j) \rceil) \land \bigwedge_{i > i} (j \in \pi(f) \rightarrow \lceil \pi(f(s_1, \ldots, s_n)) \succ \pi(t_i) \rceil))$

Outline

- 1. Solution of Exercise of Session 1
- 2. Beyond SAT: Motivation via Knuth-Bendix Orders
- 3. Applying SMT Solvers
- SMT Solving, DPLL(T) and CDCL(T)
- Further Reading

Definition (Knuth-Bendix Order (KBO))

- let $p: \mathcal{F} \to \mathbb{N}$ be some precedence
- let $w_0 \in \mathbb{N} \setminus \{0\}$ and let $w : \mathcal{F} \to \mathbb{N}$ be some weight function

• define
$$w(t) = \begin{cases} w_0, & \text{if } t \text{ is a variable} \\ w(t) + w(t_1) + \ldots + w(t_n), & \text{if } t = f(t_1, \ldots, t_n) \end{cases}$$

• KBO is a relation on terms \succ_{KBO} (\succ for short), defined by these inference rules

$$\frac{\mathcal{V}(s) \supseteq \mathcal{V}(t) \quad w(s) > w(t)}{s \succ t} \qquad \qquad \text{(weight)}$$

$$\frac{\mathcal{V}(s) \supseteq \mathcal{V}(t) \quad w(s) \ge w(t)}{s = f(\dots) \succ x = t} \qquad \qquad \text{(variable)}$$

$$\frac{\mathcal{V}(s) \supseteq \mathcal{V}(t) \quad w(s) \ge w(t) \quad p(f) > p(g)}{s = f(\dots) \succ g(\dots) = t} \qquad \qquad \text{(precedence)}$$

$$\frac{\mathcal{V}(s) \supseteq \mathcal{V}(t) \quad w(s) \ge w(t) \quad \forall j \in \{1, \dots, i-1\}. \ s_j = t_j \quad s_i \succ t_i}{s = f(s_1, \dots, s_n) \succ f(t_1, \dots, t_n) = t} \qquad \qquad \text{(lexicographic)}$$

Definition (Admissibility)

KBO parameters are admissible if

- for all constants $f: w(f) \ge w_0$, and
- for all unary symbols f: w(f) = 0 implies that p(f) > p(g) for all $g \neq f$

Theorem

every KBO with admissible parameters is a reduction order

Task: given TRS, search for KBO parameters

- search for suitable rules is easier than LPO: no overlap
- problem: calculation and comparisons of weights requires arithmetic

- solution:
 - switch from SAT to SMT (SAT modulo theories)
 - required theory for KBO: linear arithmetic

SAT Modulo Theories (SMT)

- theory defines sorted first-order terms with standard semantics
- theory atom is term of Boolean sort
- SMT formulas are formulas as in propositional case, extended by theory atoms
- SMT solving: given SMT formula, determine whether there is a satisfying assignment
- such an assignment may contain theory variables and propositional variables

Example (Theories)

- LRA: linear real arithmetic;
 NRA: non-linear real arithmetic
 - lacktriangle domain: $\mathbb R$
 - arbitrary addition; in linear case multiplication only by constants
 - example formula: $a \wedge x + 2y > 5 \rightarrow \neg(2x 7 = 5z) \vee z \ge \frac{14}{5} \vee \neg b$
 - a solution: $\alpha(a) = \alpha(b) = \mathsf{T}$, $\alpha(x) = \mathsf{3}$, $\alpha(y) = \mathsf{2}$, $\alpha(z) = -\frac{13}{5}$
- LIA: linear integer arithmetic;
 NIA: non-linear integer arithmetic
 - ullet same as LRA and NRA, except that theory variables and constants are restricted to $\mathbb Z$

Definition (KBO encoding into LIA)

- encoding uses integer variables p(f), w(f), w_0 and w(t)
- ullet constraints are now straight-forward for TRS ${\mathcal R}$ over signature ${\mathcal F}$
- w(f) > 0 for all $f \in \mathcal{F}$
- $w(f) \ge w_0$ for all constants f
- $w(f) = 0 \rightarrow \bigwedge_{g \neq f} p(f) > p(g)$ for all unary f
- $w(x) = w_0$ for all variables x in \mathcal{R}
- $w(f(t_1,\ldots,t_n))=w(f)+w(t_1)+\cdots+w(t_n)$ for all subterms in \mathcal{R}

•
$$\lceil s > t \rceil := \begin{cases} \bot, & \text{if } \mathcal{V}(s) \not\supseteq \mathcal{V}(t) \\ w(s) > w(t) \lor w(s) \ge w(t) \land \langle s > t \rangle, & \text{if } \mathcal{V}(s) \supseteq \mathcal{V}(t) \end{cases}$$

- $\langle f(\dots) > x \rangle := \top$
- $\langle x > t \rangle := \bot$
- $\langle f(\dots) > g(\dots) \rangle := p(f) > p(g)$, if $f \neq g$
- $\langle f(s_1,\ldots,s_n) > f(t_1,\ldots,t_n) \rangle := \begin{cases} \bot, & \text{if } (s_1,\ldots,s_n) = (t_1,\ldots,t_n) \\ \lceil s_i > t_i \rceil, & \text{if } (s_1,\ldots,s_{i-1}) = (t_1,\ldots,t_{i-1}) \text{ and } s_i \neq t_i \end{cases}$

Exercise

Design a LIA encoding that searches for an argument filter π and KBO parameters; in particular you need an encoding for constraints of the form

$$\lceil \pi(s) \succ_{KBO} \pi(t) \rceil$$

hints

Outline

- 1. Solution of Exercise of Session 1
- 2. Beyond SAT: Motivation via Knuth-Bendix Orders
- 3. Applying SMT Solvers
- SMT Solving, DPLL(T) and CDCL(T)
- Further Reading

Applying an SMT Solver

Two Alternatives

- use any SMT solver and standard format
 - SMT-Lib is widely used format

```
https://smt-lib.org/language.shtml
```

for successful SMT solvers, look at competition

```
https://smt-comp.github.io/2024/
```

demos have been tested with Z3 (Microsoft Research)

```
https://github.com/Z3Prover/z3
```

- use some language-binding for your programming language and SMT solver
 - simple-smt: https://hackage.haskell.org/package/simple-smt
 - Sbv: https://hackage.haskell.org/package/sbv
 - Z3-bindings: https://github.com/Z3Prover/z3#z3-bindings

SMT-LIB 2 Format – KBO for $\{plus(s(x), y) \rightarrow s(plus(x, y)); plus(0, y) \rightarrow y\}$ (1/4)

```
(set-logic QF_LIA)
                                  : QF_LIA, QF_LRA, QF_NIA, QF_NRA; QF = quantifier free
(declare-fun w0 () Int )
                                  ; declare theory variables (type: Int or Real)
                                  ; declare propositional variables (type: Bool)
(declare-fun wf_plus () Int )
                                  : weights for symbols
(declare-fun wf s () Int )
(declare-fun pf_plus () Int )
                            ; precedences
(declare-fun pf_s () Int )
(declare-fun w_s_x () Int ) : weights for terms, all variables = x
(declare-fun w_plus__s_x_x () Int )
(declare-fun w_plus__x_x () Int )
(declare-fun w_s_plus_x_x () Int )
```

SMT-LIB 2 Format – KBO for $\{plus(s(x), y) \rightarrow s(plus(x, y)); plus(0, y) \rightarrow y\}$ (2/4)

```
; assertion are added using S-expressions
; predefined on Booleans: and, or, not, true, false, => (implication), = (equivalence)
; predefined on numbers: numerals, +, *, - (beware: (-5). not: -5)
; predefined comparisons: =, <, >, >=, <=
(assert (and (<= 0 pf_plus ) (<= pf_plus 1 ) ) ) ; restrict precedence range
(assert (and (<= 0 pf_s ) (<= pf_s 1 ) )
(assert (> w0 0 ) )
                                                ; admissibility
(assert (>= wf_s 0 ) )
(assert (>= wf_plus 0 ) )
(assert (=> (= wf_s 0 ) (> pf_s pf_plus ) ) )
(assert (= w s x (+ wf_s w0))); weight computation
(assert (= w_plus_s_x_x (+ wf_plus w_s_x w0 ) ) )
(assert (= w_plus__x_x (+ wf_plus w0 w0 ) ) )
(assert (= w_s_plus_x_x (+ wf_s w_plus_x_x ) ) )
```

SMT-LIB 2 Format – KBO for $\{plus(s(x), y) \rightarrow s(plus(x, y)); plus(0, y) \rightarrow y\}$ (3/4)

```
: rule constraints
(assert (or (> w_plus_s_x_x w_s_plus_x_x)
          (and (>= w_plus__s__x w_s__plus__x__x ) (> pf_plus pf_s ) ) ) )
(assert true )
(check-sat )
                            : invoke solver
                 ; extract solution for variable w0
(get-value (w0))
(get-value (wf_plus ) ) ; weight of plus
(get-value (pf_plus ) ) ; precedence of plus
(get-value (wf_s ) )
                  ; weight of s
(get-value (pf_s ) ) ; precedence of s
; precedence and weight of symbol 0 was not required -> set to defaults: 0 and w0
```

Remarks

- declarations and assertions can be mixed
- SMT-Lib also supports incremental invocations, cf. assertion stacks, push, pop

SMT-LIB 2 Format – KBO for $\{plus(s(x), y) \rightarrow s(plus(x, y)); plus(0, y) \rightarrow y\}$ (4/4)

- store encoding in file, e.g., kbo_plus_encoding.smt2
- invoke SMT solver, e.g., z3

```
$ z3 kbo_plus_encoding.smt2
```

```
sat
((w0 1))
((wf_plus 0))
((pf_plus 2))
((wf_s 1))
((pf_s 1))
```

SMT-Solving via Language-Bindings

- have a look at demos/miniTT/src/KBO.hs
- there, simple-smt is used
- a bit more complex to use than SAT-MiniSat
 - variables need to be declared before usage
 - variable names must be valid (encoding must take care of forbidden characters and keywords in SMT, cf. stringToSMT, wSym, pSym, ...)

Design Choices

which theory to select?

fragment	LRA	LIA	NRA	NIA
quantifier-free	NPC	NPC	$O(2^{2^n})$	undecidable
qf, only conjunctions	Р	NPC	$O(2^{2^n})$	undecidable
allowing quantors	decidable	decidable	$O(2^{2^n})$	undecidable

table indicates that LRA is theoretically the easiest (LRA is convex, LIA is not)

- choice should be backed by experiments
 - KBO can also be encoded in LRA instead of LIA (miniTT/src/KBO2.hs)
 - intuition: LRA should be faster than LIA
 - experiments: KBO-LRA is 2x slower than KBO-LIA on termination problem database
- another tradeoff: encoding time vs solving time

Outline

- 1. Solution of Exercise of Session 1
- 2. Beyond SAT: Motivation via Knuth-Bendix Orders
- 3. Applying SMT Solvers
- 4. SMT Solving, DPLL(T) and CDCL(T)
- 5. Further Reading

SMT Problem

decide satisfiability of formulas in

propositional logic + domain-specific background theories

Two Approaches

eager approach:

translate formula into equisatisfiable propositional formula

2 lazy approach:

combine SAT solver with specialized solvers for background theories

Terminology

theory solver for T (T-solver) is procedure for deciding T-satisfiability of conjunction of quantifier-free literals

SMT Solving: Lazy Approach

Example

formula
$$x = 1 \land (\neg(y = 1) \lor \neg(x + 2y = 3)) \land x + y = 2$$
 is unsatisfiable a b c

input to SAT solver (propositional skeleton)

$$a \wedge (\neg b \vee \neg c) \wedge d \wedge (\neg a \vee b \vee \neg d) \wedge (\neg a \vee \neg b \vee c)$$

blocking clause

SAT solver reports unsatisfiable

$$a \wedge b \wedge \neg c \wedge d$$

input to LIA solver

$$x = 1 \land y = 1 \land x + 2y \neq 3 \land x + y = 2$$

LIA solver reports unsatisfiable

most state-of-the-art SMT solvers use **DPLL**(*T*) (including CDCL extensions)

general framework for lazy SMT solving with theory propagation

Definitions

first-order theory T, formulas F and G, list of literals M

- F is T-satisfiable if $F \wedge T$ is satisfiable
- $F \models_{\mathcal{T}} G$ if $F \land \neg G$ is not T-satisfiable
- $F \equiv_{\tau} G$ if $F \models_{\tau} G$ and $G \models_{\tau} F$
- $M = I_1, \ldots, I_k$ is **T-consistent** if $I_1 \wedge \cdots \wedge I_k$ is **T-satisfiable**

Definition

DPLL(T) consists of DPLL rules unit propagate, decide, fail, restart and

$$M\stackrel{d}{\mid} N \parallel F, C \implies M \mid l' \parallel F, C$$

if $M \cap N \models \neg C$ and \exists clause $C' \vee I'$ such that

•
$$F, C \models_{\mathsf{T}} C' \lor I'$$
 and $M \models \neg C'$

• I' is undefined in M and I' or I'^c occurs in F or in $M \stackrel{a}{I} N$

$$M \parallel F \implies M \parallel F, C$$

if $F \models_{\mathcal{T}} C$ and all atoms of C occur in M or F

$$M \parallel F, C \implies M \parallel F$$

if $F \models_{\mathsf{T}} C$

$$M \parallel F \implies M I \parallel F$$

if $M \models_T I$, I is undefined in M, and I or I^c occurs in F

Example

(EUF) formula
$$g(a) = c \land (\neg(f(g(a)) = f(c)) \lor g(a) = d) \land \neg(c = d)$$
 $1 \qquad 2 \qquad 3 \qquad 4$
 $\parallel 1, \neg 2 \lor 3, \neg 4$
 $\Rightarrow \qquad 1 \parallel 1, \neg 2 \lor 3, \neg 4$ unit propagate
 $\Rightarrow \qquad 1 \neg 4 \parallel 1, \neg 2 \lor 3, \neg 4$ unit propagate
 $\Rightarrow \qquad 1 \neg 4 \neg 2 \parallel 1, \neg 2 \lor 3, \neg 4$ decide
 $\Rightarrow \qquad 1 \neg 4 \neg 2 \parallel 1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2$ T-learn
 $\Rightarrow \qquad 1 \neg 4 \ 2 \parallel 1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2$ unit propagate
 $\Rightarrow \qquad 1 \neg 4 \ 2 \ 3 \parallel 1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2$ unit propagate
 $\Rightarrow \qquad 1 \neg 4 \ 2 \ 3 \parallel 1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2$ unit propagate
 $\Rightarrow \qquad 1 \neg 4 \ 2 \ 3 \parallel 1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2$ unit propagate
 $\Rightarrow \qquad 1 \neg 4 \ 2 \ 3 \parallel 1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2, \neg 1 \lor \neg 2 \lor \neg 3 \lor 4$ T-learn
 $\Rightarrow \qquad fail$ -state

Remark

lazy SMT approach is modeled in DPLL(T) as follows:

if state $M \parallel F$ is reached such that unit propagate, decide, fail, T-backjump are not applicable check *T*-consistency of *M* with *T*-solver

- if M is T-consistent then F is T-satisfiable
- if M is not T-consistent then $F \models_T \neg (I_1 \land \cdots \land I_k)$ for some literals I_1, \ldots, I_k in M add blocking clause $\neg l_1 \lor \cdots \lor \neg l_k$ by *T*-learn and apply restart

Improvements

- apply fail or T-backjump after T-learn (instead of restart)
- check T-consistency of M or apply T-propagate before decide
- find small unsatisfiable cores to minimize k in blocking clauses

Outline

- 1. Solution of Exercise of Session 1
- 2. Beyond SAT: Motivation via Knuth-Bendix Orders
- 3. Applying SMT Solvers
- 4. SMT Solving, DPLL(T) and CDCL(T)
- 5. Further Reading

Further Reading

- Harald Zankl, Nao Hirokawa, and Aart Middeldorp **KBO** Orientability Journal of Automated Reasoning 43(2), pp. 173-201, 2009
- Michael Codish, lürgen Giesl, Peter Schneider-Kamp, and René Thiemann SAT Solving for Termination Proofs with Recursive Path Orders and Dependency Pairs Iournal of Automated Reasoning, 49(1), pp. 53-93, 2012
- Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli Solving SAT and SAT Modulo Theories: From an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T)
 - Journal of the ACM 53(6), pp. 937-977, 2006