

ISR 2024 session 3

SAT/SMT Solving and Applications in Rewriting

René Thiemann¹ Sarah Winkler²

¹University of Innsbruck

²Free University of Bolzano

Outline

- 1. Solution of Exercise of Session 2
- 2. Lazy SMT Approach: Overview
- 3. Application: Polynomial Interpretations
- 4. Non-Linear (Bit-Vector) Arithmetic
- 5. Certification
- 6. Further Reading

Exercise

Develop a LIA encoding that searches for an argument filter π in combination with KBO parameters

$$\lceil \pi(s) \succ \pi(t) \rceil$$

definitions

• $\pi(x) = x$ • $\pi(f(t_1, ..., t_n)) = \begin{cases} \pi(t_i), & \text{if } \pi(f) = i \\ f([\pi(t_i) \mid i \leftarrow [1..n], i \in \pi(f)]), & \text{if } \pi(f) \text{ is a set} \end{cases}$ • $w(x) = w_0$ • $w(f(t_1, ..., t_n)) = w(f) + w(t_1) + \dots + w(t_n)$ • $s \succ t \text{ if } \mathcal{V}(s) \supseteq \mathcal{V}(t) \land (w(s) \ge w(t) \lor w(s) \ge w(t) \land \dots \text{ some cases } \dots)$

Solution of Encoding KBO + AF (1/2)

- we use propositional variables $set(f), i \in \pi(f)$ to represent AFs as for LPO
- we use the same constraints to enforce that the AF is well-formed
- if-then-else is written as \[\[if(b,t,e) \]; it is a short-cut for
 - creating a fresh integer variable *i*
 - returning *i* as the result of *¬if(b, t, e)*
 - adding b
 ightarrow i = t and eg b
 ightarrow i = e to global constraints
- encode frequency of variable x in term t as integer variable $\lceil \#_x(\pi(t)) \rceil$; add constr.
 - $\lceil \#_x(\pi(x)) \rceil = 1$ and $\lceil \#_x(\pi(y)) \rceil = 0$ if x
 eq y
 - $\lceil \#_x(\pi(f(t_1,\ldots,t_n))) \rceil = \lceil if(1 \in \pi(f), \lceil \#_x(\pi(t_1)) \rceil, 0) \rceil + \ldots + \lceil if(n \in \pi(f), \lceil \#_x(\pi(t_n)) \rceil, 0) \rceil$
- now $\mathcal{V}(\pi(s)) \supseteq \mathcal{V}(\pi(t))$ is encoded as $\bigwedge_{x \in \mathcal{V}(t)} \ulcorner \#_x(\pi(s)) \urcorner \ge \ulcorner \#_x(\pi(t)) \urcorner$
- the weight computation is similar using integer variables $\lceil w(\pi(t))
 ceil$

•
$$\lceil w(\pi(x)) \rceil = w_0$$

•
$$\neg set(f) \rightarrow i \in \pi(f) \rightarrow \ulcorner w(\pi(f(t_1, \ldots, t_n))) \urcorner = \ulcorner w(\pi(t_i))) \urcorner$$

• $set(f) \rightarrow \lceil w(\pi(f(t_1, \ldots, t_n)) \rceil = w(f) +$ $\lceil if(1 \in \pi(f), \lceil w(\pi(t_1)) \rceil, 0) \rceil + \ldots + \lceil if(n \in \pi(f), \lceil w(\pi(t_n)) \rceil, 0) \rceil$

Solution of Encoding KBO + AF (2/2)

- having integer variables $\lceil w(\pi(t)) \rceil$ and an encoding of $\mathcal{V}(\pi(s)) \supseteq \mathcal{V}(\pi(t))$, encoding term comparisons in KBO + AF is now similar to the term comparison of LPO + AF
- additional challenge: admissibility
 - we need to encode \ulcorner unary(f) \urcorner := set(f) \land \ulcorner exactlyOne $(1 \in \pi(f), \ldots, n \in \pi(f))$ \urcorner
 - being largest in precedence can be restricted to those symbols g that remain

$$abla unary(f)^{n}
ightarrow w(f) = 0
ightarrow \bigwedge_{g
eq f} (set(g)
ightarrow p(f) > p(g))$$

- weights for constants need to be adjusted: $set(f) \rightarrow (\bigwedge_i \neg (i \in \pi(f))) \rightarrow w(f) \ge w_0$
- no weight restrictions for w(f) apply, whenever $\neg set(f)$

Outline

- 1. Solution of Exercise of Session 2
- 2. Lazy SMT Approach: Overview
- 3. Application: Polynomial Interpretations
- 4. Non-Linear (Bit-Vector) Arithmetic
- 5. Certification
- 6. Further Reading

SMT Solving at a Glance

- DPLL(T) is common approach for SMT solving
- requirement: theory solver for T
 - given conjunction of literals, decide *T*-satisfiability
- overview of theory solvers
 - LRA: simplex algorithm (Dutertre and de Moura)
 - incremental interface
 - delivers minimal unsatisfiable cores
 - LIA: LRA + branch-and-bound algorithm
 - call simplex on constraints φ
 - if φ is unsat in $\mathbb Q$ then return "unsat"
 - if solution delivers $\alpha(x) = q \notin \mathbb{Z}$, then branch on $\varphi \land x \leq \lfloor q \rfloor$ "or" $\varphi \land x \geq \lceil q \rceil$
 - otherwise, return integer solution
 - many extensions for LIA
 - EUF: congruence closure algorithm
 - combination of theories: Nelson–Oppen, deterministic or nondeterministic version
- due to limited time: omit further details in this course

Outline

- 1. Solution of Exercise of Session 2
- 2. Lazy SMT Approach: Overview
- 3. Application: Polynomial Interpretations
- 4. Non-Linear (Bit-Vector) Arithmetic
- 5. Certification
- 6. Further Reading

Definition (Linear Polynomial Interpretation)

• fix some signature \mathcal{F} ; choose for each *n*-ary $f \in \mathcal{F}$ a linear polynomial p(f):

$$p(f) = f_0 + f_1 x_1 + \ldots f_n x_n$$

such that $f_0 \in \mathbb{N}$ and $f_i \in \mathbb{N} \setminus \{0\}$ for $1 \le i \le n$

interpretation of terms

•
$$\llbracket f(t_1,...,t_n) \rrbracket = p(f) \{ x_1 / \llbracket t_1 \rrbracket,...,x_n / \llbracket t_n \rrbracket \}$$

• definition of order: $s \succ t$ iff $\forall \vec{x}$. [s] > [t] where variables \vec{x} range over \mathbb{N}

Example (Termination of $\{plus(s(x), y) \rightarrow s(plus(x, y)); plus(0, y) \rightarrow y\}$)

- choose $p(\mathbf{0}) = 5$ and $p(\mathsf{plus}) = 2 \cdot x_1 + x_2$ and $p(\mathbf{s}) = 1 + x_1$
- first rule: $2 \cdot (1 + x) + y > 1 + 2 \cdot x + y$
- second rule: $2 \cdot 5 + y > y$

Definition (Encoding for Linear Polynomial Interpretations)

fix some signature *F*; encode for each *n*-ary *f* ∈ *F* a linear polynomial *p*(*f*) using (SMT) integer variables *f_i*:

$$p(f) = f_0 + f_1 x_1 + \ldots f_n x_n$$

and add constraints $f_0 \ge 0$ and $f_i \ge 1$ for $1 \le i \le n$

• compute [[t]] symbolically and then compare coefficients for each variable:

$$a + bx + cy + \ldots > a' + b'x + c'y + \ldots \equiv \underbrace{a > a' \land b \ge b' \land c \ge c' \land \ldots}_{\text{SMT constraint}}$$

Example (Constraint of first rule $plus(s(x), y) \rightarrow s(plus(x, y))$)

 $\mathsf{plus}_0 + \mathsf{plus}_1(\mathsf{s}_0 + \mathsf{s}_1 x) + \mathsf{plus}_2 y > \mathsf{s}_0 + \mathsf{s}_1(\mathsf{plus}_0 + \mathsf{plus}_1 x + \mathsf{plus}_2 y)$

 $\equiv (\mathsf{plus}_0 + \mathsf{plus}_1 \mathsf{s}_0) + \mathsf{plus}_1 \mathsf{s}_1 x + \mathsf{plus}_2 y > (\mathsf{s}_0 + \mathsf{s}_1 \mathsf{plus}_0) + \mathsf{s}_1 \mathsf{plus}_1 x + \mathsf{s}_1 \mathsf{plus}_2 y$

 $\equiv \mathsf{plus}_0 + \mathsf{plus}_1 s_0 > s_0 + s_1 \mathsf{plus}_0 \wedge \mathsf{plus}_1 s_1 \geq s_1 \mathsf{plus}_1 \wedge \mathsf{plus}_2 \geq s_1 \mathsf{plus}_2 \quad \textit{SMT constr.}$

Exercise

 design an optimized encoder for polynomial constraints; you should consider a weakly monotone setting where the condition

 $f_0 \ge 0$ and $f_i \ge 1$ for all $1 \le i \le n$

is weakened to

 $f_i \ge 0$ for $0 \le i \le n$

test your encoding on the following term constraints

 $\begin{aligned} \min(\mathbf{s}(x),\mathbf{s}(y)) &\succsim \min(x,y) \\ \min(x,0) &\succsim x \\ \operatorname{div}(\mathbf{s}(x),\mathbf{s}(y)) &\succ \operatorname{div}(\min(x,y),\mathbf{s}(y)) \end{aligned}$

where $s \succeq t$ is defined as $\forall \vec{x} . \llbracket s \rrbracket \ge \llbracket t \rrbracket$

Outline

- 1. Solution of Exercise of Session 2
- 2. Lazy SMT Approach: Overview
- 3. Application: Polynomial Interpretations
- 4. Non-Linear (Bit-Vector) Arithmetic
- 5. Certification
- 6. Further Reading

A Problem

- resulting constraints are non-linear integer constraints
- problem: NIA is undecidable
- encoding does not matter: linear polynomial termination is undecidable

A Solution

- restrict search space: often small coefficients suffice, e.g., $f_i \in \{0, ..., 3\}$, i.e., each f_i is a 2-bit number
- on numbers with fixed bit-width, one can perform bit-vector arithmetic
- basic idea: encode hardware adders, multipliers, comparisons, etc. into SAT
- SMT theory QF_BV: bitvector arithmetic uses eager approach for SMT solving
- result: obtain incomplete NIA solver via decidable BV theory

Handling Overflows

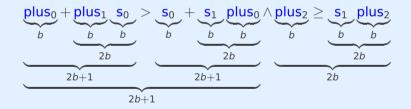
- BV differs from NIA in that overflows may happen
- 3 > 3 + 3 if everything is evaluated using 2-bit unsigned numbers
- overflows must not happen in order to simulate NIA computations in BV
- two solutions: choose enough bits or forbid overflows

Handling Overflows: Choose Enough Bits

- consider linear polynomial interpretation example
- non-linear formula is known

```
\mathsf{plus}_0 + \mathsf{plus}_1 \mathsf{s}_0 > \mathsf{s}_0 + \mathsf{s}_1 \mathsf{plus}_0 \land \mathsf{plus}_2 \geq \mathsf{s}_1 \mathsf{plus}_2
```

• given *b* bits as input size for variables, we can bound bit-sizes of intermediate expressions



hence, one just has to perform each bit-vector operation with enough bits

Handling Overflows: Choose Enough Bits, Optimized

computing upper bounds on values results in better bit-bounds

$$\underbrace{\underbrace{\underset{(2^{b}-1)^{2}}{\overset{2^{b}-1}{(2^{b}-1)^{2}}}}_{(2^{b}-1)^{2}+2^{b}-1}} \underbrace{\underbrace{\underset{(2^{b}-1)^{2}+2^{b}-1}{\overset{2^{b}-1}{(2^{b}-1)^{2}}}}_{(2^{b}-1)^{2}+2^{b}-1}} \wedge \underbrace{\underbrace{\underset{(2^{b}-1)^{2}}{\overset{2^{b}-1}{(2^{b}-1)^{2}}}}_{(2^{b}-1)^{2}+2^{b}-1}}_{(2^{b}-1)^{2}}$$

- previous slide: 2b + 1 bits
- this slide: $\lceil \log_2((2^b 1)^2 + 2^b 1) \rceil$ bits

(7 bits, if b = 3) (6 bits, if b = 3)

Handling Overflows: Forbid Overflows

- using always enough bits might be expensive
- alternative
 - select a fixed number of b bits for inputs
 - select a fixed number of c bits for calculations, $b \le c$
 - all intermediate expressions in formula must be representable with c bits
 - add constraints that ensure that no overflow happens
 - examples
 - perform addition with c + 1 bits and demand that highest bit of result is 0
 - perform multiplication with 2c bits and demand that the c highest bits of result are all 0
 - encode multiplication using *c* bits with dedicated overflow bit
 - perform multiplication x · y with c bits and demand
 "position of first 1-bit in x + position of first 1-bit of y ≤ c"
 - coarse constraint for c = 3

$$x_3x_2x_1x_0 \cdot y_3y_2y_1y_0 = z_3z_2z_1z_0 \wedge$$

 $(\neg x_3 \land \neg x_2 \land \neg x_1 \quad \lor \quad \neg x_3 \land \neg x_2 \land \neg y_3 \land \neg y_2 \quad \lor \quad \neg y_3 \land \neg y_2 \land \neg y_1)$

Outline

- 1. Solution of Exercise of Session 2
- 2. Lazy SMT Approach: Overview
- 3. Application: Polynomial Interpretations
- 4. Non-Linear (Bit-Vector) Arithmetic

5. Certification

6. Further Reading

Current State

- SAT and SMT encodings are useful for proof search
 - often easy to design encoding
 - benefit from powerful SAT and SMT solvers
 - here: focus on termination proving for TRSs
- problem: reliability
 - SAT and SMT solver might be buggy
 - language binding might be buggy
 - encoding might contain some mistake
 - implementation of encoding might be buggy
- solution: certification
 - validate generated proofs

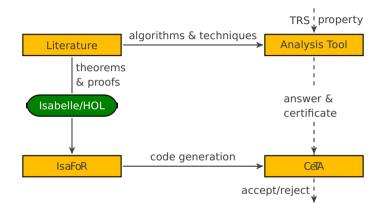
Certification – The Easy Direction

- all examples so far aimed at finding satisfying assignments
 - find parameters of KBO, LPO and polynomial interpretations
 - find argument filters
- every satisfying assignment leads to concrete instance of that term order, e.g.:
 - KBO with w₀ = 5, w(plus) = 2, p(plus) > p(s), ...
 - AF with $\pi(\min s) = 1, \pi(div) = \{1\}, ...$
- given a concrete term order \succ , it is often trivial to check correct application
 - check $\ell \succ r$ for all $\ell \rightarrow r \in \mathcal{R}$
 - check admissibility of KBO parameters, ...
- the corresponding algorithms
 - do not require any encodings or any invocation of a SAT or SMT solver
 - are often simple to implement and are therefore less likely to be bugged
- AProVE (in 2007) contained two independent implementations for several orders
 - an optimized search engine
 - 2 a simple implementation for concrete instances; used for internal validation

Certification – Trust the Validation Algorithm

- remaining problem
 - what if certification algorithm is buggy?
 - what if definition of order itself is buggy?
- solution: formal verification
 - formal verification: formal proof using proof assistant such as Isabelle, Coq, Lean, ...
 - verify correctness of certification algorithm
 - verify properties of order, e.g., "LPO is reduction order"
- both in termination competition and confluence competition, validity of several proofs is checked by formally verified certifier: CeTA
 - several: not all proofs are supported CeTA
 - Cella: Certified Tool Assertions, developed in Innsbruck
- example: all CR/COM/INF-tags in ARI-database are validated by CeA https://ari-cops.uibk.ac.at/ARI/?m=results

Formally Verified Certification



http://cl-informatik.uibk.ac.at/software/ceta/

Certification with CeTA

- about CeTA
 - CelA is just a Haskell program
 - no external libraries required
 - easy to use
 - ghc --make Main.hs -o ceta
 - ceta cpf_proof.xml
- CPF: Certification Problem Format
 - XML
 - domain-specific proof format, no Isabelle knowledge required
 - covers term rewriting and integer transition systems

CPF generation is usually straight-forward; in miniTT: 83 lines, cf. Proof.hs
 result of miniTT cpf kbo plus.ari > kbo_plus.xml

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="xml/cpf3HTML.xsl"?>
<certificationProblem xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="xml/cpf3.xsd"><cpfVersion>3.0</cpfVersion><lookupTables/>
<input><trsInput><trs><rule><funapp><name>plus</name><funapp><name>s</name><var>n
</var></funapp><var>m</var></funapp><funapp><funapp><name>s</name>plus</name>plus</name>eplus</name>cyar>m
</var></funapp></rule><funapp><name>s</name>plus</name>cyar>m
</var></funapp></funapp></rule><funapp><name>plus</name>funapp><name>plus</name>cyar>m
</var></funapp></rule><funapp></rule><funapp><name>plus</name>cfunapp><name>cyar>m
</var></funapp></rule></rule><funapp><name>plus</name>cyar>m</var></funapp></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule></rule>

<ruleRemoval><knuthBendixOrder><wo>l</wo>cedenceWeight>cedenceWeight>cedenceWeightEntry><name>O
</name><arity>0</arity>cedenceWeightEntry><name>plus</name><arity>2</arity>cedenceWeightEntry><name>plus</name><arity>2</arity>cedenceWeightEntry><name>plus</name><arity>1</arity>cedenceWeightEntry><name>plus</name><arity>1</arity>cedenceWeightEntry><name>s</name><arity>1</arity>

Adding Indentation

```
<certificationProblem>
         <input><trs> ... <property><termination> ... <answer><yes> ...
. . .
              <knuthBendixOrder>
                 <w0>1</w0>
                 <precedenceWeight>
                   <precedenceWeightEntry>
                      <name>O</name>
                      <arity>0</arity>
                      <precedence>0</precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence></precedence>
                      <weight>1</weight>
                   </precedenceWeightEntry>
                   <precedenceWeightEntry>
                      <name>plus</name>
                      <arity>2</arity>
                      <precedence>1</precedence></precedence>
                      <weight>0</weight>
                   </precedenceWeightEntry>
                    . . .
                 </precedenceWeight>
              </knuthBendixOrder>
```

</certificationProblem>

. . .

CPF is Human Readable

۲ conversion to HTML: xsltproc cpf3HTML.xsl kbo_plus.xml > kbo_plus.html

The rewrite relation of the following TRS is considered.

```
plus(s(n),m) \rightarrow s(plus(n,m))
   plus(O,m) \rightarrow m
```

Property / Task

Prove or disprove termination.

Answer / Result

Yes.

all of the

Proof (by miniTT)

1 Rule Removal

Using the Knuth Bendix order with w0 = 1 and the following precedence and weight functions 11/11

$\operatorname{prec}(\operatorname{prus}) = 1$	weight(plus)	-	0
prec(s) = 0	weight(s)	=	1
prec(O) = 0	weight(O)	=	1
l of the following rules can be deleted.			
$plus(s(n),m) \rightarrow s(plus(n,m))$			
$plus(O,m) \rightarrow m$			

Beyond Straight-Forward Certification

- IsaFoR is formalization of soundness of CeTA
- in particular, it contains
 - definitions of KBO, LPO, ...,
 - formal proofs that these order have good properties, and
 - verified algorithms for checking certificates
- fact: tools often use optimized versions of orders, e.g.
 - quasi-precedences
 - $x \succeq c$ if c is constant with least precedence
- sometimes these "optimizations" break soundness
 - optimized RPO in AProVE was not closed under substitutions
 - optimized WPO in NaTT was not transitive
 - various incorrect versions of AC-KBO
- many of these problems have been resolved by formal proofs
 - design of IsaFoR: try to include all optimizations to accept many generated proofs
 - example for "optimized RPO": add further inference rule that restores closure properties

Certification – The Hard Direction

- sometimes a successful proof requires unsatisfiability proofs
- example: termination proofs using weighted path orders (WPO) with max-poly interpretations
 - assign to each *n*-ary function symbol a max-polynomial, i.e., an arithmetic expression of *T*(ℕ ∪ {+, ×, max}, {x₁,..., x_n})

example

 $\llbracket \text{if-then-else} \rrbracket (x,y,z) = \max(y,z)$ $\llbracket \text{Cons} \rrbracket (x,xs) = 1 + xs$

- problem: how to check $\forall \vec{x}$. [s] > [t], i.e., compare max-polynomials?
- solution: show that ¬([[s]] > [[t]]) is unsatisfiable

normalize max-polynomials

 $\max(x,y) + z \rightarrow \max(x + z, y + z) \qquad \max(x,y) \cdot z \rightarrow \max(x \cdot z, y \cdot z)$

result has form $\max_{i=1}^{m} p_i$ where each p_i is ordinary polynomial

transform term-constraint into formula over natural number arithmetic

$$\llbracket s \rrbracket > \llbracket t \rrbracket \iff \max_{i=1}^m p_i > \max_{j=1}^k q_j \iff \bigwedge_{j=1}^k \bigvee_{i=1}^m p_i > q_j$$

check unsatisfiability of following formula by verified SMT solver for LIA

• own solver avoids bulky certificates: $O(n^2)$ many >-compares for each WPO-constr.

Outline

- 1. Solution of Exercise of Session 2
- 2. Lazy SMT Approach: Overview
- 3. Application: Polynomial Interpretations
- 4. Non-Linear (Bit-Vector) Arithmetic
- 5. Certification
- 6. Further Reading

Further Reading

- Daniel Kroening and Ofer Strichman Decision Procedures – An Algorithmic Point of View, Second Edition Texts in Theoretical Computer Science, An EATCS Series, Springer, 2016
- Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann, and Harald Zankl SAT Solving for Termination Analysis with Polynomial Interpretations Proceedings SAT 2007, LNCS 4501, pp. 340–354, 2007
- René Thiemann and Christian Sternagel, Certification of Termination Proofs Using CeTA Proceedings TPHOLs 2009, LNCS 5674, pp. 452–468, 2009
- Alexander Lochmann and Christian Sternagel, Certified ACKBO Proceedings CPP 2019, ACM, pp. 144–151, 2019
- René Thiemann, Jonas Schöpf, Christian Sternagel, and Akihisa Yamada, Certifying the Weighted Path Order (Invited Talk)
 Proceedings FSCD 2020, LIPIcs 165, pp. 4:1–4:20, 2020