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Exercise

Develop a LIA encoding that searches for an argument filter 7 in combination with KBO
parameters

Cr(s) = m(t)™

definitions

m(x) = x

w(F (. t) = { 1) V)=
1,---,0n f([ﬂ’(t,‘) | i [1”,7]7,' c /ﬂ'(f)])’ if 7T(f) is a set
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Solution of Encoding KBO + AF (1/2)

® we use propositional variables set(f),i € 7(f) to represent AFs as for LPO
® we use the same constraints to enforce that the AF is well-formed
e if-then-else is written as "if(b, t,e)7; it is a short-cut for

® creating a fresh integer variable i

® returning i as the result of Tif(b,t,e)™

® adding b —+ i =tand -b — i = e to global constraints
* encode frequency of variable x in term t as integer variable "#,(7(t))™; add constr.
* "#(m(x))" =1 and i (n(y)) ' = 0 if x # y
o T (m(f(ty,...,t:)))" ="if(1 € m(F), "#x(n(t1))7,0)" + ... + Tif(n € w(f), #x(7(ts))",0)”
now V(7 (s)) 2 V((t)) is encoded as A,y #x(7(s ))j > T, (n(t)
the weight computation is similar using mteger variables "w(n(t))
* "w(n(x))" = wo
* —set(f) = i€ n(f) = "w(r(f(te,...,tn))" = "w(m(t))"
* set(f) — "w(n(f(ty,...,tn))" = w(f) +

Tif(1 € w(f), "w(r(t1))7,0)" + ... + Tif(n € n(f), "w(w(t,))7,0)7
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Solution of Encoding KBO + AF (2/2)

e having integer variables "w(x(t))™ and an encoding of V(7 (s)) 2 V(n(t)), encoding
term comparisons in KBO + AF is now similar to the term comparison of LPO + AF
e additional challenge: admissibility
® we need to encode "unary(f)? := set(f) A "exactlyOne(1 € = (f),...,n € =w(f))"
® being largest in precedence can be restricted to those symbols g that remain

Cunary(f)? — w(f) = 0 — A\ (set(g) — p(f) > p(9))
g#f

* weights for constants need to be adjusted: set(f) — (A, (i € 7(f))) — w(f) > wo
® no weight restrictions for w(f) apply, whenever —set(f)
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2. Lazy SMT Approach: Overview
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SMT Solving at a Glance

® DPLL(T) is common approach for SMT solving
® requirement: theory solver for T
® given conjunction of literals, decide T-satisfiability
e overview of theory solvers
® LRA: simplex algorithm (Dutertre and de Moura)
® incremental interface
® delivers minimal unsatisfiable cores
® LIA: LRA + branch-and-bound algorithm
® call simplex on constraints ¢
® if pis unsatin Q then return “unsat”
® if solution delivers a(x) = q ¢ Z, then branch on ¢ A x < |g] “or” ¢ AXx > [q]
® otherwise, return integer solution
® many extensions for LIA
® EUF: congruence closure algorithm
® combination of theories: Nelson-Oppen, deterministic or nondeterministic version

® due to limited time: omit further details in this course
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3. Application: Polynomial Interpretations
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Definition (Linear Polynomial Interpretation)

¢ fix some signature F; choose for each n-ary f € F a linear polynomial p(f):
p(f) = fo + fix1 +...faXn

such that fp € Nand f; e N\ {0} for1 <i<n
® interpretation of terms

° [x] =x
o [f(ts,....tn)] = p(F){x1/[ta]. - .. Xxn/[tn]}

e definition of order: s > t iff VX. [s] > [t] where variables X range over N

Example (Termination of {plus(s(x),y) — s(plus(x,y)); plus(0,y) — y})
® choose p(0) =5 and p(plus) =2 - x; +x2 and p(s) =1+ x3

o firstrule: 2- (1 +x)+y>1+2-x+y

® secondrule:2-5+y>y
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Definition (Encoding for Linear Polynomial Interpretations)

¢ fix some signature F; encode for each n-ary f € F a linear polynomial p(f) using
(SMT) integer variables f;:

p(f) ="fo+ fax1+...faxpn

and add constraints fo > 0andf; > 1forl1 <i<n
e compute [t] symbolically and then compare coefficients for each variable:

a+bx+cy+...>a +bx+cy+...=a>a Ab>b Ac>d ...

~~
SMT constraint

Example (Constraint of first rule plus(s(x),y) — s(plus(x,y)))

plusg + plusi(so + s1x) + plusay > sg + si(plusg + plusix + plus,y)
= (plusp + plusiSp) + plusisix + plusay > (so + s1plusg) + s1plusix + siplus,y
= plusg + plusiSg > Sg + siplusg A plusis; > siplus; A plusy > siplus, SMT constr.
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Exercise

® design an optimized encoder for polynomial constraints;
you should consider a weakly monotone setting where the condition

fo>0andfi>1foralll <i<n
is weakened to
fi>0for0<i<n
e test your encoding on the following term constraints

minus(s(x),s(y)) = mlnus(x y)
minus(x, 0) 7~
s(

div(s(x),s(y)) = dlv(mmus(x y),s(y))

where s 7 t is defined as VX.[s] > [t]
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4. Non-Linear (Bit-Vector) Arithmetic
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A Problem

¢ resulting constraints are non-linear integer constraints
® problem: NIA is undecidable
® encoding does not matter: linear polynomial termination is undecidable

A Solution

e restrict search space: often small coefficients suffice, e.g., fi € {0,...,3}, i.e., each
fi is a 2-bit number

® on numbers with fixed bit-width, one can perform bit-vector arithmetic

® basic idea: encode hardware adders, multipliers, comparisons, etc. into SAT

® SMT theory QF BV: bitvector arithmetic uses eager approach for SMT solving

® result: obtain incomplete NIA solver via decidable BV theory
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Handling Overflows

e BV differs from NIA in that overflows may happen

® 3 > 3+ 3 if everything is evaluated using 2-bit unsigned numbers

¢ overflows must not happen in order to simulate NIA computations in BV
® two solutions: choose enough bits or forbid overflows
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Handling Overflows: Choose Enough Bits

e consider linear polynomial interpretation example
® non-linear formula is known

plusg + plusisg > sg + s1plusg A plus, > s;iplusy

® given b bits as input size for variables, we can bound bit-sizes of intermediate
expressions

plusg +plusy sg > sg + S1 plusg Aplusy > s; plus;
N == N N N N~ N~ =~

b b b b b b b b b
2b 2b 2b
2b+1 2b+1 2b
2b+1

® hence, one just has to perform each bit-vector operation with enough bits
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Handling Overflows: Choose Enough Bits, Optimized

® computing upper bounds on values results in better bit-bounds

plusg +plusy so > So + S1 plusp Aplusy, > s; plus;
N =~ N N N N~ N~ =~

2b—1 2b—1 2b—1 2b—1  2b_1 2b_7 2b—1 2b—1 261

— — —
(20-1)2 (20-1)2 (20-1y2
(26—1)2+20—1 (2b—1)2+42b—1 (2b—1)2

(2b—1)2420—1

® previous slide: 2b + 1 bits (7 bits, if b = 3)
e this slide: [log,((2° — 1)% + 2 — 1)] bits (6 bits, if b = 3)

W universitat

innsbruck unil; ISR 2024 SAT/SMT Solving and Applications in Rewriting session 3 4. Non-Linear (Bit-Vector) Arithmetic 16/31



Handling Overflows: Forbid Overflows

® using always enough bits might be expensive
¢ alternative
® select a fixed number of b bits for inputs
® select a fixed number of ¢ bits for calculations, b < ¢
® all intermediate expressions in formula must be representable with c bits
® add constraints that ensure that no overflow happens
® examples
® perform addition with ¢ + 1 bits and demand that highest bit of result is 0
® perform multiplication with 2c¢ bits and demand that the c highest bits of result are all 0
® encode multiplication using c bits with dedicated overflow bit
[

perform multiplication x - y with ¢ bits and demand
“position of first 1-bit in x + position of first 1-bit of y < ¢”

® coarse constraint forc = 3

X3X2X1X0 - Y3Y2Y1Yo = Z322Z21Z0 N\
(X3 A Xa A-x1 Vo X3 A-Xo AysA-ys Vo vz A-ys Ayl)
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5. Certification
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Current State

e SAT and SMT encodings are useful for proof search

® often easy to design encoding

® benefit from powerful SAT and SMT solvers

® here: focus on termination proving for TRSs
® problem: reliability

® SAT and SMT solver might be buggy

® |anguage binding might be buggy

® encoding might contain some mistake

® implementation of encoding might be buggy
® solution: certification

® validate generated proofs
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Certification — The Easy Direction

¢ all examples so far aimed at finding satisfying assignments
® find parameters of KBO, LPO and polynomial interpretations
® find argument filters
® every satisfying assignment leads to concrete instance of that term order, e.g.:
® KBO with wo = 5, w(plus) = 2, p(plus) > p(s), ...
® AF with 7(minus) = 1, (div) = {1}, ...
® given a concrete term order -, it is often trivial to check correct application
® checkl>rforalll{ -reR
® check admissibility of KBO parameters, ...
® the corresponding algorithms
® do not require any encodings or any invocation of a SAT or SMT solver
® are often simple to implement and are therefore less likely to be bugged
AProVE (in 2007) contained two independent implementations for several orders

@ an optimized search engine
® a simple implementation for concrete instances; used for internal validation
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Certification - Trust the Validation Algorithm

® remaining problem
® what if certification algorithm is buggy?
® what if definition of order itself is buggy?
® solution: formal verification
® formal verification: formal proof using proof assistant such as Isabelle, Coqg, Lean, ...
® verify correctness of certification algorithm
® verify properties of order, e.g., “LPO is reduction order”

® both in termination competition and confluence competition, validity of several
proofs is checked by formally verified certifier: CeTA

® several: not all proofs are supported CelA
® CelA: Certified Tool Assertions, developed in Innsbruck

e example: all CR/COM/INF-tags in ARI-database are validated by CelA
https://ari-cops.uibk.ac.at/ARI/?m=results
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Formally Verified Certification

1
TRS&property
1 algorithms & techniques -
| Literature | > Analysis Tool
theorems E
& proofs !

Isabelle/HOL ansvygr &
certificate

I code generation |
| IsaFoR | >| CeR

<«
*___

1
accept/reject;

http://cl-informatik.uibk.ac.at/software/ceta/
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Certification with CelA
® about CeA
® CélA is just a Haskell program

® no external libraries required
® easy to use

® ghc --make Main.hs -o ceta
® ceta cpf_proof.xml
® CPF: Certification Problem Format
® XML
® domain-specific proof format, no Isabelle knowledge required
® covers term rewriting and integer transition systems
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® CPF generation is usually straight-forward; in miniTT: 83 lines, cf. Proof .hs
® result of miniTT cpf kbo plus.ari > kbo_plus.xml

<?7xml version="1.0"7>

<?xml-stylesheet type="text/xsl" href="xml/cpf3HTML.xsl"?>

<certificationProblem xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="xml/cpf3.xsd"><cpfVersion>3.0</cpfVersion><lookupTables/>
<input><trsInput><trs><rules><rule><funapp><name>plus</name><funapp><name>s</name><var>n
</var></funapp><var>m</var></funapp><funapp><name>s</name><funapp><name>plus</name><var>n
</var><var>m</var></funapp></funapp></rule><rule><funapp><name>plus</name><funapp><name>0
</name></funapp><var>m</var></funapp><var>m</var></rule></rules></trs></trsInput></input>
<property><termination/></property><answer><yes/></answer><proof><trsTerminationProof>
<ruleRemoval><knuthBendixOrder><w0>1</w0><precedenceWeight><precedenceWeightEntry><name>0

</name><arity>0</arity><precedence>0</precedence><weight>1</weight></precedenceWeightEntry
><precedenceWeightEntry><name>plus</name><arity>2</arity><precedence>1</precedence><weight

>0</weight></precedenceWeightEntry><precedenceWeightEntry><name>s</name><arity>1</arity>
<precedence>0</precedence><weight>1</weight></precedenceWeightEntry></precedenceWeight>

</knuthBendixOrder><trs><rules><rule><funapp><name>plus</name><funapp><name>s</name><var>n

</var></funapp><var>m</var></funapp><funapp><name>s</name><funapp><name>plus</name><var>n
</var><var>m</var></funapp></funapp></rule><rule><funapp><name>plus</name><funapp><name>0

</name></funapp><var>m</var></funapp><var>m</var></rule></rules></trs><trsTerminationProof

><rIsEmpty/></trsTerminationProof></ruleRemoval></trsTerminationProof></proof>
</certificationProblem>
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Adding Indentation

<certificationProblem>
<input><trs> ... <property><termination> ... <answer><yes>

<knuthBendixOrder>

<w0>1</w0>

<precedenceWeight>
<precedenceWeightEntry>
<name>0</name>
<arity>0</arity>
<precedence>0</precedence>
<weight>1</weight>
</precedenceWeightEntry>
<precedenceWeightEntry>
<name>plus</name>
<arity>2</arity>
<precedence>1</precedence>
<weight>0</weight>
</precedenceWeightEntry>

</precedenceWeight>
</knuthBendixOrder>

</certificationProblem>
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CPF is Human Readable

e conversion to HTML: xsltproc cpf3HTML.xsl kbo_plus.xml > kbo_plus.html

The rewrite relation of the following TRS is considered.

plus(s(n),m) — s(plus(n,m))
plus(O,m) - m

Property / Task
Prove or disprove termination.
Answer / Result

Yes.

Proof (by miniTT)
1 Rule Removal

Using the Knuth Bendix order with w0 = 1 and the following precedence and weight functions

prec(plus) = 1 weight(plus) = 0
prec(s) = 0 weight(s) = 1
prec(O) = 0 weight(0) = 1

all of the following rules can be deleted.
plus(s(n),m) — s(plus(n,m))
plus(O,m) —» m
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Beyond Straight-Forward Certification

IsaFoR is formalization of soundness of CelA

in particular, it contains

® definitions of KBO, LPO, ...,

® formal proofs that these order have good properties, and

® verified algorithms for checking certificates

fact: tools often use optimized versions of orders, e.g.

® guasi-precedences

® x - cif cis constant with least precedence

sometimes these “optimizations” break soundness

® optimized RPO in AProVE was not closed under substitutions

® optimized WPO in NaTT was not transitive

® various incorrect versions of AC-KBO

many of these problems have been resolved by formal proofs

® design of IsaFoR: try to include all optimizations to accept many generated proofs
® example for “optimized RPO”: add further inference rule that restores closure properties
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Certification — The Hard Direction

® sometimes a successful proof requires unsatisfiability proofs

® example: termination proofs using weighted path orders (WPO)
with max-poly interpretations

® assign to each n-ary function symbol a max-polynomial, i.e.,
an arithmetic expression of 7(N U {+, x, max}, {X1,...,Xn})
® example

[if-then-else](x, y, z) = max(y, 2)
[Cons](x,xs) =1+ xs

® problem: how to check VX. [s] > [t]. i.e., compare max-polynomials?
* solution: show that —([s] > [t]) is unsatisfiable
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Handling Max-Polynomials in CelA

® normalize max-polynomials
max(x,y) +z — max(x +z,y + 2) max(x,y) -z — max(x-z,y - 2)

result has form max?; p; where each p; is ordinary polynomial
® transform term-constraint into formula over natural number arithmetic

k m
m k
[s] > [t] <= maxp; > maxq <= /\1\/1pi > g
==

e check unsatisfiability of following formula by verified SMT solver for LIA

k m
- /\XZO%/\\/D,’>C]]'

xeVars(s,t) j=1i=1

* own solver avoids bulky certificates: O(n?) many >-compares for each WPO-constr.

L] ﬂwnr:;lgltalct?t unibz ISR 2024 SAT/SMT Solving and Applications in Rewriting session 3 5. Certification 29/31



Outline

6. Further Reading
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Further Reading

® Daniel Kroening and Ofer Strichman
Decision Procedures — An Algorithmic Point of View, Second Edition
Texts in Theoretical Computer Science, An EATCS Series, Springer, 2016

® Carsten Fuhs, Jirgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann, and Harald Zankl
SAT Solving for Termination Analysis with Polynomial Interpretations
Proceedings SAT 2007, LNCS 4501, pp. 340-354, 2007

® René Thiemann and Christian Sternagel,
Certification of Termination Proofs Using CeTA
Proceedings TPHOLs 2009, LNCS 5674, pp. 452-468, 2009

® Alexander Lochmann and Christian Sternagel,
Certified ACKBO
Proceedings CPP 2019, ACM, pp. 144-151, 2019

® René Thiemann, Jonas Schépf, Christian Sternagel, and Akihisa Yamada,
Certifying the Weighted Path Order (Invited Talk)
Proceedings FSCD 2020, LIPIcs 165, pp. 4:1-4:20, 2020
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