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Exercise

Develop a LIA encoding that searches for an argument filter π in combination with KBO
parameters

⌜π(s) ≻ π(t)⌝

definitions

• π(x) = x

• π(f(t1, . . . , tn)) =

{
π(ti), if π(f) = i

f([π(ti) | i← [1..n], i ∈ π(f)]), if π(f) is a set
• w(x) = w0

• w(f(t1, . . . , tn)) = w(f) + w(t1) + · · ·+ w(tn)
• s ≻ t if V(s) ⊇ V(t) ∧ (w(s) > w(t) ∨ w(s) ≥ w(t) ∧ ... some cases ...)
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Solution of Encoding KBO + AF (1/2)

• we use propositional variables set(f), i ∈ π(f) to represent AFs as for LPO
• we use the same constraints to enforce that the AF is well-formed
• if-then-else is written as ⌜if(b, t, e)⌝; it is a short-cut for
• creating a fresh integer variable i
• returning i as the result of ⌜if(b, t, e)⌝
• adding b→ i = t and ¬b→ i = e to global constraints

• encode frequency of variable x in term t as integer variable ⌜#x(π(t))⌝; add constr.
• ⌜#x(π(x))⌝ = 1 and ⌜#x(π(y))⌝ = 0 if x ̸= y
• ⌜#x(π(f(t1, . . . , tn)))⌝ = ⌜if(1 ∈ π(f), ⌜#x(π(t1))⌝,0)⌝+ . . .+ ⌜if(n ∈ π(f), ⌜#x(π(tn))⌝,0)⌝

• now V(π(s)) ⊇ V(π(t)) is encoded as
∧

x∈V(t)⌜#x(π(s))⌝ ≥ ⌜#x(π(t))⌝
• the weight computation is similar using integer variables ⌜w(π(t))⌝
• ⌜w(π(x))⌝ = w0

• ¬set(f)→ i ∈ π(f)→ ⌜w(π(f(t1, . . . , tn))⌝ = ⌜w(π(ti))⌝
• set(f)→ ⌜w(π(f(t1, . . . , tn))⌝ = w(f) +

⌜if(1 ∈ π(f), ⌜w(π(t1))⌝,0)⌝+ . . .+ ⌜if(n ∈ π(f), ⌜w(π(tn))⌝,0)⌝
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Solution of Encoding KBO + AF (2/2)

• having integer variables ⌜w(π(t))⌝ and an encoding of V(π(s)) ⊇ V(π(t)), encoding
term comparisons in KBO + AF is now similar to the term comparison of LPO + AF
• additional challenge: admissibility
• we need to encode ⌜unary(f)⌝ := set(f) ∧ ⌜exactlyOne(1 ∈ π(f), . . . ,n ∈ π(f))⌝
• being largest in precedence can be restricted to those symbols g that remain

⌜unary(f)⌝→ w(f) = 0→
∧
g̸=f

(set(g)→ p(f) > p(g))

• weights for constants need to be adjusted: set(f)→ (
∧

i ¬(i ∈ π(f)))→ w(f) ≥ w0

• no weight restrictions for w(f) apply, whenever ¬set(f)
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SMT Solving at a Glance

• DPLL(T) is common approach for SMT solving
• requirement: theory solver for T
• given conjunction of literals, decide T-satisfiability

• overview of theory solvers
• LRA: simplex algorithm (Dutertre and de Moura)

• incremental interface
• delivers minimal unsatisfiable cores

• LIA: LRA + branch-and-bound algorithm
• call simplex on constraints φ
• if φ is unsat in Q then return “unsat”
• if solution delivers α(x) = q /∈ Z, then branch on φ ∧ x ≤ ⌊q⌋ “or” φ ∧ x ≥ ⌈q⌉
• otherwise, return integer solution

• many extensions for LIA
• EUF: congruence closure algorithm
• combination of theories: Nelson–Oppen, deterministic or nondeterministic version

• due to limited time: omit further details in this course
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Definition (Linear Polynomial Interpretation)

• fix some signature F ; choose for each n-ary f ∈ F a linear polynomial p(f):

p(f) = f0 + f1x1 + . . . fnxn

such that f0 ∈ N and fi ∈ N \ {0} for 1 ≤ i ≤ n
• interpretation of terms
• [[x]] = x
• [[f(t1, . . . , tn)]] = p(f){x1/[[t1]], . . . , xn/[[tn]]}

• definition of order: s ≻ t iff ∀x⃗. [[s]] > [[t]] where variables x⃗ range over N

Example (Termination of {plus(s(x), y)→ s(plus(x, y)); plus(0, y)→ y})
• choose p(0) = 5 and p(plus) = 2 · x1 + x2 and p(s) = 1 + x1

• first rule: 2 · (1 + x) + y > 1 + 2 · x+ y
• second rule: 2 · 5 + y > y
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Definition (Encoding for Linear Polynomial Interpretations)

• fix some signature F ; encode for each n-ary f ∈ F a linear polynomial p(f) using
(SMT) integer variables fi:

p(f) = f0 + f1x1 + . . . fnxn

and add constraints f0 ≥ 0 and fi ≥ 1 for 1 ≤ i ≤ n
• compute [[t]] symbolically and then compare coefficients for each variable:

a+ bx+ cy+ . . . > a′ + b′x+ c′y+ . . . ≡ a > a′ ∧ b ≥ b′ ∧ c ≥ c′ ∧ . . .︸ ︷︷ ︸
SMT constraint

Example (Constraint of first rule plus(s(x), y)→ s(plus(x, y)))

plus0 + plus1(s0 + s1x) + plus2y > s0 + s1(plus0 + plus1x+ plus2y)

≡ (plus0 + plus1s0) + plus1s1x+ plus2y > (s0 + s1plus0) + s1plus1x+ s1plus2y

≡ plus0 + plus1s0 > s0 + s1plus0 ∧ plus1s1 ≥ s1plus1 ∧ plus2 ≥ s1plus2 SMT constr.
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Exercise

• design an optimized encoder for polynomial constraints;
you should consider a weakly monotone setting where the condition

f0 ≥ 0 and fi ≥ 1 for all 1 ≤ i ≤ n

is weakened to

fi ≥ 0 for 0 ≤ i ≤ n

• test your encoding on the following term constraints

minus(s(x), s(y)) ≿ minus(x, y)

minus(x,0) ≿ x

div(s(x), s(y)) ≻ div(minus(x, y), s(y))

where s ≿ t is defined as ∀x⃗.[[s]] ≥ [[t]]
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A Problem

• resulting constraints are non-linear integer constraints
• problem: NIA is undecidable
• encoding does not matter: linear polynomial termination is undecidable

A Solution

• restrict search space: often small coefficients suffice, e.g., fi ∈ {0, . . . ,3}, i.e., each
fi is a 2-bit number
• on numbers with fixed bit-width, one can perform bit-vector arithmetic
• basic idea: encode hardware adders, multipliers, comparisons, etc. into SAT
• SMT theory QF_BV: bitvector arithmetic uses eager approach for SMT solving
• result: obtain incomplete NIA solver via decidable BV theory
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Handling Overflows

• BV differs from NIA in that overflows may happen
• 3 > 3 + 3 if everything is evaluated using 2-bit unsigned numbers
• overflows must not happen in order to simulate NIA computations in BV
• two solutions: choose enough bits or forbid overflows
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Handling Overflows: Choose Enough Bits

• consider linear polynomial interpretation example
• non-linear formula is known

plus0 + plus1s0 > s0 + s1plus0 ∧ plus2 ≥ s1plus2

• given b bits as input size for variables, we can bound bit-sizes of intermediate
expressions

plus0︸ ︷︷ ︸
b

+plus1︸ ︷︷ ︸
b

s0︸︷︷︸
b︸ ︷︷ ︸

2b︸ ︷︷ ︸
2b+1

> s0︸︷︷︸
b

+ s1︸︷︷︸
b

plus0︸ ︷︷ ︸
b︸ ︷︷ ︸

2b︸ ︷︷ ︸
2b+1︸ ︷︷ ︸

2b+1

∧plus2︸ ︷︷ ︸
b

≥ s1︸︷︷︸
b

plus2︸ ︷︷ ︸
b︸ ︷︷ ︸

2b︸ ︷︷ ︸
2b

• hence, one just has to perform each bit-vector operation with enough bits
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Handling Overflows: Choose Enough Bits, Optimized

• computing upper bounds on values results in better bit-bounds

plus0︸ ︷︷ ︸
2b−1

+plus1︸ ︷︷ ︸
2b−1

s0︸︷︷︸
2b−1︸ ︷︷ ︸

(2b−1)2︸ ︷︷ ︸
(2b−1)2+2b−1

> s0︸︷︷︸
2b−1

+ s1︸︷︷︸
2b−1

plus0︸ ︷︷ ︸
2b−1︸ ︷︷ ︸

(2b−1)2︸ ︷︷ ︸
(2b−1)2+2b−1︸ ︷︷ ︸

(2b−1)2+2b−1

∧plus2︸ ︷︷ ︸
2b−1

≥ s1︸︷︷︸
2b−1

plus2︸ ︷︷ ︸
2b−1︸ ︷︷ ︸

(2b−1)2︸ ︷︷ ︸
(2b−1)2

• previous slide: 2b+ 1 bits (7 bits, if b = 3)
• this slide: ⌈log2((2

b − 1)2 + 2b − 1)⌉ bits (6 bits, if b = 3)

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 3 4. Non-Linear (Bit-Vector) Arithmetic 16/31



Handling Overflows: Forbid Overflows

• using always enough bits might be expensive
• alternative
• select a fixed number of b bits for inputs
• select a fixed number of c bits for calculations, b ≤ c
• all intermediate expressions in formula must be representable with c bits
• add constraints that ensure that no overflow happens
• examples

• perform addition with c+ 1 bits and demand that highest bit of result is 0
• perform multiplication with 2c bits and demand that the c highest bits of result are all 0
• encode multiplication using c bits with dedicated overflow bit
• perform multiplication x · y with c bits and demand

“position of first 1-bit in x + position of first 1-bit of y ≤ c”

• coarse constraint for c = 3

x3x2x1x0 · y3y2y1y0 = z3z2z1z0 ∧
(¬x3 ∧ ¬x2 ∧ ¬x1 ∨ ¬x3 ∧ ¬x2 ∧ ¬y3 ∧ ¬y2 ∨ ¬y3 ∧ ¬y2 ∧ ¬y1)
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Current State

• SAT and SMT encodings are useful for proof search
• often easy to design encoding
• benefit from powerful SAT and SMT solvers
• here: focus on termination proving for TRSs

• problem: reliability
• SAT and SMT solver might be buggy
• language binding might be buggy
• encoding might contain some mistake
• implementation of encoding might be buggy

• solution: certification
• validate generated proofs
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Certification – The Easy Direction

• all examples so far aimed at finding satisfying assignments
• find parameters of KBO, LPO and polynomial interpretations
• find argument filters

• every satisfying assignment leads to concrete instance of that term order, e.g.:
• KBO with w0 = 5, w(plus) = 2, p(plus) > p(s), . . .
• AF with π(minus) = 1, π(div) = {1}, . . .

• given a concrete term order ≻, it is often trivial to check correct application
• check ℓ ≻ r for all ℓ→ r ∈ R
• check admissibility of KBO parameters, . . .

• the corresponding algorithms
• do not require any encodings or any invocation of a SAT or SMT solver
• are often simple to implement and are therefore less likely to be bugged

• AProVE (in 2007) contained two independent implementations for several orders
1 an optimized search engine
2 a simple implementation for concrete instances; used for internal validation
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Certification – Trust the Validation Algorithm

• remaining problem
• what if certification algorithm is buggy?
• what if definition of order itself is buggy?

• solution: formal verification
• formal verification: formal proof using proof assistant such as Isabelle, Coq, Lean, . . .
• verify correctness of certification algorithm
• verify properties of order, e.g., “LPO is reduction order”

• both in termination competition and confluence competition, validity of several
proofs is checked by formally verified certifier: CeTA
• several: not all proofs are supported CeTA
• CeTA: Certified Tool Assertions, developed in Innsbruck

• example: all CR/COM/INF-tags in ARI-database are validated by CeTA

https://ari-cops.uibk.ac.at/ARI/?m=results
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Formally Verified Certification

Literature Analysis Tool
algorithms & techniques

TRS property

answer &
certificate

Isabelle/HOL

IsaFoR CeTA

theorems
& proofs

code generation

accept/reject

http://cl-informatik.uibk.ac.at/software/ceta/
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Certification with CeTA

• about CeTA
• CeTA is just a Haskell program
• no external libraries required
• easy to use

• ghc --make Main.hs -o ceta

• ceta cpf_proof.xml

• CPF: Certification Problem Format
• XML
• domain-specific proof format, no Isabelle knowledge required
• covers term rewriting and integer transition systems
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• CPF generation is usually straight-forward; in miniTT: 83 lines, cf. Proof.hs
• result of miniTT cpf kbo plus.ari > kbo_plus.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="xml/cpf3HTML.xsl"?>

<certificationProblem xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="xml/cpf3.xsd"><cpfVersion>3.0</cpfVersion><lookupTables/>

<input><trsInput><trs><rules><rule><funapp><name>plus</name><funapp><name>s</name><var>n

</var></funapp><var>m</var></funapp><funapp><name>s</name><funapp><name>plus</name><var>n

</var><var>m</var></funapp></funapp></rule><rule><funapp><name>plus</name><funapp><name>O

</name></funapp><var>m</var></funapp><var>m</var></rule></rules></trs></trsInput></input>

<property><termination/></property><answer><yes/></answer><proof><trsTerminationProof>

<ruleRemoval><knuthBendixOrder><w0>1</w0><precedenceWeight><precedenceWeightEntry><name>O

</name><arity>0</arity><precedence>0</precedence><weight>1</weight></precedenceWeightEntry

><precedenceWeightEntry><name>plus</name><arity>2</arity><precedence>1</precedence><weight

>0</weight></precedenceWeightEntry><precedenceWeightEntry><name>s</name><arity>1</arity>

<precedence>0</precedence><weight>1</weight></precedenceWeightEntry></precedenceWeight>

</knuthBendixOrder><trs><rules><rule><funapp><name>plus</name><funapp><name>s</name><var>n

</var></funapp><var>m</var></funapp><funapp><name>s</name><funapp><name>plus</name><var>n

</var><var>m</var></funapp></funapp></rule><rule><funapp><name>plus</name><funapp><name>O

</name></funapp><var>m</var></funapp><var>m</var></rule></rules></trs><trsTerminationProof

><rIsEmpty/></trsTerminationProof></ruleRemoval></trsTerminationProof></proof>

</certificationProblem>
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Adding Indentation

<certificationProblem>

... <input><trs> ... <property><termination> ... <answer><yes> ...

<knuthBendixOrder>

<w0>1</w0>

<precedenceWeight>

<precedenceWeightEntry>

<name>O</name>

<arity>0</arity>

<precedence>0</precedence>

<weight>1</weight>

</precedenceWeightEntry>

<precedenceWeightEntry>

<name>plus</name>

<arity>2</arity>

<precedence>1</precedence>

<weight>0</weight>

</precedenceWeightEntry>

...

</precedenceWeight>

</knuthBendixOrder>

...

</certificationProblem>
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CPF is Human Readable

• conversion to HTML: xsltproc cpf3HTML.xsl kbo_plus.xml > kbo_plus.html
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Beyond Straight-Forward Certification

• IsaFoR is formalization of soundness of CeTA
• in particular, it contains
• definitions of KBO, LPO, . . . ,
• formal proofs that these order have good properties, and
• verified algorithms for checking certificates

• fact: tools often use optimized versions of orders, e.g.
• quasi-precedences
• x ≿ c if c is constant with least precedence

• sometimes these “optimizations” break soundness
• optimized RPO in AProVE was not closed under substitutions
• optimized WPO in NaTT was not transitive
• various incorrect versions of AC-KBO

• many of these problems have been resolved by formal proofs
• design of IsaFoR: try to include all optimizations to accept many generated proofs
• example for “optimized RPO”: add further inference rule that restores closure properties
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Certification – The Hard Direction

• sometimes a successful proof requires unsatisfiability proofs
• example: termination proofs using weighted path orders (WPO)

with max-poly interpretations
• assign to each n-ary function symbol a max-polynomial, i.e.,

an arithmetic expression of T (N ∪ {+,×,max}, {x1, . . . , xn})
• example

[[if-then-else]](x, y, z) = max(y, z)

[[Cons]](x, xs) = 1 + xs

• problem: how to check ∀x⃗. [[s]] > [[t]], i.e., compare max-polynomials?
• solution: show that ¬([[s]] > [[t]]) is unsatisfiable
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Handling Max-Polynomials in CeTA

• normalize max-polynomials

max(x, y) + z→ max(x+ z, y+ z) max(x, y) · z→ max(x · z, y · z)

result has form maxmi=1 pi where each pi is ordinary polynomial
• transform term-constraint into formula over natural number arithmetic

[[s]] > [[t]] ⇐⇒ m
max
i=1

pi >
k

max
j=1

qj ⇐⇒
k∧

j=1

m∨
i=1

pi > qj

• check unsatisfiability of following formula by verified SMT solver for LIA

¬

 ∧
x∈Vars(s,t)

x ≥ 0→
k∧

j=1

m∨
i=1

pi > qj


• own solver avoids bulky certificates: O(n2) many >-compares for each WPO-constr.
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Further Reading
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Decision Procedures – An Algorithmic Point of View, Second Edition
Texts in Theoretical Computer Science, An EATCS Series, Springer, 2016

• Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann, and Harald Zankl
SAT Solving for Termination Analysis with Polynomial Interpretations
Proceedings SAT 2007, LNCS 4501, pp. 340 – 354, 2007

• René Thiemann and Christian Sternagel,
Certification of Termination Proofs Using CeTA
Proceedings TPHOLs 2009, LNCS 5674, pp. 452 – 468, 2009

• Alexander Lochmann and Christian Sternagel,
Certified ACKBO
Proceedings CPP 2019, ACM, pp. 144 – 151, 2019

• René Thiemann, Jonas Schöpf, Christian Sternagel, and Akihisa Yamada,
Certifying the Weighted Path Order (Invited Talk)
Proceedings FSCD 2020, LIPIcs 165, pp. 4:1 –4:20, 2020
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