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Solution of Encoding KBO + AF (1/2)

* we use propositional variables set(). € () to represent AFs as for LPO
Develop a LIA encoding that searches for an argument filter 7 in combination with KBO * we use the same constraints to enforce that the AF is well-formed
parameters e if-then-else is written as "if(b, t,e)™; it is a short-cut for
rﬂ(s) . W(t)—l ® creating a fresh integer variable i
o ® returning i as the result of "if(b, t,e)”

definitions ® adding b — i =t and =b — i = e to global constraints
° 1(x)=x e encode frequency of variable x in term t as integer variable "#(w(t))"; add constr.
o i L] if 7(f) =i ® T#x(m(x))" = 1and "#(n(y))" =0ifx £y

T D= ey 1 e (D), () i 2 set © TRt o ) = TIF(L € (), T (8)) ) 0)T -+ Tif(n € (), Tt (t0)),0)
o w(x) = wo * now V(7(s)) 2 V(m(t)) is encoded as /\Xev(t)r;%&x(w(s))j > T (m(t))
o W(f(ty, ... t)) = w(f) + w(ty) + -+ w(ty) ® the weight computation is similar using integer variables "w(m(t))
* s> tif V(s) D V(t) A (w(s) > w(t) V w(s) > w(t) A ... some cases ...) 2 g =

* —set(f) — i€ n(f) = "w(r(f(ts,...,tn))" = "w(n(t))"
o set(f) — "w(n(f(ts,...,tn))" = w(f) +
Tif(1 € 7(f), "w(m(t1))7,0) " + ... + Tif(n € n(F), "w(m(tn))",0)7
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Solution of Encoding KBO + AF (2/2)

* having integer variables "w(7(t))™ and an encoding of V(7(s)) 2 V(x(t)), encoding

term

comparisons in KBO + AF is now similar to the term comparison of LPO + AF

® additional challenge: admissibility
® we need to encode "unary(f)" := set(f) A "exactlyOne(1 € x(f),...,n € w(f))"

® be

ing largest in precedence can be restricted to those symbols g that remain

Tunary(f)" — w(f) =0 — /\(set(g) — p(f) > p(9))
g#f

® weights for constants need to be adjusted: set(f) — (A, (i € 7(f))) = w(f) > wo

® no

weight restrictions for w(f) apply, whenever —set(f)
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2. Lazy SMT Approach: Overview
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® DPLL(T) is common approach for SMT solving

® requ

irement: theory solver for T

® given conjunction of literals, decide T-satisfiability
® overview of theory solvers
® LRA: simplex algorithm (Dutertre and de Moura)

incremental interface
delivers minimal unsatisfiable cores

® LIA: LRA + branch-and-bound algorithm

call simplex on constraints ¢

if ¢ is unsat in Q then return “unsat”

if solution delivers a(x) = g ¢ Z, then branch on ¢ A x < [g]| “or” ¢ Ax > [q]
otherwise, return integer solution

® many extensions for LIA
® EUF: congruence closure algorithm

® co

mbination of theories: Nelson-Oppen, deterministic or nondeterministic version

® due to limited time: omit further details in this course
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— : . - Definition (Encoding for Linear Polynomial Interpretations)
Definition (Linear Polynomial Interpretation)

* fix some signature F; encode for each n-ary f € F a linear polynomial p(f) using

* fix some signature F; choose for each n-ary f € F a linear polynomial p(f): (SMT) integer variables f:
7

p(f) = fo+ fixy + ... faxn p(f) = fo + fixs + ... foxn

.S'UCh that f(.’ €Nandfi e N\ {0} forl <i<n and add constraints fp > 0andf; > 1forl1 <j<n
® interpretation of terms

o [x] = x e compute [t] symbolically and then compare coefficients for each variable:
* [f(ts,....t))] = p(F){x1/[ta], .-, Xn/ [t}

at+bx+cy+...>a +bx+cy+...=a>a Ab>bAc>d ...
e definition of order: s > t iff VX. [s] > [t] where variables X range over N

SMT constraint

Example (Termination of {plus(s(x),y) — s(plus(x,y)); plus(0,y) — y}) Example (Constraint of first rule plus(s(x), y) — s(plus(x,y)))

® choose p(0) = 5 and p(plus) =2 - x; +x2 and p(s) =1+ x;

o firstrule: 2-(1+X)+y>1+2-X+y plusg + plusi(sg + s1x) + plusay > sg + s1(pluse + plusix + pluszy)
e secondrule:2-5+4y >y = (plusg + plusiSo) + plusisix + plusay > (so + S1plusg) + s1plusix + siplus,y
= plusg + plusisg > sg + s1plusg A plusisi > siplus: A plusy; > siplus,  SMT constr.
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® design an optimized encoder for polynomial constraints;
you should consider a weakly monotone setting where the condition

fo>0andf,>1foralll <i<n
is weakened to
fi>0for0<i<n

® test your encoding on the following term constraints 4. Non-Linear (Bit-Vector) Arithmetic

minus(s(x),s(y)) = minus(x,y)
minus(x, 0) = x

div(s(x),s(y)) = div(minus(x,y),s(y))

where s = t is defined as VX.[s] > [t]
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A Problem

® resulting constraints are non-linear integer constraints
® problem: NIA is undecidable
® encoding does not matter: linear polynomial termination is undecidable

A Solution

e restrict search space: often small coefficients suffice, e.g., fi € {0,...,3}, i.e., each
fi is a 2-bit number

® on numbers with fixed bit-width, one can perform bit-vector arithmetic

® basic idea: encode hardware adders, multipliers, comparisons, etc. into SAT

e SMT theory QF_BV: bitvector arithmetic uses eager approach for SMT solving

® result: obtain incomplete NIA solver via decidable BV theory
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Handling Overflows: Choose Enough Bits

® consider linear polynomial interpretation example
® non-linear formula is known

plusg + plusisg > so + s1plusg A plus; > siplus;

® given b bits as input size for variables, we can bound bit-sizes of intermediate
expressions

plusg +plusy so > so + s1 plusg Aplusy; > s; plus;
N N M~ =N N = M~ N——

b b b b b b b b b
2b 2b 2b
2b+1 2b+1 2b
2b+1

® hence, one just has to perform each bit-vector operation with enough bits
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Handling Overflows

BV differs from NIA in that overflows may happen

3 > 3 + 3 if everything is evaluated using 2-bit unsigned numbers

e overflows must not happen in order to simulate NIA computations in BV
® two solutions: choose enough bits or forbid overflows

B universitat
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Handling Overflows: Choose Enough Bits, Optimized

® computing upper bounds on values results in better bit-bounds

plusg +plusy so > so + s1 plusg Aplusy; > s; plus;
N~ N N~ =N N N~ M~ -

2b—1 2b_1 2b—1 2b_1 2b_1 2b_3 2b—1 2b—1 2071

——— N—_—— N———
(2b—-1)? (2b-1)? (2b-1)?
(20—1)242b—1 (2—1)242b—1 (20—1)2
(2b—1)242b—1
® previous slide: 2b + 1 bits (7 bits, if b = 3)
e this slide: [log,((2° — 1)? 4 2° — 1)] bits (6 bits, if b = 3)
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Handling Overflows: Forbid Overflows

® using always enough bits might be expensive
e alternative
® select a fixed number of b bits for inputs
® select a fixed number of ¢ bits for calculations, b < ¢
® all intermediate expressions in formula must be representable with c bits
® add constraints that ensure that no overflow happens
® examples
® perform addition with ¢ + 1 bits and demand that highest bit of result is 0
® perform multiplication with 2c¢ bits and demand that the ¢ highest bits of result are all 0
® encode multiplication using c bits with dedicated overflow bit
® perform multiplication x - y with ¢ bits and demand
“position of first 1-bit in x + position of first 1-bit of y < ¢”

® coarse constraint forc = 3

X3X2X1X0 * Y3Y2Y1Y0 = 23222120 N\
(Xx3sAXA=x1 V. x3A X Ayzs Aoy, Vo vz Ay Ayr)
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Current State

® SAT and SMT encodings are useful for proof search

® often easy to design encoding

® benefit from powerful SAT and SMT solvers

® here: focus on termination proving for TRSs
® problem: reliability

® SAT and SMT solver might be buggy

® |language binding might be buggy

® encoding might contain some mistake

® implementation of encoding might be buggy
® solution: certification

® validate generated proofs
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5. Certification
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Certification — The Easy Direction

® all examples so far aimed at finding satisfying assignments
® find parameters of KBO, LPO and polynomial interpretations
® find argument filters
® every satisfying assignment leads to concrete instance of that term order, e.g.:
® KBO with wg = 5, w(plus) = 2, p(plus) > p(s), ...
® AF with 7(minus) = 1, n(div) = {1}, ...
® given a concrete term order >, it is often trivial to check correct application
® check/>rforalll - reR
® check admissibility of KBO parameters, ...
® the corresponding algorithms
® do not require any encodings or any invocation of a SAT or SMT solver
® are often simple to implement and are therefore less likely to be bugged
AProVE (in 2007) contained two independent implementations for several orders
@ an optimized search engine
@ a simple implementation for concrete instances; used for internal validation

u :Jn"rj‘slggf“(tgl unibz ISR 2024 SAT/SMT Solving and Applications in Rewriting  session 3 5. Certification 20/31



Certification — Trust the Validation Algorithm

® remaining problem
® what if certification algorithm is buggy?
® what if definition of order itself is buggy?
® solution: formal verification
® formal verification: formal proof using proof assistant such as Isabelle, Coq, Lean, ...
® verify correctness of certification algorithm
® verify properties of order, e.g., “LPO is reduction order”

® both in termination competition and confluence competition, validity of several
proofs is checked by formally verified certifier: CeTA

® several: not all proofs are supported CeA
® CélA: Certified Tool Assertions, developed in Innsbruck

e example: all CR/COM/INF-tags in ARI-database are validated by CeA
https://ari-cops.uibk.ac.at/ARI/?m=results
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Certification with CelA

® about CeA
® CéeA is just a Haskell program
® no external libraries required
® easy to use
® ghc --make Main.hs -o ceta
® ceta cpf_proof.xml
® CPF: Certification Problem Format
® XML
® domain-specific proof format, no Isabelle knowledge required
® covers term rewriting and integer transition systems
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Formally Verified Certification

TRS : property
- algorithms & techniques *
Literature Analysis Tool
theorems :
& proofs |

Isabelle/HOL ansv.vgr &
certificate

S— code generation
IsaFoR 9 CeA

1
accept/reject;

http://cl-informatik.uibk.ac.at/software/ceta/
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® CPF generation is usually straight-forward; in miniTT: 83 lines, cf. Proof .hs
® result of miniTT cpf kbo plus.ari > kbo_plus.xml

<?xml version="1.0"7>
<7xml-stylesheet type="text/xsl" href="xml/cpf3HTML.xs1"?>
<certificationProblem xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="xml/cpf3.xsd"><cpfVersion>3.0</cpfVersion><lookupTables/>
<input><trsInput><trs><rules><rule><funapp><name>plus</name><funapp><name>s</name><var>n
</var></funapp><var>m</var></funapp><funapp><name>s</name><funapp><name>plus</name><var>n
</var><var>m</var></funapp></funapp></rule><rule><funapp><name>plus</name><funapp><name>0
</name></funapp><var>m</var></funapp><var>m</var></rule></rules></trs></trsInput></input>
<property><termination/></property><answer><yes/></answer><proof><trsTerminationProof>
<ruleRemoval><knuthBendixOrder><w0>1</w0><precedenceWeight><precedenceWeightEntry><name>0
</name><arity>0</arity><precedence>0</precedence><weight>1</weight></precedenceWeightEntry
><precedenceWeightEntry><name>plus</name><arity>2</arity><precedence>1</precedence><weight
>0</weight></precedenceWeightEntry><precedenceWeightEntry><name>s</name><arity>1</arity>
<precedence>0</precedence><weight>1</weight></precedenceWeightEntry></precedenceWeight>
</knuthBendixOrder><trs><rules><rule><funapp><name>plus</name><funapp><name>s</name><var>n
</var></funapp><var>m</var></funapp><funapp><name>s</name><funapp><name>plus</name><var>n
</var><var>m</var></funapp></funapp></rule><rule><funapp><name>plus</name><funapp><name>0
</name></funapp><var>m</var></funapp><var>m</var></rule></rules></trs><trsTerminationProof
><rIsEmpty/></trsTerminationProof></ruleRemoval></trsTerminationProof></proof>
</certificationProblem>
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Adding Indentation

<certificationProblem>
. <input><trs> ... <property><termination> ... <answer><yes> ...
<knuthBendixOrder>
<w0>1</w0>
<precedenceWeight>
<precedenceWeightEntry>
<name>0</name>
<arity>0</arity>
<precedence>0</precedence>
<weight>1</weight>
</precedenceWeightEntry>
<precedenceWeightEntry>
<name>plus</name>
<arity>2</arity>
<precedence>1</precedence>
<weight>0</weight>
</precedenceWeightEntry>

</precedenceWeight>
</knuthBendix0Order>

</certificationProblem>
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Beyond Straight-Forward Certification

® |saFoR is formalization of soundness of CelA
® in particular, it contains
® definitions of KBO, LPO, ...,
® formal proofs that these order have good properties, and
® verified algorithms for checking certificates
e fact: tools often use optimized versions of orders, e.g.
® guasi-precedences
® x - cif c is constant with least precedence
® sometimes these “optimizations” break soundness
® optimized RPO in AProVE was not closed under substitutions
® optimized WPO in NaTT was not transitive
® various incorrect versions of AC-KBO
® many of these problems have been resolved by formal proofs
® design of IsaFoR: try to include all optimizations to accept many generated proofs
® example for “optimized RPO": add further inference rule that restores closure properties
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CPF is Human Readable

® conversion to HTML: xsltproc cpf3HTML.xsl kbo_plus.xml > kbo_plus.html

The rewrite relation of the following TRS is considered.

plus(s(n),m) — s(plus(n,m))

plus(O,m) —» m
Property / Task
Prove or disprove termination.
Answer / Result
Yes.
Proof (by miniTT)
1 Rule Removal
Using the Knuth Bendix order with w0 = 1 and the following precedence and weight functions
prec(plus) = 1 weight(plus) = 0
prec(s) = 0 weight(s) = 1
prec(0) = 0 weight(0) = 1
all of the following rules can be deleted.
plus(s(n),m) — s(plus(n,m))
plus(O,m) — m
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Certification — The Hard Direction

® sometimes a successful proof requires unsatisfiability proofs

® example: termination proofs using weighted path orders (WPO)
with max-poly interpretations

® assign to each n-ary function symbol a max-polynomial, i.e.,
an arithmetic expression of 7 (N U {+, x, max}, {X1,...,Xn})
® example

[if-then-else](x, y, z) = max(y, z)
[Cons](x,xs) =1+ xs

* problem: how to check VX. [s] > [t], i.e., compare max-polynomials?
e solution: show that —([s] > [t]) is unsatisfiable
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Handling Max-Polynomials in CeA

® normalize max-polynomials
max(X,y) +z — max(x + z,y + z) max(X,y) -z — max(x-z,y - 2)
result has form max”; p; where each p; is ordinary polynomial

e transform term-constraint into formula over natural number arithmetic

kK m

[s] > [t] < maxp, > maxq, = A\Vpri>q
j=1li=1

® check unsatisfiability of following formula by verified SMT solver for LIA

- /\x>0—>/\\/p,>q,

XxeVars(s,t) j=1i=1

® own solver avoids bulky certificates: (’)(nz) many >-compares for each WPO-constr.
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Further Reading

® Daniel Kroening and Ofer Strichman
Decision Procedures - An Algorithmic Point of View, Second Edition
Texts in Theoretical Computer Science, An EATCS Series, Springer, 2016

® Carsten Fuhs, Jirgen Giesl, Aart Middeldorp, Peter Schneider-Kamp, René Thiemann, and Harald Zankl
SAT Solving for Termination Analysis with Polynomial Interpretations
Proceedings SAT 2007, LNCS 4501, pp. 340-354, 2007

® René Thiemann and Christian Sternagel,
Certification of Termination Proofs Using CeTA
Proceedings TPHOLs 2009, LNCS 5674, pp. 452-468, 2009

® Alexander Lochmann and Christian Sternagel,
Certified ACKBO
Proceedings CPP 2019, ACM, pp. 144-151, 2019

® René Thiemann, Jonas Schopf, Christian Sternagel, and Akihisa Yamada,
Certifying the Weighted Path Order (Invited Talk)
Proceedings FSCD 2020, LIPIcs 165, pp. 4:1-4:20, 2020
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