
ISR 2024 session 4

SAT/SMT Solving and Applications in Rewriting

René Thiemann 1 Sarah Winkler 2

1University of Innsbruck

2Free University of Bolzano

http://cl-informatik.uibk.ac.at/events/isr-2024/C/SW/
http://cl-informatik.uibk.ac.at/~thiemann
https://www.inf.unibz.it/~sarwinkler/

Outline

1. Solution of Exercise of Session 3

2. Beyond Reduction Orders and Termination

3. Logically Constrained Term Rewrite Systems

4. Further Reading

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 2/19

Exercise: Develop an optimized encoder for polynomial constraints

• start from initial polynomial constraints as before
• perform several simplification steps and identify fi ≥ 1 conditions
• eliminate common terms
• eliminate p ≥ 0
• simplify 0 ≥ q to q = 0
• simplify p+ q = 0 to p = 0 and q = 0
• simplify fip = 0 to p = 0 whenever fi ≥ 1 is known
• whenever fip > q conclude fi ≥ 1
• whenever fi = 0 is present, substitute and simplify everywhere else
• simplify fip ≥ fiq to p ≥ q (and also with >) whenever fi ≥ 1 is known
• . . .

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 1. Solution of Exercise of Session 3 3/19

Example (m(s(x), s(y)) ≿ m(x, y) ∧m(x, z) ≿ x ∧ d(s(x), s(y)) ≻ d(m(x, y), s(y)))

m0 + m1s0 + m2s0 ≥ m0 m1s1 ≥ m1 m2s1 ≥ m2

m0 + m200 ≥ 0 m1 ≥ 1

d0 + d1s0 + d2s0 > d0 + d1m0 + d2s0 d1s1 ≥ d1m1 d2s1 ≥ d1m2 + d2s1

m1s0 + m2s0 ≥ 0 m1s1 ≥ m1 m2s1 ≥ m2

m0 + m200 ≥ 0 m1 ≥ 1

d1s0 > d1m0 d1s1 ≥ d1m1 0 ≥ d1m2

m1s1 ≥ m1 m2s1 ≥ m2

m1 ≥ 1

d1s0 > d1m0 d1s1 ≥ d1m1 0 ≥ d1m2

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 1. Solution of Exercise of Session 3 4/19

Example (m(s(x), s(y)) ≿ m(x, y) ∧m(x, z) ≿ x ∧ d(s(x), s(y)) ≻ d(m(x, y), s(y)))

m1s1 ≥ m1 m2s1 ≥ m2

m1 ≥ 1

d1s0 > d1m0 d1s1 ≥ d1m1 0 ≥ d1m2

d1 ≥ 1 s1 ≥ 1 m2s1 ≥ m2

m1 ≥ 1

s0 > m0 s1 ≥ m1 0 ≥ m2

d1 ≥ 1 s1 ≥ 1

m1 ≥ 1

s0 > m0 s1 ≥ m1 m2 = 0

final constraints are linear!

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 1. Solution of Exercise of Session 3 5/19

Final Exercise

• knowledge: basics to encode KBO, LPO, polynomial order (POLO) via SAT/SMT
• weighted path order (WPO) combines features of KBO, LPO, and POLO
• task 1: lookup definition of WPO and design encoding
• fact: using only WPO, newcomer termination tool NaTT got 2nd place in termComp
• task 2 (optionally)
• implement the encoding in your tool
• implement dependency pairs and usable rules
• add CPF generation
• participate in termComp

• remark: miniTT was implemented from scratch in two days, including library search

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 1. Solution of Exercise of Session 3 6/19

Outline

1. Solution of Exercise of Session 3

2. Beyond Reduction Orders and Termination

3. Logically Constrained Term Rewrite Systems

4. Further Reading

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 2. Beyond Reduction Orders and Termination 7/19

Current State

1 synthesize reduction orders (KBO, LPO, POLO with fi ≥ 1)

2 synthesize reduction pairs (KBO + AF, LPO + AF, POLO with fi ≥ 0)

Using Reduction Orders

• ensure termination by demanding ℓi ≻ ri for all n rules
• ensure incremental termination: rule removal
• add n Boolean variables stricti
• ∨

stricti
• ∧

ℓi ⪰ ri
• ∧

(stricti → ℓi ≻ ri)
• solve all of these constraints
• afterwards, remove all strictly oriented rules and continue with remaining rules

works good with POLO, and for KBO and LPO with quasi-precedences

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 2. Beyond Reduction Orders and Termination 8/19

Using Reduction Pairs

• main difference to reduction order: ⪰ is closed under contexts, not ≻
• applications for termination
• combine with dependency pairs, use DP framework =⇒ big increase of power

• application for confluence
• disprove confluence of R by proving non-joinability
• given a peak t1 ←∗R s→∗

R t2, try to prove that join t1 →∗
R u ←∗R t2 is not possible

• approach via reduction pairs (or more relaxed: discrimination pairs)
• for i = 1,2 approximate usable rules Ui for ti such that ti →∗

R v implies ti →∗
Ui
v for all v

• find reduction pair such that U1 ⊆ {⪰} and U−1
2 ⊆ {⪰} and t2 ≻ t1

• application for infeasibility: given s, t,R, prove that sσ →∗
R tσ is not possible

• approach via reduction pairs (or more relaxed: co-rewrite pairs)
• find reduction pair such that R ⊆ ⪰ and t ≻ s or R−1 ⊆ ⪰ and s ≻ t

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 2. Beyond Reduction Orders and Termination 9/19

Outline

1. Solution of Exercise of Session 3

2. Beyond Reduction Orders and Termination

3. Logically Constrained Term Rewrite Systems

Applications

4. Further Reading

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems 10/19

Logically Constrained Rewriting = Term Rewriting + SMT

Idea

incorporate background theories into rewrite formalism for more convenient/efficient modeling

typically decidable by SMT solvers

Terms are built from

• theory symbols FL, including booleans and = fixed interpretation in theory

• proper symbols FT free

Logically constrained rewrite rules

f (ℓ1, . . . , ℓn)→ r [c]

• left-hand side is rooted by proper symbol

• side constraint is theory term of sort bool

• set of such rules is logically constrained rewrite system (LCTRS)

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems 11/19

Rewrite relation is union of ...

→rule apply rewrite rule if substituted constraint valid
→calc evaluate theory expressions

Example

LCTRS R over theory of integer arithmetic:

fact(x) → 1 [x ⩽ 0] fact(x) → fact(x − 1) · x [x − 1 ⩾ 0]

admits following rewrite steps:

fact(2) →rule fact(2 − 1) · 2 2 − 1 ⩾ 0 valid

→calc fact(1) · 2
→rule (fact(1 − 1) · 1) · 2 1 − 1 ⩾ 0 valid

→calc (fact(0) · 1) · 2
→rule (1 · 1) · 2 0 ⩽ 0 valid

→+
calc 2

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems 12/19

More formally ...

Definition (Logic and Terms)

• FT is sorted term signature
• FL is sorted logic signature, including boolean operations (true, false, ∧, . . .) and =
• Val := FL ∩ FT is set of constants called values
• terms T (FL,V) are called logical and associated with fixed interpretation in theory T

Definition

• logically constrained rule is triple ℓ→ r [φ] where root(ℓ) ∈ FT \ FL and r has same sort
as ℓ, and φ is logical term of sort bool

• LCTRS R is set of logically constrained rules

Example (LCTRS over theory of integer arithmetic)

• Val = {true, false} ∪ {0,1,−1,2, . . . }, FL = Val ∪ {+,−,∧,∨, ·} and FT = Val ∪ {fact}
• 0,1 + 2, x + (y− 1) are logical terms

• fact(0)→ 0 [true]
• fact(x)→ fact(x − 1) · x [x − 1 ⩾ 0]

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems 13/19

Definition (Constrained Rewriting)

• Rcalc = {f(x1, . . . , xn)→ y [y = f(x1, . . . , xn)] | f ∈ FL \ Val}
• substitution σ respects φ if φσ valid and σ(x) ∈ Val ∀x ∈ Var(φ)
• C[ℓσ]→R C[rσ] for LCTRS R if ℓ→ r [φ] ∈ R ∪Rcalc and σ respects φ

Example

• Rcalc contains e.g.

x ∧ y→ z [z = x ∧ y] x + y→ z [z = x + y]

• for LCTRS R:

(1) f(x)→ a [x ⩾ 0] (2) g(f(x), y)→ g(x, z) [x ̸= 0 ∧ z > x]

• f(f(3)) −→R f(a) 3 ⩾ 0 valid
• g(f(1), a) −→R g(1,23) 1 ̸= 0 ∧ 23 > 1 valid
• g(f(a), a) is NF x 7→ a not respectful for (2)
• g(3 + 2) −→R g(5) 5 = 3 + 2 valid

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems 14/19

Application 1: Program equivalence

Two C programs: are they equivalent?

int sum1(int arr[],int n) {

int ret=0;

for(int i=0;i<n;i++)

ret+=arr[i];

return ret;

}

int sum2(int *arr, int n) {

if (n <= 0) return 0;

return arr[n-1] + sum2(arr, n-1);

}

• programs can be transformed into LCTRS R over theory of integer arithmetic and arrays

sum1(a, n) → u(a, n, 0, 0) sum2(a, n) → return(a, 0) [n≤ 0]

u(a, n, r, i) → error [i< n ∧ (i< 0 ∨ i≥ size(a))] sum2(a, n) → error [n−1 ≥ size(a)]

u(a, n, r, i) → u(a, n, r + select(a, i), i+1) [i< n ∧ 0 ≤ i< size(a)] sum2(a, n) → w(select(a, n−1), sum2(a, n−1)) [0 ≤ n−1 < size(a)]

u(a, n, r, i) → return(a, r) [i≥ n] w(n, error) → error

w(n, return(a, r)) → return(a, n + r)

• equivalence holds if sum1(a,n) = sum2(a,n) [0≤n ≤ size(a)] is inductive theorem ✓
• inductive theorem proving for LCTRS is implemented in tool Ctrl, based on

C. Fuhs, C. Kop, N. Nishida. Verifying Procedural Programs via Constrained Rewriting Induction. ACM Trans.

Comput. Log. 18(2), 2017.

s = t [φ] is inductive theorem if sσ ↔∗
R tσ for

all ground constructor substitutions σ that respect φ

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems Applications 15/19

http://cl-informatik.uibk.ac.at/software/ctrl/

Application 2: Expression simplification in compilers

The Instcombine pass

int foo(int z) {

int x = 4 * (z | 101);
return -256 ^x;

}

0101111101010110110
1111111110111010000
0100111001010110010
1111101110111010010

define i32 @foo(i32) #0 {

%2 = or i32 %0, 101

%3 = mul nsw i32 4, %2

%4 = xor i32 -256, %3

ret i32 %4

}

define i32 @foo(i32) #0 {

%2 = shl i32 %0, 2

%3 = or i32 %2, 404

%4 = xor i32 %3, -256

ret i32 %4

}

Instcombine ∗∗ ∗

mul(x,C1) → shl(x,C2) [log2 (C1) = C2 ∧ isPowerOf2 (C1)]

• LLVM provides widely used compilation toolchain for various programming languages

• Instcombine pass performs >1000 algebraic simplifications of expressions:
multiplications to shifts, reordering bitwise operations, . . .

• optimization set is community maintained, interference unclear: termination is crucial

Termination analysis via LCTRSs

each simplification can be modeled as LCTRS rewrite rule over bitvector theory

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems Applications 16/19

Definition

LCTRS is terminating if→rule ∪ →calc is well-founded

(Non-)Termination techniques for LCTRSs in Ctrl

• termination via DP framework and polynomial interpretations
C. Kop and N. Nishida. Constrained Term Rewriting tooL. Proc. 20th LPAR, pp. 549–557, 2015.

• non-termination via loops
N. Nishida and S. Winkler. Loop Detection by Logically Constrained Term Rewriting. Proc. 10th VSTTE, pp.

309–321, 2018.

Example (Loop in Instcombine simplification set)

rewrite rule
mul(sub(y, x), z)→ mul(sub(x, y), abs(z)) [z < 08 ∧ isPowerOf2(abs(z))]

admits loop
mul(sub(18,18), (−128)8)→ mul(sub(18,18), abs((−128)8))

→calc mul(sub(18,18), (−128)8)

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems Applications 17/19

http://cl-informatik.uibk.ac.at/software/ctrl/

Outline

1. Solution of Exercise of Session 3

2. Beyond Reduction Orders and Termination

3. Logically Constrained Term Rewrite Systems

4. Further Reading

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 4. Further Reading 18/19

Further Reading

• Akihisa Yamada
Term Orderings for Non-reachability of (Conditional) Rewriting
Proceedings IJCAR 2022, LNAI 13385, pp. 248 – 267, 2022

• Takahito Aoto
Disproving Confluence of Term Rewriting Systems by Interpretation and Ordering
Proceedings FroCoS 2013, LNAI 8152,pp. 311 – 326, 2013

ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 4. Further Reading 19/19

https://doi.org/10.1007/978-3-031-10769-6_15
https://doi.org/10.1007/978-3-031-10769-6_15
https://doi.org/10.1007/978-3-031-10769-6_15
https://doi.org/10.1007/978-3-642-40885-4_22
https://doi.org/10.1007/978-3-642-40885-4_22
https://doi.org/10.1007/978-3-642-40885-4_22

	lecture 4
	Solution of Exercise of Session 3
	Beyond Reduction Orders and Termination
	Logically Constrained Term Rewrite Systems
	Applications

	Further Reading

