. UniverSItat === Freie Universitit Bozen

innsbruck VMR et anaee ISR 2024 session 4 Outline

1. Solution of Exercise of Session 3
2. Beyond Reduction Orders and Termination

3. Logically Constrained Term Rewrite Systems

4. Further Reading

SAT/SMT Solving and Applications in Rewriting

René Thiemann ! Sarah Winkler ?

LUniversity of Innsbruck

P . .
Free University of Bolzano W universitat

universitdt ynibz ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 2/19

Example (m(s(x),s(y)) Z m(x,y) Am(x,2) Z x A d(s(x),5(y)) - d(m(x,y),s(y)))

Exercise: Develop an optimized encoder for polynomial constraints

e start from initial polynomial constraints as before Mo + M1Sp + M2Sp > Mo miS; > My m>S; > m>
e perform several simplification steps and identify f; > 1 conditions mo + m>0p > 0 m; >1
SReliminateico MMOntemis do + d1S0 + d2Sp > do + dimg + d2So dis; > dimg dzs; > dim; +das;

® eliminatep > 0
® simplify0 >qtog=0

e simplifyp+q=0top=0andqg=0 M1So + M2So > 0 M1 2 My M2s1 = M2
e simplify f;p = 0 to p = 0 whenever f; > 1 is known Mo + mM200 > 0 my > 1
® whenever fip > q conclude f; > 1 disp > dimg dis; > dim; 0>dims
® whenever f; = 0 is present, substitute and simplify everywhere else
e simplify fip > fiq to p > q (and also with >) whenever f; > 1 is known miS1 > My m3S1; > Moy
° m; > 1
d1Sg > dimg dis; > dim; 0>dims

L] :Jn"ri\;ggactgl unibz ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 1. Solution of Exercise of Session 3 3/19 L] :Jn"rj\;ggactgl unibz ISR 2024 SAT/SMT Solving and Applications in Rewriting ~ session 4 1. Solution of Exercise of Session 3 4/19

http://cl-informatik.uibk.ac.at/events/isr-2024/C/SW/
http://cl-informatik.uibk.ac.at/~thiemann
https://www.inf.unibz.it/~sarwinkler/

Example (m(s(x),s(y)) Z m(x,y) Am(x,2) Z x Ad(s(x), s(y)) = d(m(x,y),s(y)))

m; > 1 ® knowledge: basics to encode KBO, LPO, polynomial order (POLO) via SAT/SMT
diSp > dimg dis; > dimq 0>dim; ® weighted path order (WPO) combines features of KBO, LPO, and POLO
® task 1: lookup definition of WPO and design encoding
dy > 1 sy > 1 mosy > Mo ® fact: usmg.only WPO, newcomer termination tool NaTT got 2nd place in termComp
~1 e task 2 (optionally @)
mL = ® implement the encoding in your tool
So > Mo S1>m 0>m; * implement dependency pairs and usable rules
® add CPF generation
d; > 1 51 > ® participate in termComp
a m; ; ® remark: miniTT was implemented from scratch in two days, including library search
So > Mo S1 > My my =0
final constraints are linear!
':Jn"r:‘slg;ﬁ(tél “"iE ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 1. Solution of Exercise of Session 3 5/19 ':Jn"r:‘;g;a‘(tﬁl ”"iE ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 1. Solution of Exercise of Session 3 6/19

Outiine

@ synthesize reduction orders (KBO, LPO, POLO with f; > 1)
@ synthesize reduction pairs (KBO + AF, LPO + AF, POLO with f; > 0)

2. Beyond Reduction Orders and Termination T L P o) (O el

® ensure termination by demanding ¢; = r; for all n rules
® ensure incremental termination: rule removal
® add n Boolean variables strict;
e \/strict;
° Nbi=ri
* A(stricti — ¢; > r;)
solve all of these constraints
® afterwards, remove all strictly oriented rules and continue with remaining rules

works good with POLO, and for KBO and LPO with quasi-precedences

L] :Jn"rj‘;g{ﬂ(tgl unibz ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 2. Beyond ion Orders and Terminati 719 L] :Jn"rj‘s/g{f“(tgl unibz ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 2. Beyond Reduction Orders and Termination 8/19

Using Reduction Pairs

® main difference to reduction order: > is closed under contexts, not >~
® applications for termination

® combine with dependency pairs, use DP framework —> big increase of power

® application for confluence
® disprove confluence of R by proving non-joinability
® given a peak t; 5 s = tp, try to prove that join t; —% u 3+ t; is not possible
® approach via reduction pairs (or more relaxed: discrimination pairs)
® fori= 1,2 approximate usable rules I for t; such that t; —% v implies t; *)Z,l_ v for all v
* find reduction pair such that¢1 C {=} andU, ' C {~}and t; - t1

e application for infeasibility: given s, t, R, prove that so —% to is not possible
® approach via reduction pairs (or more relaxed: co-rewrite pairs)
* find reduction pair suchthat R C = andt >=sorR* C = ands >t

B universitat \nibz ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 2. Beyond Reduction Orders and Termination 9/19

Logically Constrained Rewriting = Term Rewriting + SMT

typically decidable by SMT solvers

incorporate background theories into rewrite formalism for more convenient/efficient modeling

Terms are built from

® theory symbols F, including booleans and = fixed interpretation in theory
® proper symbols F+ free

f(er,. . 0 —r [

® |eft-hand side is rooted by proper symbol

® side constraint is theory term of sort bool

® set of such rules is logically constrained rewrite system (LCTRS)

L] :Jn"rj‘;g{a(tgl unibz ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems 11/19

Outline

3. Logically Constrained Term Rewrite Systems

W universitat \nibz ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems 10/19

Rewrite relation is union of ...

—7rule apply rewrite rule if substituted constraint valid
—calc evaluate theory expressions

LCTRS R over theory of integer arithmetic:

fact(x) > 1 [x < 0] fact(x) — fact(x — 1) - x [x — 1 > 0]

admits following rewrite steps:

fact(2) —wue fact(2 — 1) -2 2-1>0 valid
—ralc fact(l) -2
—rue (fact(1 —1)-1)-2
—calc (fact(0) - 1) -2
—rule (1-1) -2 0<0 valid

+
_>calc 2

1-1>0 vald

B universitat

Universitdt unibz ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems 12/19

More formally ...

Definition (Logic and Terms)

® F7is sorted term signature

® F, is sorted logic signature, including boolean operations (true, false, A, ...) and =

® Val := F, N Fr is set of constants called values

® terms 7 (F.,V) are called logical and associated with fixed interpretation in theory 7

* logically constrained rule is triple £ — r [¢] where root(¢) € F7 \ F. and r has same sort
as ¢, and ¢ is logical term of sort bool

® LCTRS R is set of logically constrained rules

Example (LCTRS over theory of integer arithmetic)

® Val = {true,false} U{0,1,-1,2,...}, /L = ValU{+,—, A, V, -} and Fr = Val U {fact}
® 0,1+ 2,x+ (y—1)are logical terms

ol f,ag{g,ﬁ@).m@ Osftpyef];\'r/sm Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems 13719

e fact(x) — fact(x — 1) -x [x — 1> 0]

Application 1: Program equivalence

Two C programs: are they equivalent?

int suml(int arr[],int n) {

int ret=0; int sum2(int *arr, int n) {
for(int i=0;i<n;i++) if (n<=0) return 0;
ret+=arr[i]; return arr [n-1] + sum2(arr, n-1);

return ret;

i

® programs can be transformed into LCTRS R over theory of integer arithmetic and arrays

suml(a, n) — u(a,n,0,0)
u(a,n,r,i) — error [i<n A (i<0Vi>size(a))]

) sum2(a, n) — return(a, 0) [n < 0]
)

u(a,n,r,i) — u(a,n, r+ select(a, i), i+1) i< n A 0 <i< size(
)

sum2(a, n) — error [n—1 > size(a)]

u(a, n, r, i) — return(a, r) [i > n] s = t[p] is inductive theorem if so <% to for

all ground constructor substitutions o that respect ¢

e equivalence holds if suml(a,n) = sum2(a,n) [0<n < size(a%is inductive theorem v

® inductive theorem proving for LCTRS is implemented in tool Ctrl, based on
@ C. Fuhs, C. Kop, N. Nishida. Verifying Procedural Programs via Constrained Rewriting Induction. ACM Trans.
Comput. Log. 18(2), 2017.

M universitat

B {nnsbruck uni; ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems Applications 15/19

Definition (Constrained Rewriting)

® Reaie = {f(x1,...,Xn) =y [y =1f(x1,...,xn)] | f € F.\ Val}

¢ substitution o respects ¢ if po valid and o(x) € Val Vx € Var(p)

® C[lo] =g Clro] for LCTRS R if £ — r [¢] € R U Rcac and o respects ¢

® Rcac Ccontains e.g.

XAy —=2z [z=xAY] X+y—z [z=x+Y]

e for LCTRS R:
(1) f) »alx >0 (2) 9(f(x).y) = 9(x.2) [x £ 0 Az > x]

* f(f(3)) —= f(a) 3 > 0 valid
° g(f(1),a) == 9(1,23) 1£0A23>1valid
® g(f(a),a) is NF X+ a not respectful for (2)
* 9(3+2)—r9(5) 5 = 3+ 2 valid
B universitat “"iE ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically C i Term Rewrite 14/19

B innsbruck

Application 2: Expression simplification in compilers

The Instcombine pass

int foo(int z) { 0101111101010110110

E X=4*(Z‘101); .T) InStcmbin_i“.) 1111111110111010000
return -256 “x; 0100111001010110010

1111101110111010010
‘mul(x‘ C1) — shl(x,C2) [log2 (C1) = C; A isPowerOf2 (C1)]‘

® LLVM provides widely used compilation toolchain for various programming languages

® |nstcombine pass performs >1000 algebraic simplifications of expressions:
multiplications to shifts, reordering bitwise operations, ...
® optimization set is community maintained, interference unclear: termination is crucial

Termination analysis via LCTRSs

each simplification can be modeled as LCTRS rewrite rule over bitvector theory

B universitat
 innsbruck

uni; ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Cs i Term Rewrite Applications 16/19

http://cl-informatik.uibk.ac.at/software/ctrl/

LCTRS is terminating if —ye U —>calc is well-founded

(Non-)Termination techniques for LCTRSs in

® termination via DP framework and polynomial interpretations
ﬁ C. Kop and N. Nishida. Constrained Term Rewriting tooL. Proc. 20th LPAR, pp. 549-557, 2015.
® non-termination via loops

ﬁ N. Nishida and S. Winkler. Loop Detection by Logically Constrained Term Rewriting. Proc. 10th VSTTE, pp.
309-321, 2018.

Example (Loop in Instcombine simplification set)

rewrite rule
mul(sub mul(sub abs < 0g A isPowerOf2(abs
admits loop
mul(sub(1g, 1), (—128), mul(sub(1g, 1g),abs((—128),
mul(sub(1sg. 1), (—128),
':Jn"r:‘slg;ﬁ(tél unibz ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 3. Logically Constrained Term Rewrite Systems Applications 17/19

Further Reading

® Akihisa Yamada
Term Orderings for Non-reachability of (Conditional) Rewriting
Proceedings IJCAR 2022, LNAI 13385, pp. 248-267, 2022

® Takahito Aoto

Disproving Confluence of Term Rewriting Systems by Interpretation and Ordering
Proceedings FroCoS 2013, LNAI 8152,pp. 311-326, 2013

B universitat

innsbruck unlE ISR 2024 SAT/SMT Solving and Applications in Rewriting session 4 4. Further Reading 19/19

Outline

4. Further Reading

W universitat P
innsbruck unibz

ISR 2024 SAT/SMT Solving and Applications in Rewriting

session 4

4. Further Reading

18/19

http://cl-informatik.uibk.ac.at/software/ctrl/
https://doi.org/10.1007/978-3-031-10769-6_15
https://doi.org/10.1007/978-3-031-10769-6_15
https://doi.org/10.1007/978-3-031-10769-6_15
https://doi.org/10.1007/978-3-642-40885-4_22
https://doi.org/10.1007/978-3-642-40885-4_22
https://doi.org/10.1007/978-3-642-40885-4_22

	lecture 4
	Solution of Exercise of Session 3
	Beyond Reduction Orders and Termination
	Logically Constrained Term Rewrite Systems
	Applications

	Further Reading

