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We introduce a system of monadic affine sized types, which substantially generalizes usual sized types and

allows in this way to capture probabilistic higher-order programs that terminate almost surely. Going beyond

plain, strong normalization without losing soundness turns out to be a hard task, which cannot be accom-

plished without a richer, quantitative notion of types, but also without imposing some affinity constraints.

The proposed type system is powerful enough to type classic examples of probabilistically terminating pro-

grams such as random walks. The way typable programs are proved to be almost surely terminating is based

on reducibility but requires a substantial adaptation of the technique.
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1 INTRODUCTION

Probabilistic models are more and more pervasive in computer science [32, 36, 40]. Moreover, the
concept of the algorithm originally assuming determinism has been relaxed so as to allow proba-
bilistic evolution since the very early days of theoretical computer science [21]. All this has given
impetus to research on probabilistic programming languages, which, however, have been stud-
ied at a large scale only in the last 20 years, following advances in randomized computation [35],
cryptographic protocol verification [4, 5], and machine learning [25]. Probabilistic programs can
be seen as ordinary programs in which specific instructions are provided to make the program
evolve probabilistically rather than deterministically. The typical examples are instructions for
sampling from a given distribution toolset or for performing probabilistic choice.

One of the most crucial properties a program should satisfy is termination: the execution pro-
cess should be guaranteed to end. In (non)deterministic computation, this is easy to formalize, since
any computation path is only considered qualitatively, and termination is a Boolean predicate on
programs: any nondeterministic program either terminates—in must or may sense—or does not.
In probabilistic programs, on the other hand, any terminating computation path is attributed a
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10:2 U. Dal Lago and C. Grellois

probability, and thus termination becomes a quantitative property. It is therefore natural to con-
sider a program terminating when its terminating paths form a set of measure one or, equivalently,
when it terminates with maximal probability. This is dubbed “almost sure termination” (AST for
short) in the literature [9], andmany techniques for automatically and semiautomatically checking
programs for AST have been introduced in the last years [13, 14, 22, 23]. All of them, however, fo-
cus on imperative programs.While probabilistic functional programming languages are nowadays
among the most successful ones in the realm of probabilistic programming [25], it is not clear at
all whether the existing techniques for imperative languages could be easily applied to functional
ones, especially when higher-order functions are involved.

In this article, we introduce a system of monadic affine sized types for a simple probabilistic
λ-calculus with recursion and show that it guarantees the AST property for all typable programs.
The type system, described in Section 4, can be seen as a nontrivial variation on the sized types of
Hughes et al. [27], whose main novelties are the following:

• Types are generalized so as to be monadic, this way encapsulating the kind of information
we need to type nontrivial examples. This information, in particular, is taken advantage of
when typing recursive programs.

• Typing rules are affine: higher-order variables cannot be freely duplicated. This is quite sim-
ilar to what happens when characterizing polynomial-time functions by restricting higher-
order languages akin to the λ-calculus [15, 26, 39].Without affinity, the type system is bound
to be unsound for AST, as explained on page 6.

The necessity of both these variations is discussed in Section 2 below. The main result of this
article is that typability in monadic affine sized types entails AST, a property that is proved using
an adaptation of theGirard-Tait reducibility technique [24]. This adaptation is technically involved,
as it needs substantial modifications to deal with possibly infinite and probabilistic computations.
In particular, every reducibility set is parameterized by a real numberp, and terms belonging to this
set are guaranteed to terminate, but only with probability p. The idea of parameterizing such sets
already appears in work by the first author and Hofmann [18], in which a notion of realizability
parameterized by resource monoids is considered. These realizability models are, however, studied
in relation to linear logic and to the complexity of normalization and do not fit as such to our
setting, even if they provided some inspiration. In our approach, the fact that recursively defined
terms are AST comes from a continuity argument on this parameter: we can prove, by unfolding
such terms, that they terminate with probability p for every p < 1, and continuity then allows one
to take the limit and deduce that they are AST. This soundness result is technically speaking the
main contribution of this article and is described in Section 6.

Versions of This Article. This article extends the ESOP 2017 conference version [30] by the same
authors.

1.1 Related Work

Sized types have been originally introduced by Hughes, Pareto, and Sabry [27] in the context of
reactive programming. A series of papers by Barthe and colleagues [3, 6, 7] presents sized types in
a way similar to the one we will adopt here, although still for a deterministic functional language.
Contrary to the otherworks on sized types, their type system is proved to admit a decidable type in-
ference; see the unpublished tutorial [6]. Abel developed independently of Barthe and colleagues a
similar type system featuring size information [1]. These three lines of work allow polymorphism,
arbitrary inductive data constructors, and ordinal sizes, so that data such as infinite trees can be
manipulated. These three features will be absent from our system in order to focus on the main
challenge, i.e., the treatment of probabilistic recursive programs. Another interesting approach is
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Probabilistic Termination by Monadic Affine Sized Typing 10:3

the one of Xi’s Dependent ML [41], in which a system of lightweight dependent types allows a
more liberal treatment of the notion of size, over which arithmetic or conditional operations may
in particular be applied. Termination is ensured by checking during typing that a given metric
decreases during recursive calls. This system is well adapted for practical termination checking
and can be extended with mutual recursion, inductive types, and polymorphism but does not fea-
ture ordinal sizes. See [1] for a detailed comparison of the previously cited systems. Some works
along these lines are able to deal with coinductive data, as well as inductive ones [1, 3, 27]. They
are related to Amadio and Coupet-Grimal’s work on guarded types ensuring productivity of infi-
nite structures such as streams [2]. None of these works deal with probabilistic computation, in
particular with almost sure termination.

There has been a lot of interest recently about probabilistic termination as a verification problem
in the context of imperative programming [13, 14, 22, 23]. Most of the literature deals, invariably,
with some form of while-style language without higher-order functions. A possible approach is
to reduce AST for probabilistic programs to the termination of nondeterministic programs [22].
Another one is to extend the concept of the ranking function to the probabilistic case [13, 14, 23].
Bournez and Garnier obtained in this way the notion of the Lyapunov ranking function [8], but
such functions capture a notion more restrictive than AST: positive almost sure termination, mean-
ing that the program is AST and terminates in expected finite time. To capture AST, the notion of
ranking supermartingale [12] has been used. Note that the use of ranking supermartingales allows
one to deal with programs that are both probabilistic and nondeterministic [13, 23] and even to
reason about programs with real-valued variables [14]. Another but related line of work deals with
program logics and about how the latter can be useful in analyzing the termination behavior and
expected runtime of imperative probabilistic programs [29, 33, 34].

From a recursion-theoretic point of view, checking (positive) almost-sure termination is harder
than checking termination of nonprobabilistic programs, where termination is at least recursively
enumerable, although undecidable: in a universal probabilistic imperative programming language,
almost-sure termination is Π0

2 complete, while positive almost-sure termination is Σ0
2 complete

[28].
Some recent works by Cappai, the first author, and Parisen Toldin [11, 19] introduce type sys-

tems ensuring that all typable programs can be evaluated in probabilistic polynomial time. This
is too restrictive for our purposes. On the one hand, we aim at termination, and restricting to
polynomial-time algorithms would be an overkill. On the other hand, the above-mentioned type
systems guarantee that the length of all probabilistic branches are uniformly bounded (by the same
polynomial). This would limit the focus to terms in which infinite computations are forbidden,
while we want the set of such computations to have probability 0. In fact, the results we present
in this article can be seen as a first step toward a type system characterizing average polynomial
time, in the style of implicit computational complexity [16].

2 WHY IS MONADIC AFFINE TYPING NECESSARY?

In this section, we justify the design choices that guided us in the development of our type system.
As we will see, the nature of AST requires a significant and nontrivial extension of the system of
sized types originally introduced to ensure termination in the deterministic case [27].

Sized Types for Deterministic Programs. The simply typed λ-calculus endowedwith a typed recur-
sion operator letrec and appropriate constructs for the natural numbers, sometimes called PCF, is
already Turing-complete,1 so that there is no hope to prove it strongly normalizing. Sized types [27]

1Indeed, Kleene algebra for partial recursive functions can be easily embedded into PCF and does not even require higher-

order recursion nor higher-order copying capabilities.
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10:4 U. Dal Lago and C. Grellois

refine the simply typed system by enriching base types with annotations so as to ensure the ter-
mination of any recursive definition. Let us explain the idea of sizes in the simple yet informative
case in which the base type is Nat. Sizes are defined by the grammar

s ::= i | ∞ | ŝ,
where i is a size variable and ŝ is the successor of the size s—with ∞̂ = ∞. These sizes permit one
to consider decorations Nats of the base type Nat, whose elements are natural numbers of size

at most s. The type system ensures that the only constant value of type Nat̂i is 0, that the only

constant values of type Nat̂̂i are 0 or 1
¯
= S 0, and so on. The type Nat∞ is the one of all natural

numbers and is therefore often denoted as Nat.
The crucial rule of the sized type system, which we present here following Barthe et al. [3],

allows one to type recursive definitions as follows:

Γ, f : Nati → σ � M : Nat̂i → σ
[̂
i/i

]
i pos σ

Γ � letrec f = M : Nats → σ [s/i]
, (1)

where i pos σ means that i or one of its iterated successors only labels instances of Nat occurring
in the positive position (the formal definition is deferred to Figure 4). This typing rule ensures that,

to recursively define the function f = M , the term M taking an input of size î calls f on inputs of
strictly lesser size i. This is, for instance, the case when typing the program

MDBL = letrec f = λx .case x of { S→ λy.S S ( f y) | 0→ 0 },
computing recursively the double of an input integer, as the hypothesis of the fix-point rule in a
typing derivation of MDBL is

f : Nati → Nat � λx .case x of { S→ λy.S S ( f y) | 0→ 0 } : Nat̂i → Nat.

The fact that f is called on an input y of strictly lesser size i is ensured by the rule typing the case

construction:

Γ � x : Nat̂i Γ � λy.S S ( f y) : Nati → Nat Γ � 0 : Nat

Γ � case x of { S→ λy.S S ( f y) | 0→ 0 } : Nat
,

where Γ = f : Nati → Nat, x : Nat̂i . The soundness of sized types for strong normalization
allows one to conclude that MDBL is indeed SN.

A Naïve Generalization to Probabilistic Terms. The aim of this article is to obtain a probabilis-
tic, quantitative counterpart to this soundness result for sized types. Note that unlike the result
for sized types, which was focusing on all reduction strategies of terms, we only consider a call-

by-value calculus.2 Terms can now contain a probabilistic choice operator ⊕p , such that M ⊕p N
reduces to the term M with probability p ∈ R[0,1], and to N with probability 1 − p. The language
and its operational semantics will be defined more extensively in Section 3. Suppose for the mo-
ment that we type the choice operator in a naïve way:

Choice
Γ � M : σ Γ � N : σ

Γ � M ⊕p N : σ
.

2Choosing a reduction strategy is crucial in a probabilistic setting; otherwise, one risks getting nasty forms of

nonconfluence [20].
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Probabilistic Termination by Monadic Affine Sized Typing 10:5

Since the original system of sized types features subtyping, it allows some flexibility to “unify” the
types of M and N to σ . However, it is easy to realize that this approach is too naïve: all proba-
bilistic executions would have to be terminating, without any hope of capturing interesting AST
programs. Indeed, nothing has been done to capture the quantitative nature of probabilistic termi-
nation. An instance of a term that is not strongly normalizing but is almost-surely terminating—
meaning that it normalizes with probability 1—is

MBIAS =
(
letrec f = λx .case x of

{
S→ λy. f (y) ⊕ 2

3
( f (S Sy))) ��� 0→ 0

})
n
¯
, (2)

simulating a biased random walk, which, on x =m + 1, goes tom with probability 2
3 and tom + 2

with probability 1
3 . The naïve generalization of the sized type system only allows us to type the

body of the recursive definition as follows:

f : Nat̂̂i → Nat∞ � λy. f (y) ⊕ 2
3

( f (S Sy))) : Nat̂i → Nat∞ (3)

and thus does not allow us to deduce any relevant information on the quantitative termination
of this term: nothing tells us that the recursive call f (S Sy) is performed with a relatively low
probability.

A Monadic Type System. Along the evaluation ofMBIAS , there is indeed a quantity that decreases
during each recursive call to the function f : the average size of the input on which the call is per-

formed. Indeed, on an input of size î, f calls itself on an input of smaller size i with probability 2
3

and on an input of greater size
̂̂
i with probability only 1

3 . To capture such a relevant quantitative

information on the recursive calls of f , and with the aim to capture almost-sure termination, we
introduce a monadic type system, in which distributions of types can be used to type in a finer
way the functions to be used recursively. In a sense, then, the distribution monad is not only ap-
plied to the operational semantics but also to types themselves. Contexts Γ |Θ will be generated
by a context Γ attributing sized types to any number of variables, while Θ will attribute a dis-

tribution of sized types to at most one variable—typically the one we want to use to recursively
define a function. Terms themselves will be typed by a distribution type, formed by combining the
Dirac distributions of types introduced in the axiom rules using the following rule for probabilistic
choice:

Choice
Γ |Θ � M : μ Γ | Ψ � N : ν 〈μ〉 = 〈ν〉

Γ |Θ ⊕p Ψ � M ⊕p N : μ ⊕p ν
.

The guard condition 〈μ〉 = 〈ν〉 ensures that μ and ν are distributions of types decorating the
same simple type. Without this condition, there is no hope to aim for a decidable type inference
algorithm.

The Fix-Point Rule. Using these monadic types, instead of the insufficiently informative typing
in Equation (3), we can derive the sequent

f :
⎧⎪⎨⎪⎩
(
Nati → Nat∞

) 2
3 ,

(
Nat̂̂i → Nat∞

) 1
3 ⎫⎪⎬⎪⎭ � λy. f (y) ⊕ 2

3
( f (S Sy))) : Nat̂i → Nat∞, (4)

in which the type of f contains finer information on the sizes of arguments over which it is called
recursively, and with which probability. This information enables us to perform a first switch from
a qualitative to a quantitative notion of termination: we will adapt the hypothesis

Γ, f : Nati → σ � M : Nat̂i → σ
[̂
i/i

]
(5)
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10:6 U. Dal Lago and C. Grellois

of the original fix rule (Equation (1)) of sized types, expressing that f is called on an argument of
size one less than the one on which M is called, to a condition meaning that there is probability 1
to call f on arguments of a lesser size after enough iterations of recursive calls. We therefore define
a random walk associated to the distribution type μ of f , the sized walk associated to μ, and which
is as follows for the typing (Equation (4)):

• The random walk starts on 1, corresponding to the size î.
• On an integer n + 1, the random walk jumps to n with probability 2

3 and to n + 2 with

probability 1
3 .

• 0 is stationary: on it, the random walk loops.

This random walk—as all sized walks will be—is an instance of the one-counter Markov decision

process [10], so that it is decidable in polynomial timewhether thewalk reaches 0with probability 1.
We will therefore replace the hypothesis in Equation (5) of the letrec rule by the quantitative
counterpart we just sketched, obtaining{ (

Natsj → ν
[
sj/i

] )pj ��� j ∈ J }
induces an AST sized walk

letrec
Γ | f :

{ (
Natsj → ν

[
sj/i

] )pj ��� j ∈ J }
� V : Nat̂i → ν

[̂
i/i

]
Γ, Δ |Θ � letrec f = V : Natr → ν [r/i]

,

where we omit two additional technical conditions to be found in Section 4 and which justify the
weakening on contexts incorporated to this rule. The resulting type system allows one to type a
variety of examples, among which is the following program computing the geometric distribution
over the natural numbers:

MEXP =
(
letrec f = λx .x ⊕ 1

2
S ( f x )

)
0, (6)

and for which the decreasing quantity is the size of the set of probabilistic branches of the term
making recursive calls to f . Another example is the unbiased random walk:

MUNB =
(
letrec f = λx .case x of

{
S→ λy. f (y) ⊕ 1

2
( f (S Sy))) ��� 0→ 0

})
n
¯
, (7)

for which there is no clear notion of decreasing measure during recursive calls but which yet
terminates almost surely, as witnessed by the sized walk associated to an appropriate derivation in
the sized type system.We therefore claim that the use of this external guard condition on associated
sized walks, allowing us to give a general condition of termination, is satisfying as it both captures
an interesting class of examples and is decidable in polynomial time.

In Section 6, we prove that this shift from a qualitative to a quantitative hypothesis in
the type system results in a shift from the soundness for strong normalization of the original
sized type system to a soundness for its quantitative counterpart: almost-sure termination. There
is a price to pay, however: proving soundness turns out to be significantly more complicated than
in the deterministic setting, as we will show in Section 6.

Why Affinity? To ensure the soundness of the letrec rule, we need onemore structural restriction
on the type system. For the sized walk argument to be adequate, we must ensure that the recursive
calls of f are indeed precisely modeled by the sized walk. This is not the case when considering,
for instance, the following term:

MNAFF =
(
letrec f = λx .case x of

{
S→ λy. f (y) ⊕ 2

3
( f (S Sy) ; f (S Sy)) ��� 0→ 0

})
n
¯
, (8)

where the sequential composition ; is defined in this call-by-value calculus as

M ; N = (λx .λy.0) M N .
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Fig. 1. A tree of recursive calls.

Note that MNAFF calls recursively f twice in the right branch of its probabilistic choice and is not
therefore modeled appropriately by the sized walk associated to its type. In fact, we would need
a generalized notion of random walk to model the recursive calls of this process; it would be a
random walk on stacks of integers. In the case where n = 1, the recursive calls to f can indeed be
represented by a tree of stacks as depicted in Figure 1, where the leftmost edges have probability
2
3 and the rightmost ones 1

3 .
The root indicates that the first call on f was on the integer 1. From it, there is either a call

of f on 0 that terminates or two calls on 2 that are put into a stack of calls, and so on. We could
prove that, without the affine restriction we are about to formulate, the termMNAFF is typable with
monadic sized types and the fixpoint rule we just designed. However, this term is not almost-surely
terminating. Notice, indeed, that the sum of the integers appearing in a stack labeling a node of
the tree in Figure 1 decreases by 1 when the left edge of probability 2

3 is taken and increases by

at least 3 when the right edge of probability 1
3 is taken. It follows that the expected increase of the

sum of the elements of the stack during one step is at least −1 × 2
3 + 3 × 1

3 =
1
3 > 0. This implies

that the probability that f is called on an input of size 0 after enough iterations is strictly less
than 1, so that the term MNAFF cannot be almost surely terminating.

Such general random processes have stacks as states and are rather complex to analyze. To the
best of the authors’ knowledge, they do not seem to have been considered in the literature. We
also believe that the complexity of determining whether 0 can be reached almost surely in such
a process, if decidable, would be very high. This leads us to the design of an affine type system,
in which the management of contexts ensures that a given probabilistic branch of a term may
only use at most once a given higher-order symbol. We do not, however, formulate restrictions
on variables of simple type Nat, as affinity is only used on the letrec rule and thus on higher-
order symbols. This is in the spirit of certain systems from implicit computational complexity
[15, 26].

Another restriction imposed by this reduction of almost-sure termination checking for higher-
order programs to almost-sure termination checking for one-counter Markov decision processes is
the fact that we do not allow a general form of nested recursion. This restriction is encoded in the
system by allowing at most one variable to have a distribution of types in the context. It follows
that programs making use of mutual recursion cannot be typed in this system.
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10:8 U. Dal Lago and C. Grellois

3 A SIMPLE PROBABILISTIC FUNCTIONAL PROGRAMMING LANGUAGE

We consider the language λ⊕ , which is an extension of the λ-calculus with recursion, constructors
for the natural numbers, and a choice operator. In this section, we introduce this language and its
operational semantics and use them to define the crucial notion of almost-sure termination.

Terms and Values. Given a set of variables X, terms and values of the language λ⊕ are defined
by mutual induction as follows:

Terms: M, N , . . . ::= V | V W | let x = M in N | M ⊕p N
| case V of { S→W | 0→ Z }

Values: V ,W , Z , . . . ::= x | 0 | S V | λx .M | letrec f = V ,

wherex , f ∈ X, andp ∈]0, 1[ are rational.Whenp = 1
2 , we oftenwrite ⊕ as a shorthand for ⊕ 1

2
. The

set of terms is denoted Λ⊕ and the set of values is denoted ΛV
⊕ . Terms of the calculus are assumed

to be in A-normal form [37]. This allows one to formulate crucial definitions in a simpler way,
concentrating in the let construct the study of the probabilistic behavior of terms. We claim that
all traditional constructions can be encoded in this formalism. For instance, the usual application
M N of two terms can be harmlessly recovered via the encoding let x = M in (let y = N in x y). In

the sequel, we write c
−→
V when a value may be either 0 or of the shape S V .

Beyond Probabilistic Choice. The only operator in λ⊕ exhibiting a genuinely probabilistic behav-
ior is ⊕p , whose evaluation corresponds to flipping a biased coin. One may wonder whether this
is a too limited form of probabilistic behavior. First of all, there is a large class of distributions
D such that there is a term MD in our language modeling sampling from D. For example, one
could do so for the geometric distribution. In fact, we claim that all computable distributions on
the natural numbers can be captured this way [20]. This of course does not mean that one could
have continuous distributions in our language: λ⊕ is discrete. Extending the language with a set
of parameterized discrete distribution symbols would not be too complicated and would not affect
our type system nor our termination result.

Term Distributions. The introduction of a probabilistic choice operator in the syntax leads to a
probabilistic reduction relation. It is therefore meaningful to consider the (operational) semantics
of a term as a distribution of values modeling the outcome of all of the finite probabilistic reduc-
tion paths of the term. For instance, the term MEXP defined in Equation (6) evaluates to the term
distribution assigning probability 1

2n+1 to the value n
¯
. Let us define this notion more formally:

Definition 3.1 (Distribution). A distribution3 on a set X is a function D : X → [0, 1], which is
strictly positive only on a countable subset of its domain, and that satisfies the constraint

∑
D =∑

x ∈X D (x ) ≤ 1, where
∑

D is called the sum of the distribution D . We say that D is proper

precisely when
∑

D = 1. We denote by PX the set of all distributions over X whether they are
proper or not. We often simply write P for PX when X is clear from the context. We define the
support S(D ) of a distribution D as S(D ) = {x ∈ X | D (x ) > 0}. When S(D ) consists only of
closed terms, we say that D is a closed distribution. When it is finite, we say that D is a finite

distribution. We call Dirac a proper distribution D such that S(D ) is a singleton. We denote by 0
the null distribution, mapping every term to the probability 0.

3What we are defining here is usually called a subdistribution in the literature. Since this concept is used in such a wide-

spread way in this article, we prefer to stick to the less baroque terminology.
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When X = Λ⊕ , we say that D is a term distribution. In the sequel, we will use a more practical
notion of representation of distributions, which enumerates the terms with their probabilities as
a family of assignments. For technical reasons, notably related to the subject reduction property,
we will also need pseudo-representations, which are essentially multiset-like decompositions of the
representation of a distribution.

Definition 3.2 (Representations and Pseudo-Representations). Let D ∈ P be of support {xi | i ∈ I},
where xi = x j implies i = j for every i, j ∈ I. The representation of D is the set D = { xD (xi )

i | i ∈
I }, where xD (xi )

i is just an intuitive way to write the pair (xi ,D (xi )). A pseudo-representation of

D is any multiset [y
pj

j | j ∈ J ] such that

∀j ∈ J , yj ∈ S(D ) ∀i ∈ I, D (xi ) =
∑

yj=xi

pj .

By abuse of notation, we will simply write D = [y
pj

j | j ∈ J ] to mean that [y
pj

j | j ∈ J ] is

a pseudo-representation of D . Any distribution has a canonical pseudo-representation obtained
by simply replacing the set-theoretic notation with the multiset-theoretic one and keeping the
underlying index set unchanged.

Definition 3.3 (ω-CPO of distributions). We define the pointwise order on distributions overX as

D � E if and only if ∀x ∈ X , D (x ) ≤ E (x ).

This turns (P, �) into a partial order. This partial order is an ω-CPO but not a lattice as the
join of two distributions does not necessarily exist. The bottom element of this ω-CPO is the null
distribution 0.

Definition 3.4 (Operations on Distributions). Given a distribution D and a real number α ≤ 1,
we define the distribution α · D as x �→ α · D (x ). We similarly define the sum D + E of two
distributions over a same set X as the function x �→ D (x ) + E (x ). Note that this is a total op-
eration on functions X → R but a partial operation on distributions: it is defined if and only if∑

D +
∑

E ≤ 1. When D � E , we define the partial operation of the difference of distributions
E −D as the functionV �→ E (V ) −D (V ). We naturally extend these operations to representations
and pseudo-representations of distributions.

Definition 3.5 (Value Decomposition of a Term Distribution). Let D be a term distribution. We

write its value decomposition as D
VD
= D |V +D |T , where D |V is the subdistribution of D whose

support consists of all the values of S(D ), andD |T = D −D |V is the subdistributionwhose support
is the “nonvalues” contained in S(D ). Both inD |V and inD |T , every element appears with the same
probability it has in D .

Operational Semantics. The semantics of a term will be the value distribution to which it reduces
via the probabilistic reduction relation, iterated up to the limit. As a first step, we define the call-
by-value reduction relation →v⊆ P × RΛ⊕ on Figure 2. The relation →v is in fact a relation on
distributions:

Lemma 3.6. Let D be a distribution such that D →v E . Then E is a distribution.

Note that we write Dirac distributions simply as terms on the left side of→v , to improve read-
ability. As usual, we denote by→n

v the nth iterate of the relation→v , with→0
v being the identity

relation. We then define the relation �n
v as follows. Let D →n

v E
VD
= E |V + E |T . Then D �n

v E |V .
Note that, for every n ∈ N and D ∈ P, there is a unique distribution E such that D →n

v E . More-
over, E |V is the only distribution such that D �n

v E |V .
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Fig. 2. Call-by-value reduction relation→v on distributions.

Lemma 3.7. Letn,m ∈ Nwithn < m. Let Dn (Dm , respectively) be the distribution such thatM →n
v

Dn (M →m
v Dm , respectively). Then Dn � Dm .

Lemma 3.8. Letn,m ∈ Nwithn < m. Let Dn (Dm , respectively) be the distribution such thatM �n
v

Dn (M �m
v Dm , respectively). Then Dn � Dm .

Definition 3.9 (Semantics of a Term, of a Distribution). The semantics of a distribution D is the
distribution �D� = supn∈N ({Dn | D �n

v Dn }). This supremum exists thanks to Lemma 3.8,
combined with the fact that (P, �) is an ω-CPO. We define the semantics of a term M as
�M� = �{M1 }�.

Corollary 3.10. Let n ∈ N and Dn be such that M �n
v Dn . Then Dn � �M�.

We now have all the ingredients required to define the central concept of this article, the one of
the almost-surely terminating term:

Definition 3.11 (Almost-Sure Termination). We say that a term M is almost-surely terminating

precisely when
∑
�M� = 1.

Before introducing typing, let us formulate the following lemma on the operational semantics
of the let construction, which will be used in the proof of typing soundness for monadic affine
sized types:

Lemma 3.12. Suppose that M �n
v [V pi | i ∈ I ] and that, for every i ∈ I, N [Vi/x] �m

v Ei . Then

let x = M in N �n+m+1
v

∑
i ∈I pi · Ei .
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What the lemma tells us is that the expected big-step evaluation rule for the let operator and
the relation �n

v is indeed derivable.

4 MONADIC AFFINE SIZED TYPING

Following the discussion from Section 2, we introduce in this section a nontrivial lifting of sized
types to our probabilistic setting. As a first step, we design an affine simple type system for λ⊕ .
This means that no higher-order variable may be used more than once in the same probabilistic
branch. However, variables of base type Nat may be used freely. In spite of this restriction, the
resulting system allows one to type terms corresponding to any probabilistic Turing machine. In
Section 4.2, we introduce a more sophisticated type system, which will be monadic and affine, and
which will be sound for almost-sure termination as we prove in Section 6.

4.1 Affine Simple Types for λ⊕

The terms of the language λ⊕ can be typed using a variant of the simple types of the λ-calculus,
extended to type letrec and ⊕p , but also restricted to an affine management of contexts. Recall
that the constraint of affinity ensures that a given higher-order symbol is used at most once in a
probabilistic branch. We define simple types over the base type Nat in the usual way: κ, κ ′, . . . ::=
Nat | κ → κ ′, where, by convention, the arrow associates to the right. Contexts Γ, Δ, . . . are
sequences of simply typed variables x :: κ. We write sequents as Γ � M :: κ to distinguish these
sequents from the ones using distribution types appearing later in this section. Before giving the
rules of the type system, we need to define an affine policy for contracting contexts.

Affine Context Contraction. The affine contraction Γ, Δ is partially defined as follows:

• x :: κ ∈ Γ \ Δ ⇒ x :: κ ∈ Γ, Δ;
• x :: κ ∈ Δ \ Γ ⇒ x :: κ ∈ Γ, Δ; and
• if x :: κ ∈ Γ and x :: κ ′ ∈ Δ,

—if κ = κ ′ = Nat, x :: κ ∈ Γ, Δ;
—in any other case, the operation is undefined.

As we explained earlier, only variables of base type Nat may be contracted.

The Affine Type System. The affine simple type system is then defined in Figure 3. All the rules are
quite standard. Higher-order variables can occur at most once in any probabilistic branch because
all binary typing rules—except probabilistic choice—treat contexts affinely.We set ΛV

⊕ (Γ,κ) = {V ∈
ΛV
⊕ | Γ � V :: κ} and Λ⊕ (Γ,κ) = {M ∈ Λ⊕ | Γ � M :: κ}. We simply write ΛV

⊕ (κ) = ΛV
⊕ (∅,κ) and

Λ⊕ (κ) = Λ⊕ (∅,κ) when the terms or values are closed. These closed, typable terms enjoy subject
reduction and the progress property.

On the Expressive Power of Affine Typing. The reader may wonder whether affine types represent
toomuch of a constraint themselves, i.e., whether the expressive power of affinely typable λ⊕ terms
is too low. Actually, affinely typable terms in λ⊕ can be shown to capture probabilistic Turing
machines, following the classic encoding of Kleene’s function algebra into PCF. We do not include
this result in this article, but the reader can refer to [31] for some results on generalizing basic
recursion-theoretical constructions to probabilistic computation.

4.2 Monadic Affine Sized Types for λ⊕

This section is devoted to giving the basic definitions and results about monadic affine sized types
(MASTs for short), which can be seen as decorations of the affine simple types with some size

information.
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Fig. 3. Affine simple types for λ⊕ .

Sized Types. We consider a set S of size variables, denoted i, j, . . ., and define sizes (called stages

in [3]) as

s, r ::= i | ∞ | ŝ,

where ·̂ denotes the successor operation. We denote the iterations of ·̂ as follows: ̂̂s is denoted ŝ
2
,̂̂̂

s is denoted ŝ
3
, and so on. By definition, at most one variable i ∈ S appears in a given size s. We

call it its spine variable, denoted as spine(s). We write spine(s) = ∅ when there is no variable in s.
An order � on sizes can be defined as follows:

s � s
s � r r � t

s � t s � ŝ s � ∞ .

Notice that these rules imply notably that ∞̂ is equivalent to ∞, i.e., ∞̂ � ∞ and ∞ � ∞̂. We
consider sizes modulo this equivalence. We can now define sized types and distribution types by
mutual induction, calling distributions of (sized) types the distributions over the set of sized types:

Definition 4.1 (Sized Types, Distribution Types). Sized types and distribution types are defined by
mutual induction contextually with the function 〈·〉, which maps any sized or distribution type to
its underlying affine type.

Sized types: σ , τ ::= σ → μ | Nats

Distribution types: μ, ν ::= { σpi

i | i ∈ I },
Underlying map: 〈σ → μ〉 = 〈σ 〉 → 〈μ〉

〈Nats〉 = Nat

〈{ σpi

i | i ∈ I }〉 = 〈σj 〉

For distribution types we require additionally that
∑

i ∈I pi ≤ 1, that I is a finite nonempty set,
and that 〈σi 〉 = 〈σj 〉 for every i, j ∈ I. In the last equation, j is any element of I. We write σ :: κ
when κ = 〈σ 〉.
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Fig. 4. Positive and negative occurrences of a size variable in a sized type and in a distribution type.

The definition of sized types is monadic in that a higher-order sized type is of the shape σ → μ,
where σ is again a sized type and μ is a distribution of sized types. This is, by the way, reminiscent
of (and inspired by) Moggi semantics for the computational lambda calculus, in which terms of
type A→ B are interpreted as �A� ⇒ ��B�, where � is, indeed, a monad.

The definition of the fix point will refer to the notion of positivity of a size variable in a sized or
distribution type. We define positive and negative occurrences of a size variable in such a type in
Figure 4. The idea is that a size variable is positive when it annotates a base type that is itself in
the positive position, and conversely for the negative position.

Contexts and Operations on Them. Contexts are sequences of variables together with a sized type
and at most one distinguished variable with a distribution type:

Definition 4.2 (Contexts). Contexts are of the shape Γ |Θ, with

Sized contexts: Γ, Δ, . . . ::= ∅ ��� x : σ , Γ (x � dom(Γ))

Distribution contexts: Θ, Ψ, . . . ::= ∅ ��� x : μ .

As usual, we define the domain dom(Γ) of a sized context Γ by induction: dom(∅) = ∅ and dom(x :
σ , Γ) = {x } � dom(Γ). We proceed similarly for the domain dom(Θ) of a distribution context Θ.
When a sized context Γ = x1 : σ1, . . . , xn : σn (n ≥ 1) is such that there is a simple type κ with
∀i ∈ {1, . . . , n}, 〈σi 〉 = κ, we say that Γ is uniform of simple type κ. We write this as 〈Γ〉 = κ.

We write Γ, Δ for the disjoint union of these sized contexts: it is defined whenever dom(Γ) ∩
dom(Δ) = ∅. We proceed similarly for Θ, Ψ but note that due to the restriction on the cardinality
of such contexts, there is the additional requirement that Θ = ∅ or Ψ = ∅.

We finally define contexts as pairs Γ |Θ of a sized context and of a distribution context, with the
constraint that dom(Γ) ∩ dom(Θ) = ∅.

Definition 4.3 (Probabilistic Sum of Distribution Types). Let μ and ν be two distribution types. We
define their probabilistic sum μ ⊕p ν as the distribution type p · μ + (1 − p) · ν .

We extend this operation to a partial and n-ary operation on distribution contexts:

Definition 4.4 (Weighted Sum of Distribution Contexts). Let (Θi )i ∈I be a nonempty family of
distribution contexts and (pi )i ∈I be a family of reals in [0, 1].We define theweighted sum

∑
i ∈I pi ·

Θi as the distribution context x :
∑

i ∈I pi · μi when the following conditions are met:

(1) ∃x , ∀i ∈ I, Θi = x : μi ;
(2) ∀(i, j ) ∈ I2, 〈Θi 〉 = 〈Θj 〉; and
(3) and

∑
i ∈I pi ≤ 1.

In any other case, the operation is undefined.
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Definition 4.5 (Substitution of a Size Variable). We define the substitution s[r/i] of a size variable
in a size as follows:

i [r/i] = r j [r/i] = j ∞ [r/i] = ∞ ŝ [r/i] =�s [r/i],
where i � j. We then define the substitution σ [s/i] (μ[s/i], respectively) of a size variable i by a
size s in a sized or distribution type as

(σ → μ ) [s/i] = σ [s/i]→ μ [s/i] (Nats ) [r/i] = Nats[r/i]({
σ

pi

i
��� i ∈ I })

[s/i] =
{

(σi [s/i])
pi ��� i ∈ I }

.

We define the substitution of a size variable in a sized or distribution context in the obvious way:

∅ [s/i] = ∅ (x : σ , Γ) [s/i] = x : σ [s/i] , Γ [s/i]

(x : μ ) [s/i] = x : μ [s/i] .

The following lemma shows that index substitution properly commutes with weighted sums of
types and contexts. It will be very useful in the sequel.

Lemma 4.6.

(1) (μ ⊕p ν )[s/i] = μ[s/i] ⊕p ν[s/i].
(2) For distribution contexts, (Θ ⊕p Ψ)[s/i] = Θ[s/i] ⊕p Ψ[s/i].
(3) For distribution contexts, (

∑
i ∈I pi · Γi )[s/i] =

∑
i ∈I pi · Γi [s/i].

Proof.

(1) Let μ = { σp′i
i | i ∈ I } and ν = { τ

p′′j
j | j ∈ J }. Then

μ [s/i] ⊕p ν [s/i]

=
{
σ

p′i
i

��� i ∈ I }
[s/i] ⊕p

{
τ

p′′j
j

��� j ∈ J }
[s/i]

=
{

(σi [s/i])
p′i ��� i ∈ I }

⊕p

{ (
τj [s/i]

)p′′j ��� j ∈ J }
=

[
(σi [s/i])

pp′i ��� i ∈ I ]
+
[ (
τj [s/i]

) (1−p )p′′j ��� j ∈ J ]
=

( [
(σi )pp′i ��� i ∈ I ]

+
[ (

τj

) (1−p )p′′j ��� j ∈ J ] )
[s/i]

= (μ ⊕p ν ) [s/i] .

(2) Suppose that Θ = x : μ and that Ψ = x : ν . Then Θ ⊕p Ψ = x : μ ⊕p ν . It follows from (1)
that Θ[s/i] ⊕p Ψ[s/i] = x : μ[s/i] ⊕p ν[s/i] = x : (μ ⊕p ν )[s/i] = (Θ ⊕p Ψ)[s/i].

(3) The proof is similar to the previous cases. �

A subtyping relation allows us to lift the order � on sizes to monadic sized types:

Definition 4.7 (Subtyping). We define the subtyping relation � on sized types and distribution
types as follows:

σ � σ

s � r
Nats � Natr

τ � σ μ � ν

σ → μ � τ → ν

∃f : I → J ,
(
∀i ∈ I, σi � τf (i )

)
and

(
∀j ∈ J , ∑

i ∈f −1 (j ) pi ≤ qj

)
{
σ

pi

i
��� i ∈ I }

�
{
τ

qj

j
��� j ∈ J } .

Sized Walks and Distribution Types. As we explained in Section 2, the rule typing letrecs in the
monadic affine type system relies on an external decision procedure, computable in polynomial
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time. This procedure ensures that the sized walk—a particular instance of the one-counter Markov

decision process (OC-MDP, see [10]), but which does not make use of nondeterminism—associated
to the type of the recursive function of interest indeed ensures almost-sure termination. Let us now
define the sized walk associated to a distribution type μ. We thenmake precise the connection with
OC-MDPs, from which the decidability (in polynomial time) of the almost-sure termination of the
random walks follows.

Definition 4.8 (Sized Walk). Let I ⊆fin N be a finite set of integers. Let {pi }i ∈I be such that∑
i ∈I pi ≤ 1. These parameters define a Markov chain whose set of states is N and whose tran-

sition relation is defined as follows:

• The state 0 ∈ N is stationary (i.e., one goes from 0 to 0 with probability 1).
• From the state s + 1 ∈ N one moves:

—to the state s + i with probability pi , for every i ∈ I;
—to 0 with probability 1 − (

∑
i ∈I pi ).

We call this Markov chain the sized walk on N associated to (I, (pi )i ∈I ). A sized walk is almost

surely terminating when it reaches 0 with probability 1 from any initial state.

Notably, checking whether a sized walk is terminating is relatively easy:

Proposition 4.9 (Decidability of AST for Sized Walks). It is decidable in polynomial time

whether a sized walk is AST.

Proof. See Section 4.3. �

The role of sized walks in our type system is intimately related to recursion, in that types allow
one to reflect the recursive call structure of the typed term into a distribution type, which can then
be seen as a sized walk and thus appropriately analyzed with dedicated decision procedures. This
is the main idea behind the following definition:

Definition 4.10 (From Types to Sized Walks). Let μ = { (Natsj → νj )
pj | j ∈ J } be a distribution

type such that ∀j ∈ J , spine (sj ) = i. Then μ induces a sized walk, defined as follows. First, by

definition, sj must be of the shape î
kj

with kj ≥ 0 for every j ∈ J . We set I = {kj | j ∈ J } and
qkj
= pj for every j ∈ J . The sized walk induced by the distribution type μ is then the sized walk

associated to (I, (qi )i ∈I )).

Example 4.11. Let μ = { (Nati → Nat∞)
1
2 , (Nat̂i

2

→ Nat∞)
1
3 }. Then the induced sized walk is

the one associated to ({0, 2}, (p0 = 1
2 , p2 =

1
3 )). In other words, it is the random walk on N that is

stationary on 0, and that on nonnull integers i + 1 moves to i with probability 1
2 , moves to i + 2

with probability 1
3 , and jumps to 0 with probability 1

6 . Note that the type μ, and therefore the
associated sized walk, models a recursive function that calls itself on a size lesser by one unit with
probability 1

2 , calls itself on a size greater by one unit with probability 1
3 , and does not call itself

with probability 1
6 .

Typing Rules. Judgments are of the shape Γ |Θ � M : μ. When a distribution μ = { σ 1 } is Dirac,
we simply write it as σ . The type system is defined in Figure 5. As earlier, we define sets of typable

terms and set Λs,V⊕ (Γ |Θ,σ ) = {V | Γ |Θ � V : σ } and Λs⊕ (Γ |Θ, μ ) = {M | Γ |Θ � M : μ}. We

abbreviate Λs,V⊕ (∅ | ∅,σ ) as Λs,V⊕ (σ ) and Λs⊕ (∅ | ∅,σ ) as Λs⊕ (σ ).
This sized type system is a refinement of the affine simple type system for λ⊕ : if x1 :

σ1, . . . , xn : σn | f : μ � M : ν , then it is easily checked that x1 :: 〈σ1〉, . . . , xn :: 〈σn〉, f ::
〈μ〉 � M :: 〈ν〉.
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Fig. 5. Affine distribution types for λ⊕ .

Lemma 4.12 (Properties of Distribution Types).

• Γ |Θ � V : μ =⇒ μ is Dirac.

• Γ |Θ � M : μ =⇒ μ is proper.

Proof. Immediate inspection of the rules. �

4.3 On Sized Walks and Almost-Sure Termination

In this section, we prove Proposition 4.9 by showing how sized walks are a very special sort of
one-counter Markov decision process (OC-MDP) and using then a result of [10] to conclude. Please
note that in [10] the Markov decision processes are more general, as they allow nondeterminism.
They are called OC-MDPs and contain in particular all the deterministic OC-MDPs. We omit this
feature in our presentation.

Definition 4.13 (Markov Decision Process). AMarkov decision process (MDP) is a tuple (V , �→, Pr )
such that V is a finite or countable set of vertices, �→ ⊆ V ×V is a total transition relation, and Pr
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is a probability assignment mapping eachv ∈ V to a probability distribution associating a rational
and nonnull probability to each edge outgoing of v . These distributions are moreover required to
sum to 1.

Definition 4.14 (Deterministic One-Counter Markov Decision Process). A deterministic one-counter

Markov decision process (DOC-MDP) is a tuple (Q,δ=0,δ>0, P=0, P>0) such that:

• Q is a finite set of states;
• δ=0 ⊆ Q × {0, 1} ×Q and δ>0 ⊆ Q × {−1, 0, 1} ×Q are sets of zero and positive transitions,

satisfying that every q ∈ Q has at least a zero and a positive outgoing transition;
• P=0 (P>0, respectively) is a probability assignment mapping every q ∈ Q to a probability

distribution over the outgoing transitions of δ=0 (δ>0, respectively) from q. These distribu-
tions are required to attribute a nonnull, rational probability to every outgoing transition,
and to sum to 1.

Definition 4.15 (Induced Markov Decision Process). A DOC-MDP (Q,δ=0,δ>0, P=0, P>0) induces
an MDP (Q × N, �→, Pr ) such that, for q ∈ Q and n ∈ N:

• for every state q′ such that (q,m,q′) ∈ δ=0, (q, 0) �→ (q′,m), and the probability of this tran-
sition is the one attributed by P=0 (q) to the transition (q,m,q′);

• for every state q′ such that (q,m,q′) ∈ δ>0, (q,n) �→ (q′,n +m), and the probability of this
transition is the one attributed by P>0 (q) to the transition (q,m,q′).

This MDP is said to terminate when it reaches the value counter 0 in any state q ∈ Q .

Recall that, by definition, |m | ≤ 1. This is the only restriction to overcome (using intermediate
states) to encode sized walks in DOC-MDPs, so that the MDP they induce coincides with the
original sized walk. We will then obtain the result of polynomial-time decidability of termination
with probability 1 using the following proposition:

Proposition 4.16 ([10], Theorem 4.1). It is decidable in polynomial time whether the MDP in-

duced by an OC-MDP—and thus by a DOC-MDP—terminates with probability 1.

We now encode sized walks as DOC-MDPs:

Definition 4.17 (DOC-MDP Corresponding to a Sized Walk). Consider the sized walk on N asso-
ciated to (I, (pi )i ∈I ). We define the corresponding DOC-MDP (Q,δ=0,δ>0, P=0, P>0) as follows.
Let us first consider the following set of states:

Q = {qα , qzero} ∪ {q1, . . . ,qj−2 | j = max{i ∈ I | i ≥ 2}},

where qα is the “main” state of the DOC-MDP and the other ones will be used for encoding pur-
poses. We define the transitions of δ>0 as follows:

• We add the transition (qzero,−1,qzero) with probability 1.
• For every j ∈ {2, . . . ,max{i ∈ I | i ≥ 2} − 2}, we add the transition (qj , 1,qj−1) with prob-

ability 1.
• We add the transition (q1, 1,qα ) with probability 1.
• For i ∈ I ∩ {0, 1, 2}, we add the transition (qα , i − 1,qα ) and attribute it with probability pi .
• For i ∈ I \ {0, 1, 2}, we add the transition (qα , 1,qi−2) and attribute it with probability pi .
• If 1 − (

∑
i ∈I pi ) > 0, we add the transition (qα ,−1,qzero) with probability 1 − (

∑
i ∈I pi ).

Finally, we define δ=0 as follows: for every state q ∈ Q , we add the transition (q, 0,q) and attribute
it with probability 1.
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It is easily checked that, by construction, these DOC-MDPs induce the same Markov decision
processes as sized walks:

Proposition 4.18. The sized walk onN associated to (I, (pi )i ∈I ) coincides with the induced MDP

of the corresponding DOC-MDP.

This allows us to deduce from the result of [10] the polynomial-time decidability of AST for
sized walks:

Corollary 4.19 (Proposition 4.9). It is decidable in polynomial time whether a sized walk is

almost-surely terminating.

Example 4.20. Recall the sized walk from Example 4.11. The algorithm allows one to decide
that it is AST. It follows from the main result of this article, Theorem 6.36, that a program whose
recursion is modeled by the sized walk of Example 4.11, such as

MBIAS =
(
letrec f = λx .case x of

{
S→ λy. f (y) ⊕ 2

3
( f (S Sy))) ��� 0→ 0

})
n
¯
,

is almost-surely terminating.

5 SUBJECT REDUCTION FOR MONADIC AFFINE SIZED TYPES

The type system enjoys a form of subject reduction adapted to the probabilistic case and more
specifically to the fact that terms reduce to distributions of terms. Let us sketch the idea of this
adapted subject reduction property on an example. The type system allows us to derive the
judgment

∅ | ∅ � 0 ⊕ 0 :

{ (
Nat̂s

) 1
2 ,

(
Nat̂̂r

) 1
2

}
, (9)

where this distribution type is formed by typing a copy of 0 with Nat̂s and the other with

Nat̂̂r . Then, the term 0 ⊕ 0 reduces to { 0 1
2 } + { 0 1

2 } = { 01 } = �0 ⊕ 0�: the operational semantics
collapses the two copies of 0 appearing during the reduction. However, in the spirit of the usual
subject reduction for deterministic languages, we would like to type the two copies of 0 appearing
during the reduction with different types. We therefore use the notion of pseudo-representation:

[ 0
1
2 , 0

1
2 ] is a pseudo-representation of �0 ⊕ 0�, and we attribute the type Nat̂s to the first element

of this pseudo-representation and the type Nat̂̂r to the other, obtaining the following closed

distribution of typed terms: { (
0 : Nat̂s

) 1
2 ,

(
0 : Nat̂̂r

) 1
2

}
. (10)

We can then compute the average type of Equation (10), which we call the expectation type of this
closed distribution of typed terms:

1

2
·
{ (

Nat̂s
)1 }
+

1

2
·
{ (

Nat̂̂r
)1 }
=

{ (
Nat̂s

) 1
2 ,

(
Nat̂̂r

) 1
2

}
.

This type coincides with the one of the initial term (Equation (9)). This will be our result of subject
reduction: when a closed term M of distribution type μ reduces to a distribution D of terms, we
can type all the terms appearing in a pseudo-representation of D to obtain a closed distribution
of typed terms whose expectation type is μ. Let us now introduce the definitions necessary to the
formal statement of the subject reduction property.

Definition 5.1 (Distributions of Distribution Types, of Typed Terms).

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 2, Article 10. Publication date: March 2019.



Probabilistic Termination by Monadic Affine Sized Typing 10:19

• A distribution of distribution types is a distribution D over the set of distribution types and
such that μ, ν ∈ S(D ) ⇒ 〈μ〉 = 〈ν〉.

• A distribution of typed terms, or typed distribution, is a distribution of typing sequents that
are derivable in the monadic affine sized type system. The representation of such a distribu-
tion has thus the following form: { (Γi |Θi � Mi : μi )pi | i ∈ I }. In the sequel, we restrict
to the uniform case in which all the terms appearing in the sequents are typed with dis-
tribution types of the same fixed underlying type. We denote this unique simple type κ as

〈−→μ 〉.
• A distribution of closed typed terms, or closed typed distribution, is a typed distribution in

which all contexts are ∅ | ∅. In this case, we simply write the representation of the distri-
bution as { (Mi : μi )pi | i ∈ I }, or even as (Mi : μi )pi when the indexing is clear from
context. We write pseudo-representations in a similar way.

• The underlying term distribution of a closed typed distribution { (Mi : μi )pi | i ∈ I } is the
distribution { (Mi )pi | i ∈ I }.

Definition 5.2 (Expectation Types). Let (Mi : μi )pi be a closed typed distribution. We define its
expectation type as the distribution type E((Mi : μi )pi ) =

∑
i ∈I piμi .

Lemma 5.3. Expectation is linear:

• E((Mi : μi )pi + (Nj : νj )
qj ) = E((Mi : μi )pi ) + E((Nj : νj )

qj ).
• E((Mi : μi )pqi ) = p · E((Mi : μi )qi ).

5.1 Subtyping Probabilistic Sums

Lemma 5.4 (Subtyping Probabilistic Sums). Suppose that
∑

(ν ⊕p ξ ) = 1 and that ν ⊕p ξ � μ.

Then there exists ν ′ and ξ ′ such that μ = ν ′ ⊕p ξ ′, ν � ν ′, and ξ � ξ ′. Note that this implies that

S(ν ′) ∪ S(ξ ′) = S(μ ).

Proof. Let ν = { σp′i
i | i ∈ I } and ξ = { τ

p′′j
j | j ∈ J }. We assume, without loss of generality,

that I and J are chosen in such a way that, setting K = I ∩ J ,

∃(i, j ) ∈ I × J , σi = τj ⇐⇒ i = j ∈ K .

It follows that

ν ⊕p ξ =
{
σ

pp′i
i

��� i ∈ I \ K }
+

{
τ

(1−p )p′′j
j

��� j ∈ J \ K }
+

{
σ

pp′i+(1−p )p′′i
i

��� i ∈ K }
.

Set μ = { θp′′′
l

l
| l ∈ L }. Since ν ⊕p ξ � μ and

∑
(ν ⊕p ξ ) = 1, there exists a decomposition:

μ =
[
θ

pp′i
i

��� i ∈ I \ K ]
+

[
θ

(1−p )p′′j
j

��� j ∈ J \ K ]
+

[
θ

pp′i+(1−p )p′′i
k

��� k ∈ K ]
(note that the supports of these distributions may have a nonempty intersection), and this decom-

position is such that ∀i ∈ I, σi � θi and ∀j ∈ J , τj � θ j . We define ν ′ = { θp′i
i | i ∈ I } and

ξ ′ = { θ
p′′j
j | j ∈ J }, which satisfy ν � ν ′ and ξ � ξ ′ but also, by construction, μ = ν ′ ⊕p ξ ′. �

Corollary 5.5. Suppose that μ =
∑

i ∈I pi · μi is a distribution such that μ � ν and that
∑

μ = 1.

Then there exists a family (νi )i ∈I of distributions such that ν =
∑

i ∈I pi · νi and that, for all i ∈ I,

μi � νi .

Note that the requirement that
∑

μ = 1 is not necessary to obtain this result, although it sim-
plifies the reasoning.
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5.2 Generation Lemma for Typing

A mandatory step in proofs of Subject Reduction is a generation lemma, which allow one to see
any type derivation in an inductive way even if the underlying type system is not syntax directed.

Lemma 5.6 (Generation Lemma for Typing).

(1) ∅ | ∅ � let x = V in N : μ =⇒ ∃(ν ,σ ), ∅ | ∅ � V : σ and x : σ | ∅ � N : ν and ν � μ.

(2) ∅ | ∅ � V W : μ =⇒ ∃(ν ,σ ), ∅ | ∅ � V : σ → ν and ∅ | ∅ � W : σ and ν � μ.

(3) ∅ | ∅ � λx .M : σ → μ =⇒ ∃(ν ,τ ), x : τ | ∅ � M : ν and σ � τ and ν � μ.

(4) ∅ | ∅ � M ⊕p N : μ =⇒ ∃(ν , ξ ), ∅ | ∅ � M : ν and ∅ | ∅ � N : ξ with
∑

(ν ⊕p ξ ) = 1
and ν ⊕p ξ � μ and 〈μ〉 = 〈ν〉 = 〈ξ 〉.

(5) ∅ | ∅ � let x = M in N : ν =⇒ ∃(I, (σi )i ∈I , (pi )i ∈I , (μi )i ∈I ) such that

• ∑
i ∈I pi · μi � ν ,

• ∑
(
∑

i ∈I pi · μi ) = 1,

• ∅ | ∅ � M : { σpi

i | i ∈ I },
• ∀i ∈ I, x : σi | ∅ � N : μi .

(6) ∅ | ∅ � case V of { S→W | 0→ Z } : μ =⇒ ∃(s,ν ) such that ∅ | ∅ � V : Nat̂s and

∅ | ∅ �W : Nats → ν and ∅ | ∅ � Z : ν with ν � μ.

(7) ∅ | ∅ � letrec f = V : μ =⇒ ∃ ((pj )j ∈J , (sj )j ∈J , i) such that

• Natr → ν[r/i] � μ,

• ∀j ∈ J , spine(sj ) = i,
• i � Γ and i positive in ν ,

• { (Natsj → ν[sj/i])
pj | j ∈ J } induces an AST sized walk,

• ∅ | f : { (Natsj → ν[sj/i])
pj | j ∈ J } � V : Nat̂i → ν [̂i/i].

Proof. By inspection of the rules, the key point being that the subtyping rule is the only
one that is not syntax directed, and that by transitivity of � we can compose several succes-
sive subtyping rules. In case (5), we have

∑
(
∑

i ∈I pi · μi ) = 1 since it appears that ∅ | ∅ � let x =
M in N :

∑
i ∈I pi · μi . Lemma 4.12 allows one then to conclude that this distribution of types has

sum 1. �

5.3 Value Substitutions

Definition 5.7 (Context Extending Another). We say that a context Δ | Ψ extends a context Γ |Θ
when (1) for every x : σ ∈ Γ we have x : σ ∈ Δ, and (2) either Θ = ∅ or Θ = Ψ. In other words,
Δ | Ψ extends Γ |Θ when there exists Ξ and Φ such that Δ = Γ, Ξ and Ψ = Θ, Φ.

Lemma 5.8. Let M be a closed term such that Γ |Θ � M : μ. Then for every context Δ | Ψ extending

Γ |Θ, we have Δ | Ψ � M : μ.

Proof. We proceed by induction on the structure of M . We set Δ = Γ, Ξ and Ψ = Θ, Φ.

• If M = x is a variable, the result is immediate.
• If M = 0, the result is immediate.
• If M = S V , we have by typing rules that σ = Nat̂s and that Γ |Θ � V : Nats . By induction

hypothesis, Δ | Ψ � V : Nats , from which we conclude using the typing rule for S.
• If M = λx .N , we have σ = τ → μ and Γ,x : τ |Θ � N : μ. By definition, Δ,x : τ | Ψ ex-

tends Γ,x : τ |Θ so that we have Δ,x : τ | Ψ � N : μ. The result follows using the Lambda
rule.
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• If M = letrec f = V , the typing rule is of the shape

〈Γ1〉 = Nat

i � Γ1 and i positive in ν and ∀j ∈ J , spine(sj ) = i{
(Natsj → ν[sj/i])

pj ��� j ∈ J }
induces an AST sized walk

letrec
Γ1 | f :

{
(Natsj → ν[sj/i])

pj ��� j ∈ J }
� V : Nat̂i → ν

[̂
i/i

]
Γ1, Γ2 |Θ � letrec f = V : Natr → ν

[
r/i

] .

Let Δ = Δ1, Δ2, with Δ1 the maximal subcontext consisting only of variables of affine type
Nat. Then

Δ1 | f :
{

(Natsj → ν[sj/i])
pj ��� j ∈ J }

extends

Γ1 | f :
{ (

Natsj → ν
[
sj/i

] )pj ��� j ∈ J }

so that by induction hypothesis Δ1 | f : { (Natsj → ν[sj/i])
pj | j ∈ J } � V : Nat̂i → ν [̂i/i]

so that we can conclude using the letrec rule again that

Δ1, Δ2 | Ψ � letrec f = V : Natr → ν [r/i] .

• If M = V W , the typing derivation provides contexts such that Γ = Γ1, Γ2, Γ3 and that
Θ = Θ1, Θ2 with Γ1, Γ2 |Θ1 � V : σ → μ and Γ1, Γ3 |Θ2 �W : σ . By induction hypothesis,
Γ1, Γ3, Ξ |Θ2, Φ �W : σ , from which we conclude using the App rule.

• If M = let x = N in L, the typing derivation provides contexts such that Γ = Γ1, Γ2, Γ3 and

that Θ = Θ1,
∑

i ∈I pi · Θ2,i with Γ1, Γ2 |Θ1 � M : { σpi

i | i ∈ I } and Γ1, Γ3, x : σi |Θ2,i �
N : μi . By induction hypothesis, Γ1, Γ2, Ξ |Θ1, Φ � M : { σpi

i | i ∈ I }, from which we
conclude using the Let rule.

• If M = N ⊕p L, then Θ = Θ1 ⊕p Θ2 with Γ |Θ1 � M : μ and Γ |Θ2 � N : ν . By applying
the induction hypothesis twice, we obtain Γ, Ξ |Θ1, Φ � M : μ and Γ, Ξ |Θ2, Φ � N : ν .
We apply the Choice rule; it remains to prove that (Θ1, Φ) ⊕p (Θ2, Φ) = Θ1 ⊕p Θ2, Φ, which
is easily done by definition of ⊕p .

• If M = case V of { S→W | 0→ Z }, the typing derivation provides contexts such that

Γ = Γ1, Γ2 with Γ1 | ∅ � V : Nat̂s and Γ2 |Θ �W : Nats → μ and Γ2 |Θ � Z : μ. By induction
hypothesis, Γ2, Ξ |Θ, Φ �W : Nats → μ and Γ2, Ξ |Θ, Φ � Z : μ, from which we conclude
using the Case rule. �

The key intermediate steps toward Subject Reduction are appropriate substitution lemmas. Here,
we need two of them: one for values and one for distributions.

Lemma 5.9 (Closed Value Substitution). Suppose that Γ, x : σ |Θ � M : μ and that ∅ | ∅ �
V : σ . Then Γ |Θ � M[V /x] : μ.

Proof. As usual, the proof is by induction on the structure of the typing derivation.We proceed
by case analysis on the last rule:

• If it is Var, we have two cases:
—If the conclusion is Γ, x : σ |Θ � x : σ , then x[V /x] = V . By Lemma 5.8, we obtain that

Γ |Θ � V : σ .
—If the conclusion is Γ, x : σ , y : τ |Θ � y : τ , then y[V /x] = y and we obtain Γ, y :
τ |Θ � y : τ using the Var rule.
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• If it is Var’, the situation is similar to the latter case of the previous one. The conclusion is
Γ, x : σ |y : τ � y : τ and y[V /x] = y so that we obtain Γ |y : τ � y : τ using the Var’
rule.

• If it is Succ, then M = S W and μ = Nat̂s . We obtain by induction hypothesis that Γ |Θ �
W [V /x] : Nats and we conclude using the Succ rule that Γ |Θ � (SW )[V /x] : Nat̂s .

• If it is Zero, we obtain immediately the result.
• If it is λ, suppose that Γ, x : σ |Θ � λy.M : τ → μ. This comes from Γ, x : σ , y : τ |Θ �

M : μ, to which we apply the induction hypothesis, obtaining that Γ, y : τ |Θ � M[V /x] :
μ. Then applying the λ rule gives the expected result.

• For all the remaining cases, as for the λ rule, the result is obtained in a straightforward way
from the induction hypothesis. �

Lemma 5.10 (Substitution for distributions). Suppose that Γ | x : { σpi

i | i ∈ I } � M : μ
and that, for every i ∈ I, we have ∅ | ∅ � V : σi . Then Γ | ∅ � M[V /x] : μ.

Proof. The proof is by induction on the structure of the typing derivation. We proceed by case
analysis on the last rule:

• If it is Var, we have M = y � x and y ∈ Γ. It follows that y[V /x] = y and we obtain Γ | ∅ �
M[V /x] : μ simply by the Var rule.

• If it is Var’, we have M = x so that M[V /x] = V . Moreover, the distribution { σpi

i | i ∈ I }
must be Dirac; we denote by σ the unique element of its support. Note that we also obtain
σ = μ. As we supposed that ∅ | ∅ � V : σ , Lemma 5.8 gives Γ | ∅ � V : σ , from which we
conclude.

• If it is LetRec, then x does not occur free in M . It follows that M[V /x] = M , and we can
derive Γ | ∅ � M[V /x] : μ using a letrec rule with the same hypothesis.

• All others cases are treated straightforwardly using the induction hypothesis. �

Lemma 5.11.

(1) Γ |Θ � S V : Nat̂s =⇒ Γ |Θ � V : Nats .

(2) Γ |Θ � 0 : Nats =⇒ ∃r, s = r̂.
(3) Γ |Θ � S V : Nats =⇒ ∃r, s = r̂.

Proof. All points are immediate due to the typing rules introducing 0 and S. Recall that by the
subtyping rules, ∞̂ = ∞. �

5.4 Size Substitutions

Another form of substitution that our type system implicitly implements is the one of sizes into
types, e.g., in the letrec rule. Some easy intermediate lemmas are needed to make sure that this
form of substitution is well behaved.

Lemma 5.12 (Successor and Size Order). Suppose that s � r. Then ŝ � r̂.

Proof. By definition of�, if s � r, there are two cases: either r = ∞, or spine(s) = spine(r) = i

with s = î
k
, r = î

k′
, and k ≤ k ′. In both cases, the conclusion is immediate. �

Lemma 5.13 (Size Substitutions are Monotonic).

(1) Suppose that s � r; then for any size t and size variable i we have s[t/i] � r[t/i].
(2) Suppose that s � r; then for any size t and size variable i we have t[s/i] � t[r/i].
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Proof.

(1) We proceed by induction on the derivation proving that s � r by case analysis on the last
rule.
• If it is s � s, then s = r and the result is immediate.
• If it is

s � u u � r
s � r ,

then by induction hypothesis s[t/i] � u[t/i] and u[t/i] � r[t/i] so that we conclude
using this same deduction rule.

• If it is s � ŝ, we have r = ŝ, and using the definition of size substitution, we obtain

r[t/i] = ŝ[t/i] = �s[t/i]. We conclude using the same deduction rule.
• If it is s � ∞, we have∞[t/i] = ∞ and we obtain immediately s[t/i] � ∞.

(2) We proceed by case analysis on t. There are four cases:
• If t = i, then t[s/i] = s � r = t[r/i].
• If t = j � i, then t[s/i] = j � j = t[r/i].
• If t = û, we have by induction hypothesis that u[s/i] � u[r/i]. We conclude using

Lemma 5.12.
• If t = ∞, t[s/i] = ∞ � ∞ = t[r/i]. �

Lemma 5.14 (Size Substitutions and Subtyping).

(1) If σ � τ , then for any size s and size variable i we have σ [s/i] � τ [s/i].
If μ � ν , then for any size s and size variable i we have μ[s/i] � ν[s/i].

(2) If i pos σ and s � r, we have σ [s/i] � σ [r/i].
If i pos μ and s � r, we have μ[s/i] � μ[r/i].

(3) If i neg σ and s � r, we have σ [r/i] � σ [s/i].
If i neg μ and s � r, we have μ[r/i] � μ[s/i].

Proof.

(1) We prove both statements at the same time by induction on the derivation proving that
μ � ν (or σ � τ ).
• If the last rule is σ � σ , then μ = ν = σ and the result is immediate.
• If the last rule is

t � r
Natt � Natr

,

then by Lemma 5.13we have t[s/i] � r[s/i] so that (Natt ) [s/i] = Natt[s/i] � Natr[s/i] =

(Natr )[s/i].
• If the last rule is

τ � σ μ � ν

σ → μ � τ → ν
,

then by induction hypothesis τ [s/i] � σ [s/i] and μ[s/i] � ν[s/i], from which we con-
clude using the same rule.

• If the last rule is

∃f : I → J ,
(
∀i ∈ I, σi � τf (i )

)
and

(
∀j ∈ J , ∑

i ∈f −1 (j ) pi ≤ p ′j
)

{
σ

pi

i
��� i ∈ I }

�
{
τ

p′j
j

��� j ∈ J } ,

we obtain by induction hypothesis that for every i ∈ Iσi [s/i] � τf (i )[s/i], from which
we conclude using the same rule.
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(2) We prove (2) and (3) by mutual induction on μ (or σ ). Let s � r.
• If σ = Natt ,

—Suppose that i pos Natt . Note that this does not assume anything on t. Since s � r,
we have (Natt )[s/i] = Natt[s/i] � Natt[r/i] = (Natt )[r/i], where we used the mono-
tonicity of size substitution (Lemma 5.13).

—Suppose that i neg Natt . Then i � t and (Natt )[s/i] = (Natt )[r/i] so that we can
conclude.

• If σ = τ → μ,
—Suppose that i posσ . Then i neg τ and i pos μ. By induction hypothesis, τ [r/i] � τ [s/i]
and μ[s/i] � μ[r/i]. By the subtyping rules, σ [s/i] = τ [s/i]→ μ[s/i] � τ [r/i]→
μ[r/i] = σ [r/i].

—Suppose that i neg σ . The reasoning is symmetrical.

• If μ = { σpi

i | i ∈ I },
—Suppose that i pos μ. Then for every i ∈ I we have i pos σi and by induction hypothe-
sis σi [s/i] � σi [r/i]. We obtain that μ[s/i] � μ[r/i] using the identity as a reindexing
function.

—Suppose that i neg μ. The reasoning is symmetrical. �

Lemma 5.15 (Size substitution). If Γ |Θ � M : μ, then for any size variable i and any size s we

have that Γ[s/i] |Θ[s/i] � M : μ[s/i].

Proof. We assume that i � s, without loss of generality: otherwise, we introduce a fresh size
variable j, substitute it with s, and then substitute i with j. The proof is by induction on the typing
derivation. We proceed by case analysis on the last rule.

• If it is Var: we have Γ, x : σ |Θ � x : σ and deduce immediately using the Var rule again
that Γ[s/i], x : σ [s/i] |Θ[s/i] � x : σ [s/i].

• If it is Var’: we have Γ | x : σ � x : σ and deduce immediately using the Var’ rule again
that Γ[s/i] | x : σ [s/i] � x : σ [s/i].

• If it is Succ: then M = S V and μ = Nat̂r . By induction hypothesis, Γ[s/i] |Θ[s/i] � V :

(Natr )[s/i]. But (Natr )[s/i] = Natr[s/i] so that by the Succ rule Γ[s/i] |Θ[s/i] � S V :

Nat
�r[s/i]. We use the equality Nat

�r[s/i] = (Nat̂r )[s/i] to conclude.
• If it is Zero: the result is immediate.
• If it is λ: we have M = λx .N and μ = σ → ν . By induction hypothesis, Γ[s/i], x :

σ [s/i] |Θ[s/i] � N : ν[s/i]. By application of the λ rule, Γ[s/i] |Θ[s/i] � λx .N : σ [s/i]→
ν[s/i]. We conclude using σ [s/i]→ ν[s/i] = (σ → ν )[s/i].

• If it is Sub: the hypothesis of the rule is Γ |Θ � M : ν for ν � μ. By induction hypothesis,
Γ[s/i] |Θ[s/i] � M : ν[s/i]. But by Lemma 5.14 we have ν[s/i] � μ[s/i]. We conclude using
the Sub rule.

• If it is App, we have M = V W and Γ = Γ1, Γ2, Γ3 and Θ = Θ1, Θ2 with 〈Γ1〉 = Nat,
Γ1, Γ2 |Θ1 � V : σ → μ and Γ1, Γ3 |Θ2 �W : σ . Applying the induction hypothesis twice
gives Γ1[s/i], Γ2[s/i] |Θ1[s/i] � V : (σ → μ )[s/i] and Γ1[s/i], Γ3[s/i] |Θ2[s/i] �W : σ [s/i].
Since σ [s/i]→ μ[s/i] = (σ → μ )[s/i], we can use the Application rule to conclude.

• If it is Choice, then M = N ⊕p L and μ = ν ⊕p ξ and Θ = Θ1 ⊕p Θ2 with Γ |Θ1 � N : ν and
Γ |Θ2 � L : ξ and 〈ν〉 = 〈ξ 〉. The induction hypothesis, applied twice, gives Γ[s/i] |Θ1[s/i] �
N : ν[s/i] and Γ[s/i] |Θ2[s/i] � L : ξ [s/i], from which we conclude using the Choice rule
again and the equality ν[s/i] ⊕p ξ [s/i] = (ν ⊕p ξ )[s/i] from Lemma 4.6.

• If it is Let, then M = (let x = N in L) and μ =
∑

i ∈I pi · νi and Γ = Γ1, Γ2, Γ3 and Θ =
Θ1,

∑
i ∈I Θ2,i with Γ1, Γ2 |Θ1 � N : { σpi

i | i ∈ I } and, for every i ∈ I, Γ1, Γ3 |Θ2,i � L : νi
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and 〈Γ1〉 = Nat. By repeated applications of the induction hypothesis,

Γ1 [s/i] , Γ2 [s/i] |Θ1 [s/i] � N :
{
σ

pi

i
��� i ∈ I }

[s/i] ,

and for every i ∈ I,
Γ1 [s/i] , Γ3 [s/i] |Θ2,i [s/i] � L : νi [s/i] .

We use in the first time the equality { σpi

i | i ∈ I }[s/i] = { (σi [s/i])
pi | i ∈ I } coming from

the definition of size substitutions. We conclude using the Let rule again and the equality
(
∑

i ∈I pi · νi )[s/i] =
∑

i ∈I pi · νi [s/i] from Lemma 4.6.

• If it is Case, then M = case V of { S→W | 0→ Z } and Γ = Γ1, Γ2 with Γ1 | ∅ � V : Nat̂r

and Γ2 |Θ �W : Natr → μ and Γ2 |Θ � Z : μ. We apply the induction hypothesis three

times and obtain Γ1[s/i] | ∅ � V : (Nat̂r )[s/i] and Γ2[s/i] |Θ[s/i] �W : (Natr → μ )[s/i]

and Γ2[s/i] |Θ[s/i] � Z : μ[s/i]. We use the equalities (Nat̂r )[s/i] = Nat
�r[s/i] and (Natr →

μ )[s/i] = Natr[s/i] → μ[s/i] and then the Case rule to conclude.
• If it is letrec, we carefully adapt the proof scheme of [3, Lemma 3.8].We haveM = letrec f =

V and μ = Natr → ν[r/j] and Γ = Γ1, Γ2 with
—〈Γ1〉 = Nat,
— j � Γ1 and j positive in ν and ∀j ∈ J , spine (rj ) = j,
— { (Natrj → ν[rj/j])

pj | j ∈ J } induces an AST sized walk,
—and

Γ1 | f :
{ (

Natrj → ν
[
rj/j

] )pj ��� j ∈ J }
� V : Nat̂j → ν

[̂
j/j
]
. (11)

We suppose, without loss of generality as this can be easily obtained by renaming j to a
fresh variable, that i � j and that j � s. Let l be a fresh size variable; it follows in particular
that l � Γ1, Γ2, ν , s. We apply the induction hypothesis to Equation (11) and obtain

Γ1 [l/j] | f :
({ (

Natrj → ν
[
rj/j

] )pj ��� j ∈ J })
[l/j] � V :

(
Nat̂j → ν

[̂
j/j
])

[l/j] ,

which, after applying a series of equalities and using the fact that j � Γ1, coincides with

Γ1 | f :
({ (

Natrj [l/j] → ν
[
rj [l/j] /j

] )pj ��� j ∈ J })
� V : Nat̂l → ν

[̂
j/j
]
[l/j]

but also with

Γ1 | f :
({ (

Natrj [l/j] → ν [l/j]
[
rj [l/j] /l

] )pj ��� j ∈ J })
� V : Nat̂l → ν [l/j]

[̂
l/l

]
.

We can apply the induction hypothesis again, and obtain after rewriting

Γ1 [s/i] | f :
({ (

Natrj [l/j] → ν [l/j]
[
rj [l/j] /l

]
[s/i]

)pj ��� j ∈ J })
� V : Nat̂l → ν [l/j]

[̂
l/l

]
[s/i] ,

where we used the fact that ∀j ∈ J , spine (rj ) = j � i so that (Natrj [l/j])[s/i] = Natrj [l/j].

Since l � s, we can exchange [̂l/l] and [s/i]. For every j ∈ J , we can also exchange [s/i]
and [rj [l/j]/l] since spine (rj [l/j]) = l � i and l � s. We obtain:

Γ1 [s/i] | f :
{ (

Natrj [l/j] → ν [l/j] [s/i]
[
rj [l/j] /l

] )pj ��� j ∈ J }
� V : Nat̂l → ν [l/j] [s/i]

[̂
l/l

]
.

Additionally, we have:
—〈Γ1[s/i]〉 = Nat;
— l � Γ1[s/i];
— l positive in ν[l/j][s/i] since j was positive in ν ;
—∀j ∈ J , spine (rj [l/j]) = l since spine (rj ) = j; and
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10:26 U. Dal Lago and C. Grellois

— { (Natrj [l/j] → ν[l/j][s/i][rj [l/j]/l])
pj | j ∈ J } induces the same sized walk, which is

thus AST, as { (Natrj → ν[rj/j])
pj | j ∈ J }. Indeed, only the spine variable changes

under the substitution [l/j].
Let t = r[s/i]. Since all these conditions are met, we can apply the letrec rule and obtain

Γ1 [s/i] , Γ2 [s/i] |Θ [s/i] � letrec f = V : Natt → ν [l/j] [s/i] [t/l] .

Since i, l � s and l � ν , we can commute [s/i] and [t/l] and compose substitutions to obtain

Γ [s/i] |Θ [s/i] � letrec f = V : Natt → ν [t/j] [s/i] ,

which rewrites to

Γ [s/i] |Θ [s/i] � letrec f = V : (Natr → ν [r/j]) [s/i] ,

which allows us to conclude. �

5.5 Subject Reduction

We can now state the main lemma of subject reduction:

Lemma 5.16 (Subject Reduction, Fundamental Lemma). Let M ∈ Λs⊕ (μ ) and D be the unique

closed term distribution such that M →v D . Then there exists a closed typed distribution { (Lj :
νj )

pj | j ∈ J } such that E((Lj : νj )
pj ) = μ, and [ (Lj )

pj | j ∈ J ] is a pseudo-representation of

D . Note that the condition on expectations implies that
⋃

j ∈J S(νj ) = S(μ ).

Proof. We proceed by induction on M .

• Suppose thatM = let x = V in N , thatD = { (N [V /x])1 }, and that ∅ | ∅ � let x = V in N : μ.
By Lemma 5.6, there exists (ξ ,σ ) such that ∅ | ∅ � V : σ and x : σ | ∅ � N : ξ with ξ � μ.
By Lemma 5.9, ∅ | ∅ � N [V /x] : ξ , and since ξ � μ, we obtain by subtyping that ∅ | ∅ �
N [V /x] : μ. It follows that { (N [V /x] : μ )1 } is a closed typed distribution satisfying the
requirements of the lemma.

• Suppose that M = (λx .N ) V , that D = { (N [V /x])1 }, and that ∅ | ∅ � (λx .N ) V : μ. Apply-
ing Lemma 5.6 twice, we obtain that x : τ | ∅ � N : ξ and ∅ | ∅ � V : σ with σ � τ and
ξ � μ. Applying subtyping to the second judgment gives ∅ | ∅ � V : τ , and we can ap-
ply Lemma 5.9 to obtain ∅ | ∅ � N [V /x] : ξ . Since ξ � μ, we obtain by weakening that
∅ | ∅ � N [V /x] : μ. It follows that { (N [V /x] : μ )1 } is a closed typed distribution satisfy-
ing the requirements of the lemma.

• Suppose that M = N ⊕p L, that D = [N p , L1−p ], and that ∅ | ∅ � N ⊕p L : μ. By
Lemma 5.6, there exists (ξ , ρ) such that ∅ | ∅ � N : ξ and ∅ | ∅ � L : ρ with ξ ⊕p ρ � μ and∑

(ξ ⊕p ρ) = 1. By Lemma 5.4, there exists (ξ ′, ρ ′) such that μ = ξ ′ ⊕p ρ ′, ξ � ξ ′ and ρ � ρ ′.
By subtyping, ∅ | ∅ � N : ξ ′ and ∅ | ∅ � L : ρ ′. We consider the closed typed distribution
of pseudo-representation [ (N : ξ ′)p , (L : ρ ′)1−p ], which satisfies the requirements of the
lemma since its expectation type is p · ξ ′ + (1 − p) · ρ ′ = ξ ′ ⊕p ρ ′ = μ. Note that we use a
pseudo-representation to cope with the very specific case in which N = L and ξ ′ = ρ ′, in
which the representation of the closed typed distribution is { (N : ξ ′)1 }.

• Suppose that M = let x = N in L, that D = { (let x = Pj in L)p′j | j ∈ J }, and that ∅ | ∅ �
let x = N in L : μ. By Lemma 5.6, there exists (I, (σi )i ∈I , (pi )i ∈I , (ξi )i ∈I ) such that
—

∑
i ∈I pi · ξi � μ,

—∅ | ∅ � N : { σpi

i | i ∈ I }, and
—∀i ∈ I, x : σi | ∅ � L : ξi .
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This reduction comes, by definition of→v , from N →v { P
p′j
j | j ∈ J }, to which we can

apply the induction hypothesis: there exists a closed typed distribution{
(Rk : ρk )p′′

k
��� k ∈ K }

,

which is such that {
σ

pi

i
��� i ∈ I }

=
∑
k ∈K

p ′′k · ρk

and that [ (Rk )p′′
k | k ∈ K ] is a pseudo-representation of { P

p′j
j | j ∈ J }. It follows that,

for every k ∈ K , we can write ρk as the pseudo-representation [σ
p′′′

ki

i | i ∈ I ] where some
of the p ′′′

ki
(but not all of them) may be worth 0. This implies that, for all i ∈ I,

pi =
∑
k ∈K

p ′′k p
′′′
ki .

Now, for every k ∈ K , we can derive ∅ | ∅ � let x = Rk in L :
∑

i ∈I p
′′′
ki
· ξi from the rule

∅ | ∅ � Rk :
{
σ

p′′′
ki

i
��� i ∈ I }

x : σi | ∅ � L : ξi (∀i ∈ I)

∅ | ∅ � let x = Rk in L :
∑

i ∈I p
′′′
ki
· ξi

so that [ (let x = Rk in L :
∑

i ∈I p
′′′
ki
· ξi )p′′

k | k ∈ K ] is a pseudo-representation of a closed
typed distribution, whose expectation is

∑
k ∈K

p ′′k

∑
i ∈I

p ′′′ki · ξi =
∑
i ∈I

��
∑
k ∈K

p ′′k p
′′′
ki
�� · ξi =

∑
i ∈I

pi · ξi .

By Lemma 5.6, the sum of
∑

i ∈I pi · ξi is 1, and it follows that
∑

μ = 1 as well. Since∑
i ∈I pi · ξi � μ, applying Corollary 5.5 gives us a family (νi )i ∈I of distribution types such

that, by subtyping, we can derive for every k ∈ K the judgment ∅ | ∅ � let x = Rk in L :∑
i ∈I p

′′′
ki
· νi . This family −→ν satisfies moreover

∑
i ∈I pi · νi = μ. We therefore consider the

closed typed distribution of pseudo-representation⎡⎢⎢⎢⎢⎢⎣
��let x = Rk in L :

∑
i ∈I

p ′′′ki · νi
��

p′′
k ��� k ∈ K

⎤⎥⎥⎥⎥⎥⎦
and of expectation type

∑
k ∈K

p ′′k · ��
∑
i ∈I

p ′′′ki · νi
�� =

∑
i ∈I

pi · νi = μ .

Since [ (Rk : ρk )p′′
k | k ∈ K ] is a pseudo-representation of { P

p′j
j | j ∈ J }, we have that[

(let x = Rk in L : ρk )p′′
k

��� k ∈ K ]
is a pseudo-representation of{ (

let x = Pj in L
)p′j ��� j ∈ J }

,

which allows us to conclude.
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10:28 U. Dal Lago and C. Grellois

• Suppose that M = case S V of { S→W | 0→ Z }, that D = { (W V )1 }, and that ∅ | ∅ �
case SV of { S→W | 0→ Z } : μ. By Lemma 5.6, there exists s and ξ such that ∅ | ∅ � SV :

Nat̂s and ∅ | ∅ �W : Nats → ξ with ξ � μ. Lemma 5.11 implies that ∅ | ∅ � V : Nats . Using
an Application rule, we obtain that ∅ | ∅ �W V : ξ , and subtyping gives ∅ | ∅ �W V : μ,
allowing us to conclude for { (W V : μ )1 }.

• Suppose that M = case 0 of { S→W | 0→ Z }, that D = { (Z )1 }, and that

∅ | ∅ � case 0 of { S→W | 0→ Z } : μ .

By Lemma 5.6, there exists ξ with ξ � μ and such that ∅ | ∅ � Z : ξ . By subtyping, ∅ | ∅ �
Z : μ, which allows to conclude for { (Z : μ )1 }.

• Suppose thatM = (letrec f = V ) (c
−→
W ), that D = { (V [(letrec f = V )/f ] (c

−→
W ))1 }, and that

∅ | ∅ � (letrec f = V ) (c
−→
W ) : μ. We apply again Lemma 5.6, but this time we rather depict

the derivation typing M with μ it induces, for the sake of clarity. This derivation is of the
form (modulo composition of subtyping rules):

π1

...
Hyp

∅ | f : { (Natuj → ξ [uj/i])
pj | j ∈ J } � V : Nat̂i → ξ [̂i/i]

∅ | ∅ � letrec f = V : Natt → ξ [t/i]

∅ | ∅ � letrec f = V : Nat̂s → μ

π2

...

∅ | ∅ � c �W : Nat̂r

∅ | ∅ � c �W : Nat̂s

∅ | ∅ � (letrec f = V )
(
c �W

)
: μ

,

where the two sizes appearing in the types for c
−→
W are successors due to Lemma 5.11, and

where
—Hyp denotes the additional premises of the letrec rule, and contains notably i pos ξ ,
—r � r̂ � ŝ � t, and
—ξ [t/i] � μ.
It follows that, for every j ∈ J , we can deduce that the closed value letrec f = V has type
Natuj → ξ [uj/i], as proved by the derivation

π1

...
Hyp

∅ | f :
{

(Natuj → ξ [uj/i])
pj ��� j ∈ J }

� V : Nat̂i → ξ
[̂
i/i

]
∅ | ∅ � letrec f = V : Natuj → ξ

[
uj/i

] .

Since

∅ | f :
{

(Natuj → ξ [uj/i])
pj ��� j ∈ J }

� V : Nat̂i → ξ
[̂
i/i

]
,

we obtain by Lemma 5.10 that

∅ | ∅ � V [(letrec f = V ) /f ] : Nat̂i → ξ
[̂
i/i

]
.

We now apply Lemma 5.15 to ∅ | ∅ � V [(letrec f = V )/f ] : Nat̂i → ξ [̂i/i] with the sub-

stitution [r/i] and we obtain that ∅ | ∅ � V [(letrec f =)/V ]f : Nat̂r → ξ [̂r/i]. Using the
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Application rule, we derive ∅ | ∅ � V [(letrec f = V )/f ] (c
−→
W ) : ξ [̂r/i]. Since i pos ξ and

r̂ � t, by Lemma 5.14, we get that ξ [̂r/i] � ξ [t/i]. By transitivity of �, ξ [̂r/i] � μ, which

allows us to conclude by subtyping that ∅ | ∅ � V [(letrec f = V )/f ] (c
−→
W ) : μ. The result

follows, for { (V [(letrec f = V )/f ] (c
−→
W ) : μ )1 }. �

Theorem 5.17 (Subject Reduction for→n
v ). Let n ∈ N, and { (Mi : μi )pi | i ∈ I } be a closed

typed distribution. Suppose that { (Mi )pi | i ∈ I } →n
v { (Nj )

p′j | j ∈ J }; then there exists a closed

typed distribution { (Lk : νk )p′′
k | k ∈ K } such that

• E((Mi : μi )pi ) = E((Lk : νk )p′′
k ), and

• [ (Lk )p′′
k | k ∈ K ] is a pseudo-representation of { (Nj )

p′j | j ∈ J }.

Proof. The proof is by induction on n. For n = 0,→0
v is the identity relation and the result is

immediate. For n + 1, we have{
(Mi )pi ��� i ∈ I }

→n
v

{
(Pl )p′′

l
��� l ∈ L }

→v

{
(Nj )

p′j ��� j ∈ J }
.

We apply the induction hypothesis and obtain a closed typed distribution { (Rд : ξд )p
(3)
д | д ∈

G } satisfying E((Mi : μi )pi ) = E((Rд : ξд )p
(3)
д ) and such that [ (Rд )p

(3)
д | д ∈ G ] is a pseudo-

representation of { (Pl )p′′
l | l ∈ L }. For every д ∈ G:

• if Rд is a value, we set Dд = { R1 } and Tд to be the closed typed distribution Tд = { (Th :

ρh )p
(4)
h | h ∈ Hд } = (Rд : ξд )1,

• else Rд →v Dд . We apply Lemma 5.16 and obtain a closed typed distribution:

Tд =
{

(Th : ρh )p
(4)
h

��� h ∈ Hд

}
such that E((Th : ρh )p

(4)
h ) = ξд and that [ (Th )p

(4)
h | h ∈ Hд ] is a pseudo-representation of

Dд .

We claim that the closed typed distribution defined as{
(Lk : νk )p′′

k
��� k ∈ K }

=
∑
д∈G

p (3)
д · Tд

satisfies the required conditions. Indeed, the expectation type is preserved:

E

(
(Mi : μi )pi

)
= E

(
(Rд : ξд )p

(3)
д

)
=

∑
д∈G p (3)

д · ξд

=
∑

д∈G p (3)
д · E

(
(Th : ρh )p

(4)
h

)
= E

(∑
д∈G p (3)

д · Tд

)
= E

({
(Lk : νk )p′′

k
��� k ∈ K })

.

Moreover, by definition of the family (Dд )д∈G ,

{ (Pl )p′′
l | l ∈ L } =

∑
д∈G

p (3)
д · { (Rд )1 } →v { (Nj )

p′j | j ∈ J } =
∑
д∈G

p (3)
д ·Dд .

The result follows from the fact that [ (Th )p
(4)
h | h ∈ Hд ] is a pseudo-representation of Dд for

every д ∈ G. �
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5.6 Subject Reduction for �v

Recall that there is an order � on distributions, defined pointwise.

Lemma 5.18. Suppose that M �v {V pi

i | i ∈ I } and that M ∈ Λs⊕ (μ ). Then there exists a closed

typed distribution { (Wj : σj )
p′j | j ∈ J } such that

• E((Wj : σj )
p′j ) � μ, and

• [ (Wj )
p′j | j ∈ J ] is a pseudo-representation of { (Vi )pi | i ∈ I }.

Proof. We haveM →v D
VD
= D |T + {V pi

i | i ∈ I }. By Lemma 5.16, there exists a closed typed

distribution { (Lk : νk )p′′
k | k ∈ K } such that E((Lk : νk )p′′

k ) = μ and that [ (Lk )p′′
k | k ∈ K ] is a

pseudo-representation of D . We consider the pseudo-representation [ (Wj )
p′j | j ∈ J ] obtained

from [ (Lk )p′′
k | k ∈ K ] by removing all the terms that are not values. Note thatJ ⊆ K . We obtain

in this way a pseudo-representation of {V pi

i | i ∈ I }, which induces a closed typed representation

{ (Wj : νj )
p′j | j ∈ J } such that E((Wj : νj )

p′j ) � μ. �

Theorem 5.19 (Subject Reduction). LetM ∈ Λs⊕ (μ ). Then there exists a closed typed distribution

{ (Wj : σj )
pj | j ∈ J } such that

• E((Wj : σj )
pj ) � μ, and

• [ (Wj )
pj | j ∈ J ] is a pseudo-representation of �M�.

Note that E((Wj : σj )
pj ) � μ since the semantics of a term may not be a proper distribution

at this stage. In fact, it will follow from the soundness theorem of Section 6 that the typability of
M implies that

∑
�M� = 1 and thus that the previous statement is an equality.

6 TYPABILITY IMPLIES TERMINATION: REDUCIBILITY STRIKES AGAIN

This section is the most technically advanced of the article and proves that the typing discipline we
have introduced indeed enforces almost-sure termination. As alreadymentioned, the technique we
will employ is a substantial generalization of Girard-Tait’s reducibility. In particular, reducibility
must be made quantitative, in that terms can be said to be reducible with a certain probability. This
means that reducibility sets will be defined as sets parameterized by a real number p, called the
degree of reducibility of the set. As Lemma 6.4 will emphasize, this degree of reducibility ensures
that terms contained in a reducibility set parameterized by p terminate with probability at least p.
These “intermediate” degrees of reducibility are required to handle the fix-point construction and
show that recursively defined terms that are typable are indeed AST—that is, that they belong to
the appropriate reducibility set, parameterized by 1.

6.1 Reducibility Sets for Closed Terms

The first preliminary notion we need is that of a size environment:

Definition 6.1 (Size Environment). A size environment is any function ρ fromS toN ∪ {∞}. Given
a size environment ρ and a size expression s, there is a naturally defined element ofN ∪ {∞}, which
we indicate as �s�ρ :

• �̂in �ρ = ρ (i) + n,
• �∞�ρ = ∞.

In other words, the purpose of size environments is to give a semantic meaning to size ex-
pressions. Our reducibility sets will be parameterized not only on a probability but also on a size
environment.
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Definition 6.2 (Reducibility Sets).

• For values of simple type Nat, we define the reducibility sets

VRed
p

Nats,ρ
=
{
Sn 0

��� p > 0 =⇒ n < �s�ρ

}
.

• Values of higher-order type are in a reducibility set when their applications to appropriate
values are reducible terms, with an adequate degree of reducibility:

VRed
p
σ→μ,ρ =

{
V ∈ ΛV

⊕ (〈σ → μ〉) ��� ∀q ∈ (0, 1], ∀W ∈ VRed
q
σ ,ρ , V W ∈ TRed

pq
μ,ρ

}
.

• Distributions of values are reducible with degree p when they consist of values that are

themselves globally reducible “enough.” Formally, DRed
p
μ,ρ is the set of finite distributions

of values—in the sense that they have a finite support—admitting a pseudo-representation

D = [ (Vi )pi | i ∈ I ] such that, setting μ = { (σj )
p′j | j ∈ J }, there exists a family

(pi j )i ∈I, j ∈J ∈ [0, 1] |I |×|J | of probabilities and a family (qi j )i ∈I, j ∈J ∈ [0, 1] |I |×|J | of de-
grees of reducibility, satisfying:

(1) ∀i ∈ I, ∀j ∈ J , Vi ∈ VRed
qi j

σj ,ρ ;

(2) ∀i ∈ I, ∑
j ∈J pi j = pi ;

(3) ∀j ∈ J , ∑
i ∈I pi j = μ (σj ); and

(4) p ≤ ∑
i ∈I

∑
j ∈J qi jpi j .

Note that (2) and (3) imply that
∑

D =
∑

μ. We say that [ (Vi )pi | i ∈ I ]witnesses that

D ∈ DRed
p
μ,ρ .

• A term is reducible with degree p when its finite approximations compute distributions of
values of the degree of reducibility arbitrarily close to p:

TRed
p
μ,ρ =

{
M ∈ Λ⊕ (〈μ〉) ��� ∀0 ≤ r < p, ∃νr � μ, ∃nr ∈ N,

M �nr
v Dr and Dr ∈ DRedr

νr ,ρ

}
.

Note that here, unlike the case of DRed, the fact that M ∈ Λ⊕ (〈μ〉) implies that μ is proper.

The first thing to observe about reducibility sets as given in Definition 6.2 is that they only
deal with closed terms, and not with arbitrary terms. As such, we cannot rely directly on them
when proving AST for typable terms, at least if we want to prove it by induction on the structure
of type derivations. We will therefore define in Section 6.9 an extension of these sets to open
terms, which will be based on these sets of closed terms, and therefore enjoy similar properties.
Before embarking in the proof that typability implies reducibility, it is convenient to prove some
fundamental properties of reducibility sets, which inform us about how these sets are structured,
and which will be crucial in the sequel. This is the purpose of the following subsections.

As a preliminary, the following easy lemma relates the reducibility of natural numbers and will
be used to treat the case of the rules Succ and Zero in the proof of typing soundness:

Lemma 6.3.

• V ∈ VRed
p

Nats,ρ
=⇒ S V ∈ VRed

p

Nat̂s,ρ
.

• For every size s, 0 ∈ VRed
p

Nat̂s,ρ
.

Proof. First point:

• Suppose thatV ∈ VRed
p

Nat̂i
k
,ρ

and thatp > 0. ThenV = Sn 0 for somen < �s�ρ . Then SV =

Sn+1 0 satisfies n + 1 < �̂s�ρ = �s�ρ + 1, so that S V ∈ VRed
p

Nat̂i
k+1

,ρ
.
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• Suppose thatV ∈ VRed
p

Nat∞,ρ
or that p = 0. By definition,V = Sn 0 for n ∈ N. It follows that

S V ∈ VRed
p

Nat̂s,ρ
.

Second point:

• Suppose that p = 0. Then 0 ∈ VRed
p

Nat̂s,ρ
, by definition.

• Else we need to prove that �s�ρ > 0. But ŝ either is∞, in which case �s�ρ = ∞, or is of the

shape î
k
for k > 0, and �̂i

k
�ρ = ρ (i) + k > 0. �

6.2 Reducibility Sets and Termination

The following lemma, relatively easy to prove, is crucial for the understanding of the reducibility
sets, for it shows that the degree of reducibility of a term gives information on the sum of its
operational semantics:

Lemma 6.4 (Reducibility and Termination).

• Let D ∈ DRed
p
μ,ρ . Then

∑
D ≥ p.

• Let M ∈ TRed
p
μ,ρ . Then

∑
�M� ≥ p.

Proof.

• Let D ∈ DRed
p
μ,ρ . Then there exists a pseudo-representation D = [ (Vi )pi | i ∈ I ] and

families (pi j )i ∈I, j ∈J and (qi j )i ∈I, j ∈J of reals of [0, 1] such that ∀i ∈ I, ∑
j ∈J pi j = pi ,

and that p ≤ ∑
i ∈I

∑
j ∈J qi jpi j . We therefore have∑

D =
∑
i ∈I

pi =
∑
i ∈I

∑
j ∈J

pi j ≥
∑
i ∈I

∑
j ∈J

qi jpi j ≥ p.

• SinceM ∈ TRed
p
μ,ρ , for every 0 ≤ r < p, there existsnr withM �nr

v Dr andDr ∈ DRedr
νr ,ρ .

From the previous point, we get that
∑

Dr ≥ r for every 0 ≤ r < p. It follows from
Corollary 3.10 that

∑
�M� ≥ r for every 0 ≤ r < p and, by taking the supremum,

∑
�M� ≥

p. �

It follows from this lemma that terms with degree of reducibility 1 are AST:

Corollary 6.5 (Reducibility and AST). Let M ∈ TRed1
μ,ρ . Then M is AST.

6.3 Reducibility Sets and Reducibility Degrees

We now prove two results related to the reducibility degrees of reducibility sets. First of all, if the
degree of reducibilityp is 0, then no assumption is made on the probability of termination of terms,
distributions, or values. It follows that the three kinds of reducibility sets collapse to the set of all
affinely simply typable terms, distributions, or values:

Lemma 6.6 (Candidates of Null Reducibility).

• If V ∈ ΛV
⊕ (κ), then V ∈ VRed0

σ ,ρ for every σ such that 〈σ 〉 = κ and every size environment ρ.

• Let D = { (Vi )pi | i ∈ I } be a finite distribution of values. If ∀i ∈ I, Vi ∈ ΛV
⊕ (κ), then D ∈

DRed0
μ,ρ for every μ such that 〈μ〉 = κ and

∑
μ =

∑
D and every ρ.

• If M ∈ Λ⊕ (κ), then M ∈ TRed0
μ,ρ for μ such that 〈μ〉 = κ and every ρ.

Structure of the proof. In this lemma, as for most lemmas proving properties about VRed,
DRed, and TRed, we use a proof by induction on types. As the property is defined in a mutual way
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over VRed, DRed, and TRed, we typically prove it for VRed
p

Nats,ρ
for any size s refining Nat, and

then for VRed
p
σ→μ,ρ by using the associated hypothesis on TRed

p
μ,ρ . Then we prove the property

for any distribution type for DRed
p
μ,ρ using the induction hypothesis on the VRed

p
σ ,ρ for σ ∈ S(μ ),

and we prove it for TRed
p
μ,ρ using the induction hypothesis on VRed

p
σ ,ρ . The point is that these

ingredients allow one to give a proof by induction on the simple type underlying the sized type of
interest. In the base case, the sized type is necessarily of the form Nats for some size s: we prove

the statement on VRed
p

Nats,ρ
for all these sized types without using any induction-like hypothesis.

Then we prove the statement for distribution types μ = { (Natsi )pi | i ∈ I } first on DRed
p
μ,ρ by

using the results for the sets VRed
p

Natsi ,ρ
. Then we prove the result for TRed

p
μ,ρ typically using the

one for DRed
p
μ,ρ .

We then switch to higher-order types and give the proof for VRed
p
σ→μ,ρ , which may use the

results for the other sets on types σ and μ. Typically, only results on TRed
p
μ,ρ are used. Then the

proofs for DRed
p
σ→μ,ρ and TRed

p
σ→μ,ρ are typically the same as in the case of distributions over

sized types refining Nat: therefore, we do not write them again.
This proof scheme will become more clear with the proof of this lemma on candidates of null

reducibility:

Proof.

• Let V ∈ ΛV
⊕ (Nat). Every σ :: Nat is of the shape σ = Nats for a size s. Let ρ be a size en-

vironment. By inspection of the grammar of values and of the simple type system, we see
thatV must be of the shape Sn 0 for n ∈ N. Note thatV is closed: it cannot be a variable. By
definition, V ∈ VRed0

σ ,ρ .

• Let κ = κ ′ → κ ′′ be a higher-order type, with σ :: κ ′ and μ :: κ ′′. Let ρ be a size envi-
ronment, and V ∈ ΛV

⊕ (κ). Let q ∈ (0, 1] and W ∈ VRed
q
σ ,ρ ; we need to prove that V W ∈

TRed0
μ,ρ . But, by definition of VRed

q
σ ,ρ ,W ∈ ΛV

⊕ (κ ′). It follows thatV W ∈ Λ⊕ (κ ′′), and we

can apply the induction hypothesis to deduce that V W ∈ TRed0
μ,ρ , so that by definition

V ∈ VRed0
σ ,ρ .

• Let D = { (Vi )pi | i ∈ I } be a distribution of values and μ = { (σj )
p′j | j ∈ J } :: κ be

a distribution type. Suppose that ∀i ∈ I, Vi ∈ ΛV
⊕ (κ). Let ρ be a size environment. For

every (i, j ) ∈ I × J , we set pi j =
pi p′j∑

μ
and qi j = 0. We consider the canonical pseudo-

representation D = [ (Vi )pi | i ∈ I ] and check the four conditions to be in DRed0
μ,ρ :

(1) ∀i ∈ I, ∀j ∈ J , Vi ∈ VRed
qi j

σj ,ρ : this is obtained by induction hypothesis.

(2) ∀i ∈ I, ∑
j ∈J pi j = pi : let i ∈ I; we have

∑
j ∈J pi j =

pi∑
μ

∑
j ∈J p ′j =

pi∑
μ
×∑

μ = pi .

(3) ∀j ∈ J , ∑
i ∈I pi j = μ (σj ): let j ∈ J ; we have

∑
i ∈I pi j =

p′j∑
μ

∑
i ∈I pi =

p′j∑
μ
×∑

D .

But
∑

μ =
∑

D so that the sum equals p ′j as requested.

(4) p ≤ ∑
i ∈I

∑
j ∈J qi jpi j : this amounts to 0 ≤ 0, which holds.

• Let M ∈ Λ⊕ (κ) and μ :: κ. Let ρ be a size environment. Then M ∈ TRed0
μ,ρ : the condition

onM in the definition of TRed0
μ,ρ is for any 0 ≤ r < 0 so that it’s an empty condition in this

case. �

As p gives us a lower bound on the sum of the semantics of terms, it is easily guessed that a term
having degree of reducibility p must also have degree of reducibility q < p. The following lemma
makes this statement precise:
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Lemma 6.7 (Downward Closure). Let σ be a sized type, μ be a distribution type, and ρ be a size

environment. Let 0 ≤ q < p ≤ 1. Then:

• For any value V , V ∈ VRed
p
σ ,ρ =⇒ V ∈ VRed

q
σ ,ρ .

• For any finite distribution of values D , D ∈ DRed
p
μ,ρ =⇒ D ∈ DRed

q
μ,ρ .

• For any term M , M ∈ TRed
p
μ,ρ =⇒ M ∈ TRed

q
μ,ρ .

Proof. Let σ be a sized type, μ be a distribution type, and ρ be a size environment. If q = 0, the
result is immediate as a consequence of Lemma 6.6. Let 0 < q < p ≤ 1.

• Suppose that V ∈ VRed
p

Nats,ρ
. Since by definition p, q > 0 =⇒ VRed

p

Nats,ρ
= VRed

q

Nats,ρ
,

and the result holds.
• Suppose that V ∈ VRed

p
σ→μ,ρ . Then:

V ∈ VRed
p
σ→μ,ρ

⇐⇒ ∀q ∈ (0, 1], ∀W ∈ VRed
q
σ ,ρ , VW ∈ TRed

pq
μ,ρ

=⇒ ∀q′ ∈ (0, 1], ∀W ∈ VRed
q′

σ ,ρ , VW ∈ TRed
qq′

μ,ρ (by IH, since 0 < qq′ < pq ≤ 1)
⇐⇒ V ∈ VRed

q
σ→μ,ρ .

• Suppose that D ∈ DRed
p
μ,ρ . Then there are a pseudo-representation D = [ (Vi )pi | i ∈ I ]

and families of reals (pi j )i ∈I, j ∈J and (qi j )i ∈I, j ∈J satisfying conditions (1) through (4). We

have D ∈ DRed
q
μ,ρ for the same pseudo-representation, since conditions (1) through (3) are

the same, and (4) holds as well since q < p.
• Suppose that M ∈ TRed

p
μ,ρ . Then for every 0 ≤ r < p, there exists νr � μ and nr ∈ N with

M �nr
v Dr and Dr ∈ DRedr

νr ,ρ . So this statement also holds for every 0 ≤ r < q and M ∈
TRed

q
μ,ρ . �

6.4 Continuity of the Reducibility Sets

To prove the lemma of continuity on the reducibility sets, which says that if an element is in all
the reducibility sets for degrees q < p then it is also in the set parameterized by the degree p, we
use the following companion lemma computing a family of probabilities maximizing the degree
of reducibility of a distribution:

Lemma 6.8 (Maximizing the Degree of Reducibility of a Distribution). Let D =
[ (Vi )pi | i ∈ I ] be a finite distribution of values and μ = { (σj )

p′j | j ∈ J } be a distribution type.

Set qi j = max{q | Vi ∈ VRed
q
σj ,ρ } for every (i, j ) ∈ I × J . Then there exists a family (pi j )i ∈I, j ∈J

of reals of [0, 1] satisfying:

(1) ∀i ∈ I, ∑
j ∈J pi j = pi , and

(2) ∀j ∈ J , ∑
i ∈I pi j = μ (σj ),

and which maximizes
∑

i ∈I
∑

j ∈J qi jpi j .

Proof. We use the theory of linear programming in the finite real vector space Rn , taking [38]
as a reference. We stick to the notations of this book. The problem then amounts to showing the
existence of

max
{
cx ��� x ≥ −→0 , Ax = b}, (12)

where, supposing that we can index vectors and matrices by i × j thanks to a bijection i × j −→
{1, . . . , n}, where n = #(I × J ):
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• x is the column vector indexed by the finite set I × J , where xi j plays the role of pi j ;

• c is the row vector indexed by I × J , with ci j = max{q | Vi ∈ VRed
q
σj ,ρ };

• −→0 is the null column vector of size #(I × J );
• A is the matrix with columns indexed by I × J and rows indexed by I + J , and such that:

—ai′, (i, j ) = 1 if and only if i = i ′, and 0 else, and
—aj′, (i, j ) = 1 if and only if j = j ′, and 0 else;

• b is the column vector indexed by I + J and such that bi = pi and bj = μ (σj ).

Following [38, Section 7.4], the maximum (Equation (12)) exists if and only if:

• the problem is feasible: its constraints admit a solution, and
• if it is bounded: there should be an upper bound over Equation (12),

and also, its existence is equivalent to the one of the maximum of the following problem:

max
{
cx ��� x ≥ −→0 , Ax ≤ b

}
. (13)

This reformulation makes the feasibility immediate for the null vector x =
−→
0 . It is also immediate

to see that the problem is bounded: by construction, all the qi j ∈ [0, 1], and
∑

i ∈I
∑

j ∈J pi j = 1
so that

∑
i ∈I

∑
j ∈J ci jpi j ≤ 1. The existence of the maximum in Equation (12) follows, and the

lemma therefore holds. �

It follows that a distribution has a maximal degree of reducibility: the supremum of the degrees
of reducibility is again a degree of reducibility:

Corollary 6.9 (Maximizing the Degree of Reducibility of a Distribution II). Let D be

a finite distribution of values, μ be a distribution type, and ρ be a size environment. Suppose that

D ∈ DRed
p
μ,ρ for some real p ∈ [0, 1]. Then there exists a maximal real pmax ∈ [p, 1] such that D ∈

DRed
pmax
μ,ρ and p ′ > pmax ⇒ D � DRed

p′

μ,ρ .

Proof. Let D = [ (Vi )pi | i ∈ I ] be a finite distribution of values and μ = { (σj )
p′j | j ∈ J } be

a distribution type. By Lemma 6.8, setting qi j = max{q | Vi ∈ VRed
q
σj ,ρ } for every (i, j ) ∈ I × J ,

there exists a family (pi j )i ∈I, j ∈J of reals of [0, 1] that maximizes w =
∑

i ∈I
∑

j ∈J qi jpi j . It is

immediate to see that any increase of a qi j to q
′ is contradictory withVi ∈ VRed

q′

σj ,ρ , and that any
decrease of a qi j cannot increasew . It follows that pmax = w . �

To analyze the letrec construction, we will prove that, for every ε ∈ (0, 1], performing enough
unfoldings of the fix point allows to prove that the recursively defined term is in a reducibility set
parameterized by 1 − ε . We will be able to conclude on the AST nature of recursive constructions
using the following continuity lemma, proved using Corollary 6.9 and thus using the theory of
linear programming:

Lemma 6.10 (Continuity). Let σ be a sized type, μ be a distribution type, and ρ be a size envi-

ronment. Let p ∈ (0, 1]. Then:

• VRed
p
σ ,ρ =

⋂
0<q<p VRed

q
σ ,ρ ,

• DRed
p
μ,ρ =

⋂
0<q<p DRed

q
μ,ρ , and

• TRed
p
μ,ρ =

⋂
0<q<p TRed

q
μ,ρ .

Proof. Let σ be a sized type, μ be a distribution type, and ρ be a size environment. Letp ∈ (0, 1].
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• If σ = Nats for some size s, then for every 0 < q < p we have VRed
q
σ ,ρ = VRed

p
σ ,ρ so that

VRed
p
σ ,ρ =

⋂
0<q<p VRed

q
σ ,ρ .

• If σ = τ → μ, we proceed by mutual inclusions.

—VRed
p
σ ,ρ ⊆

⋂
0<q<p VRed

q
σ ,ρ is an immediate consequence of Lemma 6.7.

—Let us prove now that
⋂

0<q<p VRed
q
σ ,ρ ⊆ VRed

p
σ ,ρ . LetV ∈

⋂
0<q<p VRed

q
σ ,ρ ; it follows

that

∀q ∈ (0,p), ∀q′ ∈ [0, 1], ∀W ∈ VRed
q′

σ ,ρ , V W ∈ TRed
qq′

μ,ρ

=⇒ ∀q′ ∈ [0, 1], ∀W ∈ VRed
q′

σ ,ρ , ∀q ∈ (0,p), V W ∈ TRed
qq′

μ,ρ

=⇒ ∀q′ ∈ [0, 1], ∀W ∈ VRed
q′

σ ,ρ , V W ∈ ⋂
0<q<p TRed

qq′

μ,ρ .

But ⋂
0<q<p

TRed
qq′

μ,ρ =
⋂

0<r<pq′
TRedr

μ,ρ = TRed
pq′

μ,ρ (by IH)

so that

∀q′ ∈ [0, 1], ∀W ∈ VRed
q′

σ ,ρ , V W ∈ TRed
pq′

μ,ρ .

By definition, V ∈ VRed
p
σ ,ρ .

• The inclusion DRed
p
μ,ρ ⊆

⋂
0<q<p DRed

q
μ,ρ is an immediate consequence of Lemma 6.7. Let

D ∈ ⋂
0<q<p DRed

q
μ,ρ . Let (qn )n∈N be an increasing sequence of reals of [0,p) converging to

p. For every n ∈ N, D ∈ DRed
qn
μ,ρ so that by Corollary 6.9 there exists a real pmax,n ∈ [qn , 1]

such that D ∈ DRed
pmax,n
μ,ρ and p ′ > pmax,n ⇒ D � DRed

p′

μ,ρ . It follows that all the pmax,n

coincide, and that they are greater than supn∈N qn = p. So D ∈ DRed
p
μ,ρ .

• The inclusion TRed
p
μ,ρ ⊆

⋂
0<q<p TRed

q
μ,ρ is an immediate consequence of Lemma 6.7.

Let M ∈ ⋂
0<q<p TRed

q
μ,ρ . We need to prove that M ∈ TRed

p
μ,ρ , that is, that for every 0 ≤

r < p there exists νr � μ, nr ∈ N, Dr such that M �nr
v Dr and that Dr ∈ DRedr

νr ,ρ
. Let

r ∈ [0,p). SinceM ∈ TRed
p+r
2

μ,ρ and
p+r

2 > r , we obtain the desired νr � μ, nr ∈ N, Dr having
the properties of interest. The result follows. �

6.5 Reducibility Sets and Sizes

In this subsection, we show how the sizes appearing in the (sized or distribution) type param-
eterizing a reducibility set relate with the interpretation of size variables contained in the size
environment that also parameterizes it. We prove first the following lemma, which will be used as
a companion for this result:

Lemma 6.11 (Commuting Sizes with Environments). Let i be a size variable; s, r be two sizes;

and ρ be a size environment. Suppose that s = ∞ or that spine(s) � i. Then �r[s/i]�ρ = �r�ρ[i �→�s�ρ ].

Proof. By case analysis.

• If r = ĵ
n
for j � i, then r[s/i] = r and �r�ρ = ρ (j) + n = �r�ρ[i �→�s�ρ ].

• If r = î
n
, then

—if s = ĵ
m

for j � i, then r[s/i] = ĵ
n+m

and

�r [s/i]�ρ = ρ (j) + n +m = �̂j
m

�ρ + n = �s�ρ + n = �̂i
n

�ρ[i �→�s�ρ ] = �r�ρ[i �→�s�ρ ];

—if s = ∞, then r[s/i] = ∞ and �r[s/i]�ρ = ∞ = �r�ρ[i �→�s�ρ ].
• If r = ∞, then r[s/i] = r and �r�ρ = ∞ = �r�ρ[i �→�s�ρ ]. �
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The last fundamental property about reducibility sets that will be crucial to treat the recursive
case is the following, stating that the sizes appearing in a sized type may be recovered in the
reducibility set by using an appropriate semantics of the size variables, and conversely:

Lemma 6.12 (Size Commutation). Let i be a size variable, s be a size such that s = ∞ or that

spine(s) = j � i, and ρ be a size environment. Then:

• VRed
p

σ [s/i],ρ
= VRed

p

σ ,ρ[i �→�s�ρ ]
,

• DRed
p

μ[s/i],ρ
= DRed

p

μ,ρ[i �→�s�ρ ]
, and

• TRed
p

μ[s/i],ρ
= TRed

p

μ,ρ[i �→�s�ρ ]
.

Proof.

• The first case to consider is σ = Natr for some size r. Using Lemma 6.11, we have that

VRed
p

(Natr )[s/i],ρ
= VRed

p

Natr[s/i],ρ

=
{
Sn0

��� p > 0 =⇒ n < �r [s/i]�ρ

}
=

{
Sn0

��� p > 0 =⇒ n < �r�ρ[i �→�s�ρ ]

}
= VRed

p

Natr,ρ[i �→�s�ρ ]
.

• We then consider the case of the sized type σ → μ :: κ ′ → κ ′′. We have

VRed
p

(σ→μ )[s/i],ρ

= VRed
p

σ [s/i]→μ[s/i],ρ

=
{
V ∈ ΛV

⊕ (〈σ [s/i]→ μ [s/i]〉) ��� ∀q ∈ (0, 1], ∀W ∈ VRed
q

σ [s/i],ρ
, V W ∈ TRed

pq

μ[s/i],ρ

}
=

{
V ∈ ΛV

⊕ (〈σ → μ〉) ��� ∀q ∈ (0, 1], ∀W ∈ VRed
q

σ ,ρ[i �→�s�ρ ]
, V W ∈ TRed

pq

μ,ρ[i �→�s�ρ ]

}
= VRed

p

σ→μ,ρ[i �→�s�ρ ]
,

where we used the induction hypothesis twice, once on κ ′ and the other time on κ ′′.

• Let D be a finite distribution of values and μ = { (σj )
p′j | j ∈ J } be a distribution type. We

have that μ[s/i] = { (σj [s/i])
p′j | j ∈ J }. Suppose that D ∈ DRed

p

μ[s/i],ρ
. Then there exist

a pseudo-representation D = [ (Vi )pi | i ∈ I ] and families (pi j )i ∈I, j ∈J and (qi j )i ∈I, j ∈J of
reals of [0, 1] satisfying:

(1) ∀i ∈ I, ∀j ∈ J , Vi ∈ VRed
qi j

σj [s/i],ρ
;

(2) ∀i ∈ I, ∑
j ∈J pi j = pi ;

(3) ∀j ∈ J , ∑
i ∈I pi j = μ (σj ); and

(4) p ≤ ∑
i ∈I

∑
j ∈J qi jpi j .

But (1) is equivalent to ∀i ∈ I, ∀j ∈ J , Vi ∈ VRed
qi j

σj ,ρ[i �→�s�ρ ]
by induction hypothesis. It

follows that D ∈ DRed
p

μ,ρ[i �→�s�ρ ]
. The converse direction proceeds in the exact same way.

• Then, M ∈ TRed
p

μ[s/i],ρ
if and only if

M ∈ Λ⊕ (〈μ〉) and ∀0 ≤ r < p, ∃νr � μ, ∃nr ∈ N, M �nr
v Dr and Dr ∈ DRedr

νr [s/i],ρ

if and only if, by induction hypothesis,

M ∈ Λ⊕ (〈μ〉) and ∀0 ≤ r < p, ∃νr � μ, ∃nr ∈ N, M �nr
v Dr and Dr ∈ DRedr

νr ,ρ[i �→�s�ρ ],

that is, if and only if M ∈ TRed
p

μ,ρ[i �→�s�ρ ]
. �

ACM Transactions on Programming Languages and Systems, Vol. 41, No. 2, Article 10. Publication date: March 2019.



10:38 U. Dal Lago and C. Grellois

6.6 Reducibility Sets Are Stable under Unfoldings

The most difficult step in proving all typable terms to be reducible is, unexpectedly, proving that
terms involving recursion are reducible whenever their respective unfoldings are. This very natural
concept expresses simply that any term in the form letrec f =W is assumed to compute the fix
point of the function defined byW .

Definition 6.13 (n-Unfolding). Suppose that V = (letrec f =W ) is closed; then the n-unfolding

of V is:

• V if n = 0;
• W [Z/f ] if n =m + 1 and Z is them-unfolding of V .

We write the set of unfoldings of V as Unfold (V ). Note that if V admits a simple type, then all
its unfoldings have this same simple type as well. In the sequel, we implicitly consider that V is
simply typed.

Any unfolding of V = (letrec f =W ) should behave like V itself: all unfoldings of V should be
equivalent. This, however, cannot be proved using simply the operational semantics. It requires
some work, and techniques akin to logical relations, to prove this behavioral equivalence between
a recursive definition and its unfoldings. The first lemma is technical and lists the unfoldings of
terms defined recursively as equal to themselves or to a variable:

Lemma 6.14.

• Let V = f andW ∈ Unfold (letrec f = V ). ThenW = letrec f = V .

• Let V = x � f and W ∈ Unfold (letrec f = V ). Then W = letrec f = V or W = x . More pre-

cisely, the n-unfoldings for n ≥ 1 are all x .

The next lemma is the technical core of this section. Think of two terms as related when they are

of the shapeM[
−→
Z /−→x ] andM[

−→
Z ′/−→x ], where −→x is a sequence of “holes” inM , filled with unfoldings

from a same recursively defined term. Then their rewritings by→v form distributions of pairwise
related terms.

Lemma 6.15. Let V = (letrec f =W ) be a closed value. Let −→x , −→Z ,
−→
Z ′ be a vector of variables and

two vectors of terms of Unfold (V ), all of the same length. Let M be a simply typed term with free

variables contained in −→x , all typed with the simple type of V . Suppose that M[
−→
Z /−→x ]→v D . Then

there exists N1, . . . ,Nn , a vector of variables −→y and
−→
Z1, . . . ,

−→
Zn ,
−→
Z ′1, . . . ,

−→
Z ′n ∈ Unfold (V ) of the same

length as −→y and such that D = { (Ni [
−→
Zi/
−→y ])pi } and moreover M[

−→
Z ′/−→x ]→v E = { (Ni [

−→
Z ′i /
−→y ])pi }.

Proof. We prove the result by induction on the structure of M .

• The case where M is a variable cannot fit in this setting: either M = y � −→x and there is no

reduction fromM[
−→
Z /−→x ] orM = xi ∈ −→x and there is no reduction either fromM[

−→
Z /−→x ] = Zi

since it is a value. We can similarly rule out all the cases where M is a value.
• Suppose thatM = V1 V2. We proceed by case exhaustion onV1. Three possibilities exist, the

other ones contradicting the fact that there should be a reduction step from M :
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—If V1 = xi ∈ −→x , we distinguish four cases:

* Suppose that Zi = Z ′i are both the 0-unfolding of V . Then M[
−→
Z /−→x ] = M[

−→
Z ′/−→x ] and

the result follows immediately from

M
[−→
Z /−→x

]
= (letrec f =W ) V2

[−→
Z /−→x

]
= (letrec f =W ) (Sm 0)
→v { ((W [letrec f =W /f ]) (Sm 0))1 },

where in the second line the shape of V2 needs to be Sm 0 by typing constraints. Note

that −→y is the empty vector here.
* Suppose that Zi is the n-unfolding of V for n > 0, and that Z ′i is the 0-unfolding. We

have that

M
[−→
Z /−→x

]
=W

[
Z ′′/f

]
V2

[−→
Z /−→x

]
,

where Z ′′ is the (n − 1)-unfolding of V , and that

M
[−→
Z ′/−→x

]
= (letrec f =W ) V2

[−→
Z ′/−→x

]
→v

{ (
(W [letrec f =W /f ]) V2

[−→
Z ′/−→x

] )1 }
.

Notice that this reduction is possible since the constraint of simple typing implies that
V2 is of the shape Sm 0 for somem ≥ 0. We can therefore rewrite the two terms as

M
[−→
Z /−→x

]
=W

[
Z ′′/f

]
(Sm 0)

and

M
[−→
Z ′/−→x

]
→v

{
((W [letrec f =W /f ]) (Sm 0))1

}
.

We need to distinguish four cases, depending on the structure ofW .
• Suppose thatW is a variable different from f . Then by Lemma 6.14, there cannot be

a step of reduction from M[
−→
Z /−→x ].

• Suppose thatW = f . Then by Lemma 6.14, we haveZi = Z ′i = Z ′′ so thatM[
−→
Z /−→x ] =

M[
−→
Z ′/−→x ] and the result follows just as for the case where both Z and Z ′ were 0-

unfoldings.
• Suppose thatW = λy.L. Then

M
[−→
Z /−→x

]
= (λy.L [Z ′′/f ]) (Sm 0)

→v { (L [Z ′′/f ] [Sm 0/y])1 }
= { ((L [Sm 0/y]) [Z ′′/f ])1 }.

Moreover,

M
[−→
Z ′/−→x

]
→v { ((W [letrec f =W /f ]) (Sm 0))1 }
= { (((λy.L) (Sm 0)) [letrec f =W /f ])1 }
→v { ((L [(Sm 0)/y]) [letrec f =W /f ])1 }

so that we can conclude with −→y = f and N1 = L[(Sm 0)/y].
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• Suppose thatW = letrec д =W ′. Then

M
[−→
Z /−→x

]
= ((letrec д =W ′) [Z ′′/f ]) (Sm 0)

→v { (W ′ [letrec д =W ′/д]) [Z ′′/f ] (Sm 0))1 }
= { (W ′ [letrec д =W ′/д] (Sm 0)) [Z ′′/f ])1 }.

Moreover,

M
[−→
Z ′/−→x

]
→v ((letrec д =W ′) [letrec f =W /f ]) (Sm 0)

→v { (W ′ [letrec д =W ′/д]) [letrec f =W /f ] (Sm 0))1 }
= { (W ′ [letrec д =W ′/д] (Sm 0)) [letrec f =W /f ])1 },

and we conclude with −→y = f and N1 =W
′[letrec д =W ′/д] (Sm 0)).

* Suppose that Zi is the 0-unfolding ofV and that Z ′i is the n-unfolding for n > 0. Again,
the constraint of simple typing implies thatV2 is of the shape Sm 0 for somem ≥ 0. We
have that

M
[−→
Z /−→x

]
→v { ((W [letrec f =W /f ]) (Sm 0))1 }
= { ((W (Sm 0)) [letrec f =W /f ]))1 }

and that

M
[−→
Z ′/−→x

]
=W

[
Z ′′/f

]
(Sm 0) = (W (Sm 0))

[
Z ′′/f

]
,

where Z ′′ is the (n − 1)-unfolding ofV , so that we can conclude with −→y = f and N1 =

W (Sm 0).
* Suppose that Zi is the n-unfolding of V for n > 0, and that Z ′i is the n′-unfolding for
n′ > 0. We have

M
[−→
Z /−→x

]
=W

[
Z ′′/f

]
V2

[−→
Z /−→x

]
,

where Z ′′ is the (n − 1)-unfolding of V , and

M
[−→
Z /−→x

]
=W

[
Z ′′′/f

]
V2

[−→
Z /−→x

]
,

where Z ′′ is the (n′ − 1)-unfolding of V . We proceed by case analysis on W . As we

discussed in the case where Zi was a (n′′ + 1)-unfolding and Z ′i a 0-unfolding, the case
whereW is a variable does not lead to a rewriting step. It remains to treat two cases:
• Suppose thatW = λy.L. Then

M
[−→
Z /−→x

]
= λy.L [Z ′′/f ] V2

[−→
Z /−→x

]
→v

{ (
L
[
Z ′′/f

] [
V2

[−→
Z /−→x

]
/y
] )1 }

=
{ ((

L
[
V2

[−→
Z /−→x

]
/y
] ) [

Z ′′/f
] )1 }
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and

M
[−→
Z ′/−→x

]
= λy.L [Z ′′′/f ] V2

[−→
Z /−→x

]
→v

{ (
L
[
Z ′′′/f

] [
V2

[−→
Z /−→x

]
/y
] )1 }

=
{ ((

L
[
V2

[−→
Z /−→x

]
/y
] ) [

Z ′′′/f
] )1 }

so that we can conclude with −→y = f and N1 = L[V2[
−→
Z /−→x ]/y].

• Suppose thatW = letrec д =W ′. Then

M
[−→
Z /−→x

]
= ((letrec д =W ′) [Z ′′/f ]) V2

[−→
Z /−→x

]
→v

{ (
W ′ [letrec д =W ′/д]) [Z ′′/f ] V2

[−→
Z /−→x

] )1 }
=

{ (
W ′ [letrec д =W ′/д] V2

[−→
Z /−→x

]
) [Z ′′/f ]

)1 }
,

where the reduction is possible because the simple typing constraints imply that

V2[
−→
Z /−→x ] is of the shape Sm 0 for somem ∈ N. Moreover,

M
[−→
Z ′/−→x

]
= ((letrec д =W ′) [Z ′′′/f ]) V2

[−→
Z /−→x

]
→v

{ (
(W ′ [letrec д =W ′/д]) [Z ′′′/f ] V2

[−→
Z /−→x

] )1 }
=

{ ((
W ′ [letrec д =W ′/д] V2

[−→
Z /−→x

] )
[Z ′′′/f ]

)1 }
,

and we conclude with −→y = f and N1 =W
′[letrec д =W ′/д] V2[

−→
Z /−→x ].

—If V1 = λy.L,

M
[−→
Z /−→x

]
=

(
λy.L

[−→
Z /−→x

] )
V2

[−→
Z /−→x

]
→v

{ (
L
[−→
Z /−→x

] [
V2

[−→
Z /−→x

]
/y
] )1 }

=
{ (

L
[
V2/y

] [−→
Z /−→x

] )1 }
and in the same way

M
[−→
Z ′/−→x

]
→v

{ (
L [V2/y]

[−→
Z ′/−→x

] )1 }
,

which allows us to conclude with N1 = L[V2/y].
—If V1 = letrec д =W ′, by typing constraints V2 = Sm 0 for somem ≥ 0. It follows that we

can reduce M[
−→
Z /−→x ] and M[

−→
Z ′/−→x ] as follows:

M
[−→
Z /−→x

]
=

(
letrec д =W ′

[−→
Z /−→x

] )
Sm 0

→v

{ ((
W ′

[−→
Z /−→x

] [
letrec д =W ′

[−→
Z /−→x

]
/д
] )

(Sm 0)
)1 }

=
{ ((

W ′
[
letrec д =W ′/д

] ) [−→
Z /−→x

]
(Sm 0)

)1 }
=

{ ((
W ′

[
letrec д =W ′/д

]
(Sm 0)

) [−→
Z /−→x

] )1 }
,

and similarly,

M
[−→
Z ′/−→x

]
→v

{ (
(W ′ [letrec д =W ′/д] (Sm 0))

[−→
Z ′/−→x

] )1 }
so that we can conclude with N1 =W

′[letrec д =W ′/д] (Sm 0).
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• Suppose that M = let y = X in P . Then

M
[−→
Z /−→x

]
= let y = X

[−→
Z /−→x

]
in P

[−→
Z /−→x

]
→v

{ (
P
[−→
Z /−→x

] [
X
[−→
Z /−→x

]
/y
] )1 }

=
{ (

P
[
X/y

] [−→
Z /−→x

] )1 }
,

and similarly, M[
−→
Z ′/−→x ]→v { (P[X/y][

−→
Z ′/−→x ])1 }, from which we can conclude.

• Suppose that M = let y = L in P and that

M
[−→
Z /−→x

]
= let y = L

[−→
Z /−→x

]
in P

[−→
Z /−→x

]
→v

{ (
let y = L′i

[−→
Z /−→x

]
in P

[−→
Z /−→x

] )pi
}

=
{ (

let y = L′′i
[−→
Z /−→z

]
in P

[−→
Z /−→x

] )pi
}

=
{ ((

let y = L′′i in P
) [−→
Z ,
−→
Z /−→z ,−→x

] )pi
}
,

where the third step is obtained by α-renaming, and where by definition of→v we have

L
[−→
Z /−→x

]
→v

{ (
L′i
[−→
Z /−→x

] )pi ��� i ∈ I }
.

By induction hypothesis, there exists
−→
Z ′1, . . . ,

−→
Z ′n ∈ Unfold (V ) such that

L
[−→
Z ′/−→x

]
→v

{ (
L′i
[−→
Z ′i /
−→x
] )pi ��� i ∈ I }

.

Now we see that

M
[−→
Z ′/−→x

]
→v

{ (
let y = L′i

[−→
Z ′i /
−→x
]

in P
[−→
Z /−→x

] )pi
}

=
{ (

let y = L′′i
[−→
Z ′i /
−→z
]

in P
[−→
Z /−→x

] )pi
}

=
{ ((

let y = L′′i in P
) [−→
Z ,
−→
Z ′i /
−→x ,−→z

] )pi
}
.

The result follows for −→y = −→x ,−→z and Ni = let y = L′′i in P .
• Suppose that M = L ⊕p P . Suppose that L � P . Then

M
[−→
Z /−→x

]
→v

{
L
[−→
Z /−→x

]p
, P

[−→
Z /−→x

]1−p }
and

M
[−→
Z ′/−→x

]
→v

{
L
[−→
Z ′/−→x

]p
, P

[−→
Z ′/−→x

]1−p }
so that the result holds for N1 = L and N2 = P .
If L = P ,

M
[−→
Z /−→x

]
→v

{
L
[−→
Z /−→x

]1 }
and

M
[−→
Z ′/−→x

]
→v

{
L
[−→
Z ′/−→x

]1 }
,

and the result holds as well. Note that the distinction is necessary so as to avoid the use of
pseudo-representations in the statement of the lemma.

• Suppose thatM = caseV ′ of { S→ X | 0→ Y }. By typing constraints,V ′ = Sm 0 orV ′ = y
is a variable.

—If V ′ = 0, M[
−→
Z /−→x ] →v { (R[

−→
Z /−→x ])1 } and M[

−→
Z ′/−→x ] →v { (R[

−→
Z ′/−→x ])1 } so that we

can conclude.
—If V ′ = Sm 0 withm > 0, we can conclude in the same way.
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—In the latter case, there is no reduction from M[
−→
Z /−→x ] unless V ′[

−→
Z /−→x ] is of the shape

V ′ = Sm 0. But this is of type Nat and cannot therefore be an unfolding ofV , so that this
case is impossible. �

This result can be extended to an n-step rewriting process; however, pseudo-representations are
required to keep the statement true, as we explain in the proof.

Lemma 6.16. Let V = (letrec f =W ) be a closed value. Let M be a simply typed term of free

variables contained in −→x , all typed with the simple type of V . Let
−→
Z ,
−→
Z ′ ∈ Unfold (V ) and n ∈ N.

Then there exists a distribution of values of pseudo-representation [X
pi

i | i ∈ I ], a vector of vari-

ables −→y , and families of vectors (
−→
Zi )i ∈I , (

−→
Z ′i )i ∈I of the same length as −→y , all such that M[

−→
Z /−→x ] �n

v

[ (Xi [
−→
Zi/
−→y ])pi | i ∈ I ] and that M[

−→
Z ′/−→x ] �n

v [ (Xi [
−→
Z ′i /
−→y ])pi | i ∈ I ].

Proof. By iteration of Lemma 6.15. The pseudo-representations come from the fact that some
terms in different reduction branches may converge to the same value, say, in the reduction from

M[
−→
Z /−→x ] but not in the one from M[

−→
Z ′/−→x ]. �

The following lemma is of technical interest. It states that, given two pseudo-representations
of a distribution—one of the shape exhibited in the previous lemmas and used for relating terms
with unfoldings, the other one being a pseudo-representation witnessing the belonging to a set
DRed—there exists a third one that “combines” both:

Lemma 6.17. Suppose that Dr = [ (Xi [
−→
Zi/
−→y ])pi | i ∈ I ] = [ (X ′j )p′j | j ∈ J ]. Then there ex-

ists a set K , two applications π1 : K → I and π2 : K → J , and a pseudo-representation Dr =

[ (X ′′
k
[
−−−−→
Zπ1 (k )/

−→y ])p′′
k | k ∈ K ] such that

• ∀k ∈ K , X ′′
k
= Xπ1 (k ) ;

• ∀i ∈ I, ∑
k ∈π −11 (i ) p

′′
k
= pi ;

• ∀k ∈ K , X ′′
k
[
−→
Z ′′

k
/−→y ] = X ′

π2 (k )
; and

• ∀j ∈ J , ∑
k ∈π −12 (j ) p

′′
k
= p ′j .

Proof. Let D = { (Yl )p′′
l | l ∈ L } be the representation of D . We buildK , π1, and π2 as follows.

The construction starts from the empty set and the empty maps and is iterated on every l ∈ L.

First, we setIl = {i ∈ I | Yl = Xi [
−→
Zi/
−→y ]} and Jl = {j ∈ J | Yl = X ′j }. We suppose that both these

sets are enumerated and will write them Il = {i0, . . . , inl
} and Jl = {j0, . . . , jml

}. We consider the
set of reals

R =
⎧⎪⎨⎪⎩0, pi1 , pi1 + pi2 , . . . ,

nl∑
r=0

pir

⎫⎪⎬⎪⎭ ∪
⎧⎪⎨⎪⎩0, p ′j1 , p ′j1 + p ′j2 , . . . ,

ml∑
r ′=0

p ′ir ′

⎫⎪⎬⎪⎭ ⊂ [0,p ′′l ].

This set is ordered, as a set of reals, so that we have a maximal enumeration

0 = α0 < α1 < · · · < αs = p,

where maximality means that β ∈ R ⇒ ∃t , β = αt . We add s elements to the set K produced
during the examination of previous elements of L: K := K � {0, . . . , s − 1}. For every t ∈ {0, . . . ,
s − 1}, we define:

• p ′′t = αt+1 − αt ;

• π1 (t ) = ik ∈ Il , where
∑k−1

r=0 pir
≤ αt and

∑k
r=0 pir

≥ αt ; and

• π2 (t ) = jk ∈ Jl , where
∑k−1

r=0 pjr
≤ αt and

∑k
r=0 pjr

≥ αt .
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We claim that the set K resulting from this constructive process satisfies the equalities of the
lemma. �

The series of previous lemmas allows one to deduce that a term is reducible if and only if the
terms to which it is related are:

Lemma 6.18. LetV = (letrec f =W ) be a closed value. Let M be a simply typed term of free vari-

ables contained in −→x , all typed with the simple type of V . Let
−→
Z ,
−→
Z ′ ∈ Unfold (V ). Then M[

−→
Z /−→x ] ∈

TRed
p
μ,ρ if and only if M[

−→
Z ′/−→x ] ∈ TRed

p
μ,ρ .

Proof. We prove that M[
−→
Z /−→x ] ∈ TRed

p
μ,ρ implies that M[

−→
Z ′/−→x ] ∈ TRed

p
μ,ρ , the converse di-

rection being exactly symmetrical. The proof proceeds by induction on the simple type refined by
μ.

Suppose that μ :: Nat. Let r ∈ [0,p). SinceM[
−→
Z /−→x ] ∈ TRed

p
μ,ρ , there exists nr and νr � μ such

that M[
−→
Z /−→x ] �nr

v Dr and that Dr ∈ DRedr
νr ,ρ . Lemma 6.16 implies that there exists a distribu-

tion of values of pseudo-representation [X
pi

i | i ∈ I ], a vector of variables −→y , and families of

vectors (
−→
Zi )i ∈I , (

−→
Z ′i )i ∈I of the same length as −→y all such that Dr = [ (Xi [

−→
Zi/
−→y ])pi | i ∈ I ] and

that M[
−→
Z ′/−→x ] �n

v Er = [ (Xi [
−→
Z ′i /
−→y ])pi | i ∈ I ]. By typing constraints coming from the sub-

ject reduction property, all the Xi [
−→
Zi/
−→y ] and Xi [

−→
Z ′i /
−→y ] have the simple type Nat. This implies

that all these terms are of the shape Sm 0 form ≥ 0, and thus that the Xi cannot contain a vari-

able from −→y , as their simple type is of the shape Nat→ κ. It follows that, for every index i ∈ I,
Xi [
−→
Zi/
−→y ] = Xi [

−→
Z ′i /
−→y ]. This implies that Er = Dr ∈ DRedr

νr ,ρ
, and thus that M[

−→
Z ′/−→x ] ∈ TRed

p
μ,ρ .

Suppose that μ :: κ → κ ′. Let r ∈ [0,p). Since M[
−→
Z /−→x ] ∈ TRed

p
μ,ρ , there exists nr and νr � μ

such that M[
−→
Z /−→x ] �nr

v Dr and that Dr ∈ DRedr
νr ,ρ . Lemma 6.16 implies that there exists a dis-

tribution of values of pseudo-representation [X
pi

i | i ∈ I ], a vector of variables −→y , and families

of vectors (
−→
Zi )i ∈I , (

−→
Z ′i )i ∈I of the same length as −→y all such that Dr = [ (Xi [

−→
Zi/
−→y ])pi | i ∈ I ]

and that M[
−→
Z ′/−→x ] �n

v Er = [ (Xi [
−→
Z ′i /
−→y ])pi | i ∈ I ]. Since Dr ∈ DRedr

νr ,ρ , there is a pseudo-

representation Dr = [ (Z ′j )p′j | j ∈ J ] witnessing this fact. By Lemma 6.17, there exists a pseudo-

representation Dr = [ (X ′′
k
[
−−−−→
Zπ1 (k )/

−→y ])p′′
k | k ∈ K ] satisfying a series of additional properties.

These properties ensure two crucial facts for our purpose:

• M[
−→
Z /−→x ] �n

v [ (X ′′
k
[
−−−−→
Zπ1 (k )/

−→y ])p′′
k | k ∈ K ],

• M[
−→
Z ′/−→x ] �n

v Er = [ (X ′′
k
[
−−−−→
Z ′

π1 (k )
/−→y ])p′′

k | k ∈ K ], and

• [ (X ′′
k
[
−−−−→
Zπ1 (k )/

−→y ])p′′
k | k ∈ K ] is a pseudo-distribution witnessing the fact that Dr ∈

DRedr
νr ,ρ . Setting μ = { (σl )p′′′

l | l ∈ L }, there thus exists families (p ′′
kl

)k ∈K ,l ∈L and

(qkl )k ∈K ,l ∈L of reals of [0, 1] satisfying:

(1) ∀k ∈ K , ∀l ∈ L, X ′′
k
[
−−−−→
Zπ1 (k )/

−→y ] ∈ VRed
qkl
σl ,ρ ;

(2) ∀k ∈ K , ∑
l ∈L p ′′

kl
= p ′′

k
;

(3) ∀l ∈ L, ∑
k ∈K p ′′

kl
= μ (σl ); and

(4) p ≤ ∑
k ∈K

∑
l ∈L qklp

′′
kl
.
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We now prove that ∀k ∈ K , ∀l ∈ L, X ′′
k
[
−−−−→
Z ′

π1 (k )
/−→y ] ∈ VRed

qkl
σl ,ρ . Let k ∈ K and l ∈ L. Let σl =

θ → ν :

X ′′
k

[−−−−→
Zπ1 (k )/

−→y
]
∈ VRed

qkl
σl ,ρ

⇐⇒ ∀q ∈ (0, 1], ∀Y ∈ VRed
q

θ,ρ
, X ′′

k

[−−−−→
Zπ1 (k )/

−→y
]
Y ∈ TRed

qqkl
ν,ρ

⇐⇒ ∀q ∈ (0, 1], ∀Y ∈ VRed
q

θ,ρ
,

(
X ′′

k
Y
) [−−−−→

Zπ1 (k )/
−→y
]
∈ TRed

qqkl
ν,ρ

⇐⇒ ∀q ∈ (0, 1], ∀Y ∈ VRed
q

θ,ρ
,

(
X ′′

k
Y
) [−−−−→

Z ′
π1 (k )
/−→y

]
∈ TRed

qqkl
ν,ρ by IH

⇐⇒ ∀q ∈ (0, 1], ∀Y ∈ VRed
q

θ,ρ
, X ′′

k

[−−−−→
Z ′

π1 (k )
/−→y

]
Y ∈ TRed

qqkl
ν,ρ

⇐⇒ X ′′
k

[−−−−→
Z ′

π1 (k )
/−→y

]
∈ VRed

qkl
σl ,ρ .

This implies that [ (X ′′
k
[
−−−−→
Z ′

π1 (k )
/−→y ])p′′

k | k ∈ K ] witnesses that Er ∈ DRedr
νr ,ρ , for the same families

of realsp ′′
kl

and qkl . Now for every r ∈ [0,p), there existsnr and νr � μ such thatM[
−→
Z ′/−→x ] �nr

v Er

and that Er ∈ DRedr
νr ,ρ : we have that M[

−→
Z ′/−→x ] ∈ TRed

p
μ,ρ . �

The following lemma shows that reducible values are reducible terms:

Lemma 6.19 (Reducible Values are Reducible Terms). LetV be a value. ThenV ∈ TRed
p

{ σ 1 },ρ
if and only if V ∈ VRed

p
σ ,ρ .

Note that, conversely, wemay haveV ∈ TRed
p
μ,ρ , where μ is not Dirac. For instance, 0 ∈ TRed1

μ,ρ

for μ = { (Nati )
1
2 , (Nat̂i )

1
2 }.

Proof.

• Suppose that V ∈ VRed
p
σ ,ρ . Let r ∈ [0,p). We must prove that there exists nr and νr such

that V →nr
v {V 1 } and that {V 1 } ∈ DRedr

νr ,ρ
. Necessarily nr = 0 and νr = { σ 1 }. Since V ∈

VRed
p
σ ,ρ , {V 1 } ∈ DRedr

νr ,ρ
: take the canonical pseudo-representation [V 1 ] and p11 = 1,

q11 = r .
• Suppose that V ∈ TRed

p

{ σ 1 },ρ . It follows that, for every r ∈ [0,p), there exists nr and νr

such that V →nr
v {V 1 } and that {V 1 } ∈ DRedr

νr ,ρ
. Again, since V is a value, we necessar-

ily have nr = 0 and νr = { σ 1 }. Since {V 1 } ∈ DRedr
νr ,ρ , there is a pseudo-representation

[V p1 , . . . ,V pn ] such that
∑n

i=1 pi = 1, and a family (qi1)i ∈I that is such that r ≤∑
i ∈I pi1qi1, where pi1 = pi .

Suppose that there is no qi1 greater than or equal to r . Then ∀i ∈ I, qi1 < r , and∑
i ∈I

pi1qi1 <
∑
i ∈I

pi1r = r
∑
i ∈I

pi1 = r ,

which is a contradiction. So there exists qi1 ≥ r and thereforeV ∈ VRed
qi1
σ ,ρ . By Lemma 6.7,

V ∈ VRedr
σ ,ρ . Since the result is true for all r ∈ [0,p), we obtain by Lemma 6.10 that V ∈

VRed
p
σ ,ρ . �

We finally deduce from the two previous lemmas the proposition of interest, relating the re-
ducibility of a recursively defined term with the one of its unfoldings:

Proposition 6.20 (Reducibility is Stable by Unfolding). Let n ∈ N and V = (letrec f =W )
be a closed value. Suppose that Z is the n-unfolding of V . Then V ∈ VRed

p

Nats→μ,ρ
if and only if

Z ∈ VRed
p

Nats→μ,ρ
.
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Proof. A direct consequence of Lemma 6.18 and Lemma 6.19. �

6.7 Reducibility Sets versus Reductions and Probabilistic Combinations

If a distribution obtained as a partial approximation of the semantics �M� of a termM is reducible
for a type μn , then all the partial approximations of �M� obtained by iterating at least as many
times the reduction relation �v have the same degree of reducibility, for a greater type:

Lemma 6.21. Suppose that M �n
v Dn ∈ DRed

p
μn,ρ for μn � μ, with

∑
μ = 1. Suppose that, for

m ≥ n, M �m
v Dm . Then there exists μn � μm � μ such that Dm ∈ DRed

p
μm,ρ .

Proof. Let μn = { (σj )
p′j | j ∈ J }. As Dn ∈ DRed

p
μn,ρ , there exists a pseudo-representation

Dn = [V
pi

i | i ∈ I ] and two families of reals (pi j )i ∈I, j ∈J and (qi j )i ∈I, j ∈J such that

(1) ∀i ∈ I, ∀j ∈ J , Vi ∈ VRed
qi j

σj ,ρ ;

(2) ∀i ∈ I, ∑
j ∈J pi j = pi ;

(3) ∀j ∈ J , ∑
i ∈I pi j = p

′
j ; and

(4) p ≤ ∑
i ∈I

∑
j ∈J qi jpi j .

By Lemma 3.8, we have Dn � Dm so that the distribution Dm admits a pseudo-representation

Dm = [V
pi

i | i ∈ I � K ] extending the one of Dn . We now need to define appropriate families
of reals (p ′i j )i ∈I�K , j ∈J and (q′i j )i ∈I�K , j ∈J . We set:

• ∀i ∈ I, ∀j ∈ J , p ′i j = pi j ;

• ∀i ∈ I, ∀j ∈ J , q′i j = qi j ; and

• ∀i ∈ K , ∀j ∈ J , q′i j = 0,

and we choose the (p ′i j )i ∈K , j ∈J arbitrarily in [0, 1] under the constraints that∀i ∈ K , ∑
j ∈J p ′i j =

pi and that ∀j ∈ J , ∑i ∈I�K p ′i j ≤ μ (σj ). These constraints are feasible since
∑

i ∈I�K
∑

j ∈J p ′i j =∑
i ∈I�K pi ≤ 1 =

∑
μ. We then set μm = { (σj )

∑
i∈I�K p′i j | j ∈ J } � μ. Let us check that Dm ∈

DRed
p
μm,ρ .

(1) ∀i ∈ I, ∀j ∈ J , Vi ∈ VRed
qi j

σj ,ρ , and ∀i ∈ K , ∀j ∈ J , Vi ∈ VRed0
σj ,ρ as this set contains

all terms of simple type 〈σj 〉 by Lemma 6.6;
(2) ∀i ∈ I, ∑

j ∈J p ′i j = pi by definition and ∀i ∈ K , ∑
j ∈J p ′i j = pi by construction;

(3) ∀j ∈ J , ∑
i ∈I�K p ′i j = μm (σj ) by definition of μm ; and

(4)

p ≤ ∑
i ∈I

∑
j ∈J qi jpi j

=
∑

i ∈I
∑

j ∈J q′i jp
′
i j + 0

=
∑

i ∈I
∑

j ∈J q′i jp
′
i j +

∑
i ∈K

∑
j ∈J q′i jp

′
i j

=
∑

i ∈I�K
∑

j ∈J q′i jp
′
i j .

So Dm ∈ DRed
p
μm,ρ . �

When two distributions D and E are reducible, with respective degrees of reducibility p ′ and
p ′′, their probabilistic combination D ⊕p E is reducible as well with degree of reducibility pp ′ +
(1 − p)p ′′, for the distribution type computed by ⊕p :

Lemma 6.22. Suppose that 〈μ〉 = 〈ν〉, that D ∈ DRed
p′

μ,ρ , and that E ∈ DRed
p′′

ν,ρ . Then pD + (1 −
p)E ∈ DRed

pp′+(1−p )p′′

μ⊕p ν,ρ .
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Proof. Let μ = { (σj )
p′j | j ∈ J }. Since D ∈ DRed

p′

μ,ρ , there exists a pseudo-representation

D = [V
pi

i | i ∈ I ] and two families of reals (pi j )i ∈I, j ∈J and (qi j )i ∈I, j ∈J such that

(1) ∀i ∈ I, ∀j ∈ J , Vi ∈ VRed
qi j

σj ,ρ ;

(2) ∀i ∈ I, ∑
j ∈J pi j = pi ;

(3) ∀j ∈ J , ∑
i ∈I pi j = p

′
j ; and

(4) p ′ ≤ ∑
i ∈I

∑
j ∈J qi jpi j .

Let ν = { (τl )p′′′
l | l ∈ L }. Since E ∈ DRed

p′′

ν,ρ , there exists a pseudo-representation E =

[W
p′′

k

k
| k ∈ K ] and two families of reals (p ′

kl
)k ∈K ,l ∈L and (q′

kl
)k ∈K ,l ∈L such that

(1) ∀k ∈ K , ∀l ∈ L, Wk ∈ VRed
q′

kl
τl ,ρ ;

(2) ∀k ∈ K , ∑
l ∈L p ′

kl
= p ′′

k
;

(3) ∀l ∈ L, ∑
k ∈K p ′

kl
= p ′′′

l
; and

(4) p ′′ ≤ ∑
k ∈K

∑
l ∈L q′

kl
p ′

kl
.

We suppose that I and K are disjoint, and that j ∈ J ∩ L ⇔ σj = τj . To prove that pD + (1 −
p)E ∈ DRed

pp′+(1−p )p′′

μ⊕p ν,ρ , we consider the pseudo-representation

pD + (1 − p)E =
[
V

ppi

i
��� i ∈ I ]

+
[
W

(1−p )p′′
k

k

��� k ∈ K ]
, (14)

and we write the distribution type μ ⊕p ν as{
(σj )

pp′j ��� j ∈ J \ (J ∩ L)
}
+
{

(σj )
pp′j+(1−p )p′′′j

��� j ∈ J ∩ L }
+
{

(τl )(1−p )p′′′
l
��� l ∈ L \ (J ∩ L)

}
.

We set G = I +K and H = J + L. We now need to define appropriate families of reals
(p ′′

дh
)д∈G,h∈H and (q′′

дh
)д∈G,h∈H . We proceed as follows:

• If д ∈ I and h ∈ J , p ′′
дh
= ppдh and q′′

дh
= qдh .

• If д ∈ I and h ∈ L, p ′′
дh
= 0 and q′′

дh
= 0.

• If д ∈ K and h ∈ J , p ′′
дh
= 0 and q′′

дh
= 0.

• If д ∈ K and h ∈ L, p ′′
дh
= (1 − p)p ′

дh
and q′′

дh
= q′

дh
.

Let us prove that Equation (14) together with these two families provides a witness that pD +

(1 − p)E ∈ DRed
pp′+(1−p )p′′

μ⊕p ν,ρ by checking the four usual conditions. We write Zд either forVi orWk ,

depending on the context. We write similarly θh for σj or τl .

(1) ∀д ∈ G, ∀h ∈ H , Zд ∈ VRed
q′′

дh

θh,ρ
is proved by case exhaustion:

• ∀д ∈ I, ∀h ∈ J , Vд ∈ VRed
qдh

σh,ρ since D ∈ DRed
p′

μ,ρ ;

• ∀д ∈ K , ∀h ∈ L, Wд ∈ VRed
q′

дh

τh,ρ since E ∈ DRed
p′′

ν,ρ ; and
• in the two remaining cases, q′′

дh
= 0 and by Lemma 6.6 the result holds.

(2) We proceed again by case exhaustion:
• If д ∈ I, ∑h∈H p ′′

дh
=

∑
h∈J p ′′

дh
+

∑
h∈L p ′′

дh
=

∑
h∈J ppдh = ppд .

• If д ∈ K ,
∑

h∈H p ′′
дh
=

∑
h∈L (1 − p)p ′

дh
= (1 − p)p ′′д .

(3) We proceed again by case exhaustion:
• Suppose that h ∈ J \ (J ∩ L). Then

∑
д∈G p ′′

дh
=

∑
д∈I p ′′

дh
=

∑
д∈I ppдh = pp

′
д .
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• Suppose that h ∈ L \ (J ∩ L). Then
∑

д∈G p ′′
дh
=

∑
д∈K p ′′

дh
=

∑
д∈K (1 − p)p ′

дh
=

(1 − p)p ′′′д .

• Suppose that h ∈ J ∩ L. Then
∑

д∈G p ′′
дh
=

∑
д∈I p ′′

дh
+

∑
д∈K p ′′

дh
= pp ′д +

(1 − p)p ′′′д .

(4) ∑
д∈G

∑
h∈H q′′

дh
p ′′

дh

=
∑

д∈I
∑

h∈J q′′
дh
p ′′

дh
+

∑
д∈K

∑
h∈L q′′

дh
p ′′

дh

=
∑

д∈I
∑

h∈J qдhppдh +
∑

д∈K
∑

h∈L q′
дh

(1 − p)p ′
дh

= p
∑

д∈I
∑

h∈J qдhpдh + (1 − p)
∑

д∈K
∑

h∈L q′
дh
p ′

дh

≥ pp ′ + (1 − p)p ′′

It follows that pD + (1 − p)E ∈ DRed
pp′+(1−p )p′′

μ⊕p ν,ρ . �

This lemma generalizes to the n-ary case of a weighted sum of distributions:

Lemma 6.23. Let (μi )i ∈I be a family of distribution types of the same underlying type. For

every i ∈ I, let Di ∈ DRed
qi
μi ,ρ . Let (pi )i ∈I be a family of reals of [0, 1] such that

∑
i ∈I pi ≤ 1. Then∑

i ∈I piDi ∈ DRed
∑

i∈I pi qi∑
i∈I pi μi ,ρ

.

Proof. Similar to the proof of Lemma 6.22. �

TRed is closed by antireduction for Dirac distributions but also in the case corresponding to the
reduction of a choice operator:

Lemma 6.24 (Reductions and Sets of Candidates).

• Suppose that M →v {N 1 } and that N ∈ TRed
p
μ,ρ . Then M ∈ TRed

p
μ,ρ .

• Suppose that M →v {N p ,L1−p }, that N ∈ TRed
p′

μ,ρ , and that L ∈ TRed
p′′

ν,ρ . Then M ∈
TRed

pp′+(1−p )p′′

μ⊕p ν,ρ .

Proof.

• Since N ∈ TRed
p
μ,ρ , for every 0 ≤ r < p there exists νr � μ and nr ∈ N such that N �nr

v

Dr ∈ DRedr
νr ,ρ

. Recall that �nr+1
v =→v ◦�nr

v . It follows that M �nr+1
v Dr , which has the

required properties, so that M ∈ TRed
p
μ,ρ .

• Let 0 ≤ r < pp ′ + (1 − p)p ′′. Let (r ′, r ′′) be such that r = pr ′ + (1 − p)r ′′, 0 ≤ r ′ < p ′, and

0 ≤ r ′′ < p ′′. Since N ∈ TRed
p′

μ,ρ , there exists nr ′ and μr ′ � μ such that N �nr ′
v Dr ′ ∈

DRedr ′
μr ′,ρ

. Since L ∈ TRed
p′′

ν,ρ , there exists mr ′′ and νr ′′ � ν such that L �mr ′′
v Er ′′ ∈

DRedr ′′
νr ′′,ρ

. Suppose thatnr ′ ≤ mr ′′ , the dual case being exactly symmetrical. By Lemma 6.21,

by denoting Dr ′′ the distribution such that N �mr ′′
v Dr ′′ , there exists μr ′ � μr ′′ � μ such

that Dr ′′ ∈ DRedr ′
μr ′′,ρ

. Now M �mr ′′+1
v pDr ′′ + (1 − p)Er ′′ , and by Lemma 6.22 we have

pDr ′′ + (1 − p)Er ′′ ∈ DRed
pr ′+(1−p )r ′′

μr ′′ ⊕p νr ′′,ρ
. Since by construction μr ′′ ⊕p νr ′′ � μ ⊕p ν , we can

conclude that M ∈ TRed
pp′+(1−p )p′′

μ⊕p ν,ρ . �

6.8 Subtyping Soundness

Reducibility sets are monotonic with respect to the subtyping order �:
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Lemma 6.25 (Subtyping Soundness).

• Suppose that σ � τ . Then, for every p ∈ [0, 1] and ρ, VRed
p
σ ,ρ ⊆ VRed

p
τ ,ρ .

• Suppose that μ � ν and that
∑

μ =
∑

ν . Then, for everyp ∈ [0, 1] and ρ, DRed
p
μ,ρ ⊆ DRed

p
ν,ρ .

• Suppose that μ � ν . Then, for every p ∈ [0, 1] and ρ, TRed
p
μ,ρ ⊆ TRed

p
ν,ρ .

Proof. The proof is by mutual induction on the statements following the shape of the simple
type refined by σ and μ, as earlier.

• Suppose that σ :: Nat. Then σ = Nats and τ = Natr with s � r. LetV ∈ VRed
p
σ ,ρ . There are

three possibilities:

—Either s = î
k
and r = î

k′
with k ≤ k ′. Then V is of the shape Sn 0. If p = 0, the result is

immediate. Else we have n < �s�ρ = ρ (i) + k ≤ ρ (i) + k ′ = �r�ρ so that V ∈ VRed
p
τ ,ρ .

—Or s = î
k
and r = ∞. In this case V is of the shape Sn 0 and therefore V ∈ VRed

p
τ ,ρ .

—Or s = r = ∞. In this case σ = τ and the result is immediate.
• Suppose that σ = σ ′ → μ and that τ = τ ′ → ν . Let p ∈ [0, 1], ρ be a size environment, and

V ∈ VRed
p
σ ,ρ . We have that τ ′ � σ ′ and μ � ν . It follows, by induction hypothesis, that

VRed
p′

τ ′,ρ ⊆ VRed
p′

σ ′,ρ and that TRed
p′

μ,ρ ⊆ TRed
p′

ν,ρ for every p ′ ∈ [0, 1]. SinceV ∈ VRed
p
σ ,ρ ,

for everyq ∈ (0, 1] andW ∈ VRed
q

σ ′,ρ ,V W ∈ TRed
pq
μ,ρ ⊆ TRed

pq
ν,ρ . As VRed

q

τ ′,ρ ⊆ VRed
q

σ ′,ρ ,

V ∈ VRed
p
τ ,ρ .

• Suppose that μ = { σ
p′j
j | j ∈ J } and that ν = { τp′′

k

k
| k ∈ K }. By definition of subtyp-

ing, there exists f : J → K such that for all j ∈ J , σj � τf (j ) and that for all k ∈ K ,∑
j ∈f −1 (k ) p

′
j ≤ p ′′

k
. Note that since

∑
μ =

∑
ν , this is in fact an equality. Let D ∈ DRed

p
μ,ρ ;

then there exists a pseudo-representation D = [ (Vi )pi | i ∈ I ] and families (pi j )i ∈I, j ∈J
and (qi j )i ∈I, j ∈J of reals of [0, 1] satisfying:

(1) ∀i ∈ I, ∀j ∈ J , Vi ∈ VRed
qi j

σj ,ρ ;

(2) ∀i ∈ I, ∑
j ∈J pi j = pi ;

(3) ∀j ∈ J , ∑
i ∈I pi j = p

′
j ; and

(4) p ≤ ∑
i ∈I

∑
j ∈J qi jpi j .

By induction hypothesis, for every j ∈ J , VRed
qi j

σj ,ρ ⊆ VRed
qi j

τf (j ),ρ . We now prove that

[ (Vi )pi |i ∈ I ] witnesses that D ∈ DRed
p
ν,ρ . We need to define families of reals (p ′

ik
)i ∈I,k ∈K

and (q′
ik

)i ∈I,k ∈K satisfying the four usual conditions. To this end, for every i ∈ I, k ∈ K ,
we set

p ′ik =
∑

j ∈f −1 (k )

pi j

and

q′ik = max
j ∈f −1 (k )

qi j .

Let us check that the four conditions hold:

(1) ∀i ∈ I, ∀k ∈ K , Vi ∈ VRed
q′

ik
τf (j ),ρ by induction hypothesis and by definition of q′

ik
;

(2) ∀i ∈ I, ∑
k ∈K p ′

ik
=

∑
k ∈K

∑
j ∈f −1 (k ) pi j =

∑
j ∈J pi j = pi ;

(3) ∀k ∈ K , ∑
i ∈I p ′

ik
=

∑
i ∈I

∑
j ∈f −1 (k ) pi j =

∑
j ∈f −1 (k )

∑
i ∈I pi j =

∑
j ∈f −1 (k ) p ′j =

p ′′
k
; and
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(4)

p ≤ ∑
i ∈I

∑
j ∈J qi jpi j

=
∑

i ∈I
∑

k ∈K
∑

j ∈f −1 (k ) qi jpi j

≤ ∑
i ∈I

∑
k ∈K

∑
j ∈f −1 (k ) q′

i f (j )
pi j

=
∑

i ∈I
∑

k ∈K q′
ik

∑
j ∈f −1 (k ) pi j

=
∑

i ∈I
∑

k ∈K q′
ik
p ′

ik
.

It follows that D ∈ DRed
p
ν,ρ .

• Suppose that μ = { σ
p′j
j | j ∈ J } and that ν = { τp′′

k

k
| k ∈ K }. By definition of subtyp-

ing, there exists f : J → K such that for all j ∈ J , σj � τf (j ) and that for all k ∈ K ,∑
j ∈f −1 (k ) p ′j ≤ p ′′

k
. Let M ∈ TRed

p
μ,ρ . Then, for every 0 ≤ r < p, there exists μ ′r � μ and

nr such that M �nr
v Dr ∈ DRedr

μ′r ,ρ
. By definition of μ ′r � μ, μ ′r = [σ

q′j
j | j ∈ J ] with

q′j ≤ p ′j for every j ∈ J . We set ν ′r = [τ
q′j
f (j )
| j ∈ J ], which is such that

∑
μ ′r =

∑
ν ′r and,

by construction, μ ′r � ν ′r so that we can apply the induction hypothesis and obtain that
M �nr

v Dr ∈ DRedr
ν ′r ,ρ

. The result follows, since by construction ν ′r � ν . �

6.9 Reducibility Sets for Open Terms

We are now ready to extend the notion of the reducibility set from the realm of closed terms to
the one of open terms. This turns out to be subtle. The guiding intuition is that one would like

to define a term M with free variables in −→x to be reducible if and only if any closure M[
−→
V /−→x ] is

itself reducible in the sense of Definition 6.2. What happens, however, to the underlying degree

of reducibility p? How do we relate the degrees of reducibility of
−→
V with the one of M[

−→
V /−→x ]?

Informally, the behavior of the reducibility degrees is multiplicative, except for the distribution
context, which requires some more care to match the behavior of the sized walk:

• In the case of a context Γ | ∅ for Γ = x1 : σ1, . . . ,xn : σn , which is the simplest one, if

we substitute each xi with Vi ∈ VRed
qi
σi ,ρ , we require that M[

−→
V /−→x ] ∈ TRed

∏n
i=1 qi

μ,ρ . In other
words, the reducibility degree that we require is the product of the ones of the values substi-
tuted for the variables. If we think about termination, we may see this as the fact that, when

each of the terms replacing the xi terminates with probability at least qi , then M[
−→
V /−→x ]

should terminate with probability at least
∏n

i=1 qi . Without this guarantee, the open vari-
ables ofM could be substituted with values and nevertheless not be AST. Note that here we
considered the case of an open term M , but it is exactly the same for a valueW with open
variables.

• If the context is ∅ |y : {τpi

i }i ∈I , then we substitute the only free variable y in M with a

value V ∈ ⋂
i ∈I VRed

qi
σi ,ρ . We then require that M[V /y] ∈ TRed

∑
i∈I pi qi+1−(

∑
j∈J pj )

μ,ρ . Note
that the degree of reducibility we find here is precisely connected to Equation (15) in the
proof of Lemma 6.31, if one takes qi to be Prn,m′+ki

. Here the informal explanation is that

if the replacement V of y of type τi is in VRed
qi
τi ,ρ , then when used with type τi , the value

V terminates with probability at least qi . Since it is used with this type with probability pi ,
the substitution terminates with probability at least

∑
i ∈I piqi + 1 − (

∑
j ∈J pj ) because:

—each i contributes to termination with probability piqi , and
—with probability 1 − (

∑
j ∈J pj ) the variable y is not used, so that no recursive call will be

performed with this probability and termination is therefore ensured.
Again, the same holds when the open term is a value.
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• When the context is of the form Γ | Θ, the resulting degree of reducibility is obtained as
the result of the multiplication of the degrees obtained in both previous cases.

We may now introduce the reducibility sets for open terms in a formal way:

Definition 6.26 (Reducibility Sets for Open Terms). Suppose that Γ is a sized context in the form
x1 : σ1, . . . ,xn : σn , and thaty is a variable distinct from x1, . . . ,xn . Then we define the following
sets of terms and values:

OTRedΓ | ∅
μ,ρ =

{
M ��� ∀(qi )i ∈ [0, 1]n , ∀ (V1, . . . , Vn ) ∈ ∏n

i=1 VRed
qi
σi ,ρ ,

M
[−→
V /−→x

]
∈ TRed

∏n
i=1 qi

μ,ρ

}
OVRedΓ | ∅

μ,ρ =
{
W ��� ∀(qi )i ∈ [0, 1]n , ∀ (V1, . . . , Vn ) ∈ ∏n

i=1 VRed
qi
σi ,ρ ,

W
[−→
V /−→x

]
∈ VRed

∏n
i=1 qi

μ,ρ

}

OTRed
Γ | y : {τ

pj
j }j∈J

μ,ρ =
{
M ��� ∀(qi )i ∈ [0, 1]n , ∀−→V ∈ ∏n

i=1 VRed
qi
σi ,ρ ,

∀(q′j )j ∈ [0, 1]J , ∀W ∈ ⋂
j ∈J VRed

q′j
τj ,ρ ,

M
[−→
V ,W /−→x ,y

]
∈ TRedα

μ,ρ

}
OVRed

Γ | y : {τ
pj
j }j∈J

μ,ρ =
{
Z ��� ∀(qi )i ∈ [0, 1]n , ∀−→V ∈ ∏n

i=1 VRed
qi
σi ,ρ ,

∀(q′j )j ∈ [0, 1]J , ∀W ∈ ⋂
j ∈J VRed

q′j
τj ,ρ ,

Z
[−→
V ,W /−→x ,y

]
∈ VRedα

μ,ρ

}
,

where the degree of reducibility α is defined as

α = ��
n∏

i=1

qi
��
���
���
∑
j ∈J

pjq
′
j
��� + 1 − ���

∑
j ∈J

pj
���
��� .

Note that this contains

OTRed∅ | ∅μ,ρ = TRed1
μ,ρ

OVRed∅ | ∅σ ,ρ = VRed1
σ ,ρ

OTRed
∅ | y : {τ pi

i }i∈I

μ,ρ =
{
M ��� ∀ (qi )i ∈ [0, 1]I , ∀V ∈ ⋂

i ∈I VRed
qi
τi ,ρ ,

M [V /y] ∈ TRed
∑

i∈I pi qi+1−(
∑

j∈J pj )
μ,ρ

}
OVRed

∅ | y : {τ pi
i }i∈I

μ,ρ =
{
W ��� ∀ (qi )i ∈ [0, 1]I , ∀V ∈ ⋂

i ∈I VRed
qi
τi ,ρ ,

W [V /y] ∈ VRed
∑

i∈I pi qi+1−(
∑

j∈J pj )
μ,ρ

}
.

Note also that these sets extend the ones for closed terms: in particular, OTRed∅ | ∅μ,ρ = TRed1
μ,ρ .

As for closed terms (Lemma 6.19), reducible values are reducible terms:

Lemma 6.27 (Reducible Values are Reducible Terms). For every Γ, Θ, σ , and ρ, V ∈
OVRedΓ |Θ

σ ,ρ if and only if V ∈ OTRed
Γ |Θ
{ σ 1 },ρ . An immediate consequence is that OVRedΓ |Θ

σ ,ρ ⊆
OTRedΓ |Θ

{ σ 1 },ρ .

Proof. Corollary of Lemma 6.19 and of the definitions of the candidates for open sets. �
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6.10 Reducibility and Sized Walks

To handle the fix-point rule, we need to relate the notion of sized walk, which guards it with the
reducibility sets, and in particular with the degrees of reducibility we can attribute to recursively
defined terms.

Definition 6.28 (Probabilities of Convergence in Finite Time). Let us consider a sized walk.
We define the associated probabilities of convergence in finite time(Prn,m )n∈N,m∈N as follows:
∀n ∈ N, ∀m ∈ N, and the real number Prn,m is defined as the probability that, starting from m,
the sized walk reaches 0 in at most n steps.

The point is that, for an AST sized walk, the more we iterate, the closer we get to reaching 0 in
finite time n with probability 1.

Lemma 6.29 (Finite Approximations of AST). Let m ∈ N and ε ∈ (0, 1]. Consider a sized walk

and its associated probabilities of convergence in finite time (Prn,m )n∈N,m∈N. If the sized walk is AST,

there exists n ∈ N such that Prn,m ≥ 1 − ε .

Proof. Suppose, by contradiction, that there exists ε ∈ (0, 1] such that there is no n ∈ N with
Prn,m ≥ 1 − ε . Then limn∈N Prn,m ≤ 1 − ε . But this limit should be worth 1 as we supposed the
sized walk to be AST. �

The following lemma allows to treat the base case of Lemma 6.31:

Lemma 6.30. Suppose thatV is a closed value of simple type Nat→ κ. Then, for every Nati → μ ::
Nat→ κ, and for every size environment ρ such that ρ (i) = 0, we have V ∈ VRed1

Nati→μ,ρ
.

Proof. To prove that V ∈ VRed1
Nati→μ,ρ

, we need to show that for every q ∈ (0, 1] and every

W ∈ VRed
q

Nati,ρ
we have that V W ∈ TRed

q
μ,ρ . This is always the case, as VRed

q

Nati,ρ
is the empty

set by definition: there is no term of the shape Sn 0 with n < ρ (i) = 0. �

The following lemma is the crucial result relating sized walks with the reducibility sets. It proves
that, when the sized walk is AST, and after substitution of the variables of the context by reducible
values in the recursively defined term, we can prove the degree of reducibility to be any probability
Prn,m of convergence in finite time.

Lemma 6.31 (Convergence in Finite Time and letrec). Consider the distribution type μ =
{ (Natsj → ν[sj/i])

pj | j ∈ J }. Let Γ be the sized context x1 : Natr1 , . . . , xl : Natrl . Suppose that

Γ | f : μ � V : Nat̂i → ν [̂i/i] and that μ induces an AST sized walk. Denote by (Prn,m )n∈N,m∈N its

associated probabilities of convergence in finite time. Suppose that V ∈ OVRed
Γ | f : μ

Nat̂i→ν [̂i/i],ρ
for every

ρ. Let
−→
W ∈ ∏l

i=1 VRed1
Natri ,ρ ; then for every (n,m) ∈ N2, we have that

letrec f = V
[−→
W /−→x

]
∈ VRed

Prn,m

Nati→ν,ρ[i �→m]
.

Proof. We prove the statement by induction on n.

• If n = 0, we have two cases:

—Ifm = 0, then Lemma 6.30 implies that letrec f = V [
−→
W /−→x ] ∈ VRed1

Nati→ν,ρ[i �→0]
so that

by downward closure (Lemma 6.7), we obtain letrec f = V [
−→
W /−→x ] ∈ VRed

Prn,0

Nati→ν,ρ[i �→0]
.

—Ifm � 0, then Prn,m = 0. The hypothesis of the lemma imply that letrec f = V [
−→
W /−→x ] ::

Nat→ 〈ν〉, and we conclude using Lemma 6.6.
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• Suppose that n ≥ 1:
—Ifm = 0, the result is immediate as in the previous case.

—Suppose that m > 0. Then m =m′ + 1. By definition, sj must be of the shape î
kj

with
kj ≥ 0 for every j ∈ J . We set I = {kj | j ∈ J } and qkj

= pj for every j ∈ J . The sized
walk induced by the distribution type μ is then the sized walk associated to (I, (qi )i ∈I )),
which from the statem′ + 1 ∈ N \ {0} moves:
* to the statem′ + kj with probability pj , for every j ∈ J , and
* to 0 with probability 1 − (

∑
j ∈J pj ).

It follows that

Prn+1,m′+1 =
∑
j ∈J

pj Prn,m′+kj
+ 1 − ���

∑
j ∈J

pj
��� . (15)

For every j ∈ J , let us apply the induction hypothesis and obtain

letrec f = V
[−→
W /−→x

]
∈ VRed

Prn,m′+kj

Nati→ν,ρ[i �→m′+kj ]
.

By Lemma 6.12,

letrec f = V
[−→
W /−→x

]
∈ VRed

Prn,m′+kj

Nat̂i
kj
→ν [̂i

kj
/i],ρ[i �→m′]

= VRed
Prn,m′+kj

Natsj→ν[sj /i],ρ[i �→m′]
.

Since this is valid for every j ∈ J , we have that

letrec f = V
[−→
W /−→x

]
∈

⋂
j ∈J

VRed
Prn,m′+kj

Natsj→ν [sj /i],ρ[i �→m′]
,

and since V ∈ OVRed
Γ | f : μ

Nat̂i→ν [̂i/i],ρ[i �→m′]
, we obtain

V
[−→
W , letrec f = V

[−→
W /−→x

]
/−→x , f

]
∈ VRed

∑
j∈J pj Prn,m+kj

+ 1−(
∑

j∈J pj ),

Nat̂i→ν
[̂
i/i

]
,ρ[i �→m′]

which, by Equation (15) and by Lemma 6.12, gives

V
[−→
W , letrec f = V

[−→
W /−→x

]
/−→x , f

]
∈ VRed

Prn+1,m′+1
Nati→ν,ρ[i �→m′+1].

But this term is an unfolding of letrec f = V [
−→
W /−→x ], so that by Corollary 6.20 we obtain

letrec f = V
[−→
W /−→x

]
∈ VRed

Prn+1,m

Nati→ν,ρ[i �→m].

Now by definition, Prn+1,m ≥ Prn,m , and by downward closure (Lemma 6.7):

letrec f = V
[−→
W /−→x

]
∈ VRed

Prn,m

Nati→ν,ρ[i �→m].
�

6.11 Size Environments Mapping Sizes to Infinity

Whenm = ∞, the previous lemma does not allow one to conclude, and an additional argument is
required. Indeed, it does not make sense to consider a sized walk beginning from∞: the meaning
of this size is in fact any integer, not the ordinal ω. Before we justify this understanding, we need
the following companion lemma.

Lemma 6.32. If i pos σ , then

• VRed
p

σ ,ρ[i �→n]
⊆ VRed

p

σ ,ρ[i �→∞]
,

• DRed
p

μ,ρ[i �→n]
⊆ DRed

p

μ,ρ[i �→∞]
, and

• TRed
p

μ,ρ[i �→n]
⊆ TRed

p

μ,ρ[i �→∞]
.
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Proof.

• Let s = î
n
. We have �s�ρ[i �→0] = n. Using Lemma 6.12, we obtain

VRed
p

σ [s/i],ρ[i �→0]
= VRed

p

σ ,ρ[i �→�s�ρ[i �→0]]
= VRed

p

σ ,ρ[i �→n]
.

By the same lemma,

VRed
p

σ [∞/i],ρ[i �→0]
= VRed

p

σ ,ρ[i �→�∞�ρ[i �→0]]
= VRed

p

σ ,ρ[i �→∞]
.

Since i pos σ and s � ∞, Lemma 5.14 implies that σ [s/i] � σ [∞/i]. By Lemma 6.25, we

obtain VRed
p

σ [s/i],ρ[i �→0]
⊆ VRed

p

σ [∞/i],ρ[i �→0]
and thus VRed

p

σ ,ρ[i �→n]
⊆ VRed

p

σ ,ρ[i �→∞]
.

• Let D ∈ DRed
p

μ,ρ[i �→n]
. It follows that D = [ (Vi )pi | i ∈ I ] and that, setting μ =

{ (σj )
p′j | j ∈ J }, there exists families (pi j )i ∈I, j ∈J and (qi j )i ∈I, j ∈J of reals of [0, 1] satis-

fying:

(1) ∀i ∈ I, ∀j ∈ J , Vi ∈ VRed
qi j

σj ,ρ[i �→n]
;

(2) ∀i ∈ I, ∑
j ∈J pi j = pi ;

(3) ∀j ∈ J , ∑
i ∈I pi j = μ (σj ); and

(4) p ≤ ∑
i ∈I

∑
j ∈J qi jpi j .

Since ∀i ∈ I, ∀j ∈ J , Vi ∈ VRed
qi j

σj ,ρ[i �→n]
⊆ VRed

qi j

σj ,ρ[i �→∞]
, we obtain that D ∈

DRed
p

μ,ρ[i �→∞]
using the same witnesses.

• Let M ∈ TRed
p

μ,ρ[i �→n]
. It follows that for every 0 ≤ r < p, there exists νr � μ and nr ∈ N

such that M �nr
v Dr and Dr ∈ DRedr

νr ,ρ[i �→n]. But DRedr
νr ,ρ[i �→n] ⊆ DRedr

νr ,ρ[i �→∞], so that

M ∈ TRed
p

μ,ρ[i �→∞]
. �

The following lemma proves that ∞ stands for “every integer.” It proves indeed that, if a term
is in a reducibility set for any finite interpretation of a size, then it is also in the set where the size
is interpreted as∞:

Lemma 6.33 (Reducibility for Infinite Sizes). Suppose that i pos ν and that W is the value

letrec f = V . IfW ∈ VRed
p

Nati→ν,ρ[i �→n]
for every n ∈ N, thenW ∈ VRed

p

Nati→ν,ρ[i �→∞]
.

Proof. Suppose that i pos ν and that, for every n ∈ N, letrec f = V ∈ VRed
p

Nati→ν,ρ[i �→n]
. Let

W ∈ VRed
p

Nati,ρ[i �→∞]
. ThenW = Sm 0 for somem ∈ N. It follows thatW ∈ VRed

p

Nati,ρ[i �→m+1]
. But

letrec f = V ∈ VRed
p

Nati→ν,ρ[i �→m+1]
, so that

(letrec f = V ) W ∈ TRed
p

ν,ρ[i �→m+1]
.

By Lemma 6.32, since i pos ν , we obtain that

(letrec f = V ) W ∈ TRed
p

ν,ρ[i �→∞]
.

It follows that

letrec f = V ∈ VRed
p

Nati→ν,ρ[i �→∞]
. �

6.12 A Last Technical Lemma

The following technical lemma will allow us to deal with the Let rule in the proof of typing sound-
ness.
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Lemma 6.34. Let (qi )i ∈ (0, 1]n , (q′j )j ∈ (0, 1]m , and (q′′
k

)k ∈ (0, 1]l . Let L and G be two sets of

indexes. Let 0 ≤ r ′′ < (
∏n

i=1 qi ) (
∏m

j=1 q′j ) (
∏l

k=1 q′′
k

). Suppose that, for every 0 ≤ r <
∏m

j=1 q′j , there

exists two families (pr
lд

)l ∈L,д∈G and (qr
lд

)l ∈L,д∈G of reals of [0, 1] satisfying

r ≤
∑
l ∈L

∑
д∈G

pr
lдq

r
lд (16)

and ∑
l ∈L

∑
д∈G

pr
lд ≤ 1. (17)

Then there exists 0 ≤ r <
∏m

j=1 q′j and a family (r ′
lд

)l ∈L,д∈G satisfying

∀l ∈ L, ∀д ∈ G, 0 ≤ r ′lд <
��

n∏
i=1

qi
�� ��

l∏
k=1

q′′k
��qr

lд (18)

and

r ′′ ≤
∑
l ∈L

∑
д∈G

pr
lдr
′
lд . (19)

Proof. Since r ′′ < (
∏n

i=1 qi ) (
∏m

j=1 q′j ) (
∏l

k=1 q′′
k

), there exists ε > 0 and ∀l ∈ L, ∀д ∈ G,
εlд > 0 satisfying

0 < ε +
∑
l ∈L

∑
д∈G

εlд < ��
n∏

i=1

qi
��
���

m∏
j=1

q′j
���
��

l∏
k=1

q′′k
�� − r ′′. (20)

We pick r such that
m∏
j=1

q′j − ε < r <
m∏
j=1

q′j , (21)

and this induces families (pr
lд

)l ∈L,д∈G and (qr
lд

)l ∈L,д∈G of reals of [0, 1] satisfying Equations (16)

and (17). We choose a family (r ′
lд

)l ∈L,д∈G such that

∀l ∈ L, ∀д ∈ G, ��
n∏

i=1

qi
�� ��

l∏
k=1

q′′k
��qr

lд − εlд < r ′lд <
��

n∏
i=1

qi
�� ��

l∏
k=1

q′′k
��qr

lд .

By Equation (17) and since (
∏n

i=1 qi ) (
∏l

k=1 q′′
k

), we obtain from Equation (20) that

��
n∏

i=1

qi
�� ��

l∏
k=1

q′′k
�� ε +

∑
l ∈L

∑
д∈G

pr
lдεlд < ��

n∏
i=1

qi
��
���

m∏
j=1

q′j
���
��

l∏
k=1

q′′k
�� − r ′′.

Thus,

r ′′ < ��
n∏

i=1

qi
�� ��

l∏
k=1

q′′k
��
���
���

m∏
j=1

q′j
��� − ε

��� −
∑
l ∈L

∑
д∈G

pr
lдεlд .

By Equations (21) and then (16):

r ′′ < ��
n∏

i=1

qi
�� ��

l∏
k=1

q′′k
��
���
∑
l ∈L

∑
д∈G

pr
lдq

r
lд
��� −

∑
l ∈L

∑
д∈G

pr
lдεlд ,
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which rewrites to

r ′′ <
∑
l ∈L

∑
д∈G

pr
lд
����

n∏
i=1

qi
�� ��

l∏
k=1

q′′k
��qr

lд − εlд
�� ,

and by definition of (r ′
lд

)l ∈L,д∈G we obtain

r ′′ <
∑
l ∈L

∑
д∈G

pr
lдr
′
lд

as requested. �

6.13 Typing Soundness

All these fundamental lemmas allow us to prove the following proposition, which expresses that
all typable terms are reducible and is the key step toward the fact that typability implies AST:

Proposition 6.35 (Typing Soundness). If Γ |Θ � M : μ, then M ∈ OTRedΓ |Θ
μ,ρ for every ρ.

Similarly, if Γ |Θ � V : σ , then V ∈ OVRedΓ |Θ
σ ,ρ for every ρ.

Proof. We proceed by induction on the derivation of the sequent Γ |Θ � M : μ. When M = V
is a value, we know by Lemma 4.12 that μ = { σ 1 }; and we prove that V ∈ OVRedΓ |Θ

σ ,ρ for every

ρ. By Lemma 6.27, we obtain that V ∈ OTRedΓ |Θ
μ,ρ for every ρ. We proceed by case analysis on the

last rule of the derivation:
We suppose in the following that Γ is a sized context that can be enumerated in the form x1 :

σ1, . . . ,xn : σn , and that y is a variable distinct from x1, . . . ,xn . We proceed according to the last
rule of the derivation:

• Var: Suppose that Γ, y : τ |Θ � y : τ . Let (qi )i ∈ [0, 1]n+1 and (V1, . . . , Vn ,W ) ∈
(
∏n

i=1 VRed
qi
σi ,ρ ) × VRed

qn+1
τ ,ρ .

—If Θ = ∅, we need to prove thaty[
−→
V ,W /−→x ,y] =W ∈ VRed

∏n+1
i=1 qi

τ ,ρ . This is immediate since∏n+1
i=1 qi ≤ qn+1, using Lemma 6.7.

—If Θ = z : { θpj

j |j ∈ J }, let (q′j )j ∈J ∈ [0, 1]J and Z ∈ ⋂
j ∈J VRed

q′j
σj ,ρ . We

need to prove that y[
−→
V ,W ,Z/−→x ,y, z] =W ∈ VRed

(
∏n+1

i=1 qi )(
∑

j∈J pj q′j )
τ ,ρ . But again,

(
∏n+1

i=1 qi ) (
∑

j ∈J pjq
′
j ) ≤ qn+1 sinceqi ≤ 1 for every i ,q′j ≤ 1 for every j, and

∑
j ∈J pj = 1.

We conclude using Lemma 6.7.
• Var’: Suppose that Γ |y : { τ 1 } � y : τ . Let (qi )i ∈ [0, 1]n+1 and (V1, . . . , Vn ,W ) ∈

(
∏n

i=1 VRed
qi
σi ,ρ ) × VRed

qn+1
τ ,ρ . We need to prove thaty[

−→
V ,W /−→x ,y] =W ∈ VRed

∏n+1
i=1 qi

τ ,ρ . This

is immediate since
∏n+1

i=1 qi ≤ qn+1, using Lemma 6.7.

• Succ: Suppose that Γ |Θ � S V : Nat̂s . Suppose moreover that Θ = ∅. Let (qi )i ∈ [0, 1]n

and (W1, . . . ,Wn ) ∈ ∏n
i=1 VRed

qi
σi ,ρ . We need to prove that (S V )[

−→
W /−→x ] ∈ VRed

∏n
i=1 qi

Nat̂s,ρ
.

But (S V )[
−→
W /−→x ] = S (V [

−→
W /−→x ]) and, by induction hypothesis, V [

−→
W /−→x ] ∈ VRed

∏n
i=1 qi

Nats,ρ
. By

Lemma 6.3, (S V )[
−→
W /−→x ] ∈ VRed

∏n
i=1 qi

Nat̂s,ρ
and we can conclude. The case where Θ � ∅ is

similar.
• Zero: Suppose that Γ |Θ � 0 : Nat̂s . Suppose moreover that Θ = ∅. Let (qi )i ∈ [0, 1]n and

(V1, . . . , Vn ) ∈ ∏n
i=1 VRed

qi
σi ,ρ . By Lemma 6.3, 0[

−→
V /−→x ] = 0 ∈ VRed

∏n
i=1 qi

Nat̂s,ρ
. The case where

Θ � ∅ is similar.
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• λ: Suppose that Γ |Θ � λy.M : σ → μ, with Θ = z : { (τj )
pj | j ∈ J }. Let (qi )i ∈ [0, 1]n

and (V1, . . . , Vn ) ∈ ∏n
i=1 VRed

qi
σi ,ρ . Let (q′j )j ∈J ∈ [0, 1]J and W ∈ ⋂

j ∈J VRed
q′j
σj ,ρ . We

need to prove that

(λy.M )
[−→
V ,W /−→x , z

]
= λy.M

[−→
V ,W /−→x , z

]
∈ VRed

(
∏n

i=1 qi )(
∑

j∈J pj q′j ).
σ→μ,ρ

Therefore, let q′′ ∈ (0, 1] and Z ∈ VRed
q′′

σ ,ρ . We now have to prove that

(
λy.M

[−→
V ,W /−→x , z

] )
Z ∈ TRed

q′′ (
∏n

i=1 qi )(
∑

j∈J pj q′j ).
μ,ρ (22)

But (
λy.M

[−→
V ,W /−→x , z

] )
Z →v M

[−→
V ,W ,Z/−→x , z,y

]
.

Since Γ, x : σ |Θ � M : μ by typing, the induction hypothesis ensures that

M
[−→
V ,W ,Z/−→x , z,y

]
∈ TRed

q′′ (
∏n

i=1 qi )(
∑

j∈J pj q′j )
μ,ρ .

and by Lemma 6.24 we obtain that Equation (22) holds, which allows us to conclude.
The case where Θ = ∅ is similar.

• Sub: Suppose that Γ |Θ � M : ν is derived from Γ |Θ � M : μ, where μ � ν . Suppose
that Θ = ∅. Let (qi )i ∈ [0, 1]n and (V1, . . . , Vn ) ∈ ∏n

i=1 VRed
qi
σi ,ρ . By induction hypothe-

sis, M[V /−→x ] ∈ TRed
∏n

i=1 qi

μ,ρ so that by Lemma 6.25, we have M[V /−→x ] ∈ TRed
∏n

i=1 qi

ν,ρ , which
allows us to conclude.

The case where Θ � ∅ is similar.
• App: Suppose that Γ, Δ, Ξ |Θ, Ψ � V W : μ. Suppose that Θ, Ψ = ∅. We set Γ =

x1 : σ1, . . . ,xn : σn , Δ = y1 : τ1, . . . ,ym : τm , and Ξ = z1 : θ1, . . . , zl : θl . Let (qi )i ∈
[0, 1]n , (q′j )j ∈ [0, 1]m , (q′′

k
)k ∈ [0, 1]l , (V1, . . . , Vn ) ∈ ∏n

i=1 VRed
qi
σi ,ρ , (W1, . . . ,Wm ) ∈∏m

j=1 VRed
q′j
τj ,ρ , and (Z1, . . . , Zl ) ∈ ∏l

k=1 VRed
qk

θk ,ρ
. We need to prove that

(V W )
[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
= V

[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
W

[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
(23)

is in TRed
(
∏n

i=1 qi )(
∏m

j=1 q′j )(
∏l

k=1
q′′

k
)

μ,ρ .

—Suppose that
∏n

i=1 qi = 0. Then we need to prove that Equation (23) is in TRed0
μ,ρ , which

is immediate by Lemma 6.6 as it is of simple type 〈μ〉.
—Suppose that

∏n
i=1 qi � 0. It follows that ∀i ∈ I, qi � 0. We have that Γ, Δ | ∅ � V :

σ → μ, which, by induction hypothesis, gives that V ∈ OVRedΓ,Δ | ∅
σ→μ,ρ . Note that for ev-

ery i ∈ I we have σi :: Nat; since qi � 0, we have by definition of the sets of candi-

dates that VRed
qi
σi ,ρ = VRed1

σi ,ρ . It follows thatV [
−→
V ,
−→
W /−→x ,−→y ] = V [

−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z ] ∈

VRed
(
∏n

i=1 1)(
∏m

j=1 q′j )
σ→μ,ρ = VRed

∏m
j=1 q′j

σ→μ,ρ . Since Γ, Ξ | Ψ � W : σ , we obtain similarly from

the induction hypothesis that W [
−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z ] ∈ VRed

∏l
k=1

q′′
k

σ ,ρ . By definition of

VRed

∏m
j=1 q′j

σ→μ,ρ , we obtain that

V
[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
W

[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
∈ TRed

(
∏m

j=1 q′j )(
∏l

k=1
q′′

k
)

μ,ρ ,

and by downwards closure (Lemma 6.7) we get that Equation (23) is in

TRed
(
∏n

i=1 qi )(
∏m

j=1 q′j )(
∏l

k=1
q′′

k
)

μ,ρ so that we can conclude.
The case where Θ, Ψ � ∅ is similar.
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• Choice: Suppose that Γ |Θ ⊕p Ψ � M ⊕p N : μ ⊕p ν . Suppose that Θ � ∅ and that Ψ � ∅.
We set Θ = y : { τpj

j | j ∈ J } and Ψ = y : { (τ ′
k

)p′
k | k ∈ K }, where we suppose that

j ∈ J ∩ L ⇔ σj = τj . We obtain that

Θ ⊕p Ψ = y :
{
τ

ppj

j
��� j ∈ J \ (J ∩K )

}
+
{

(τl )ppl+(1−p )p′
l

��� l ∈ J ∩ K }
+
{ (

τ ′
k

) (1−p )p′
k ��� k ∈ K \ (J ∩K )

}
.

Let (qi )i ∈ [0, 1]n , (q′j )j ∈ [0, 1] | J \(J∩K ) | , (q′′
l

)l ∈ [0, 1] | J∩K | , (q′′′
k

)k ∈ [0, 1] |K \(J∩K ) | ,

(V1, . . . , Vn ) ∈ ∏n
i=1 VRed

qi
σi ,ρ , and

W ∈
⋂

j ∈J\(J∩K )

VRed
q′j
τj ,ρ ∩

⋂
l ∈J∩K

VRed
q′′

l
τl ,ρ ∩

⋂
k ∈K \(J∩K )

VRed
q′′′

k

τ ′
k
,ρ
.

We need to prove that (M ⊕p N )[
−→
V ,W /−→x ,y] is in

TRed
(
∏n

i=1 qi )(
∑

j∈J\(J∩K ) ppj q′j+
∑

l∈J∩K (ppl+(1−p )p′
l
)q′′

l
+
∑

k∈K \(J∩K ) (1−p )p′
k

q′′′
k

)

μ⊕p ν,ρ

= TRed
p (

∏n
i=1 qi )(

∑
j∈J\(J∩K ) pj q′j+

∑
l∈J∩K pl q′′

l
)+(1−p )(

∏n
i=1 qi )(

∑
l∈J∩K p′

l
q′′

l
+
∑

k∈K \(J∩K ) p′
k

q′′′
k

)

μ⊕p ν,ρ .

Typing gives us that Γ |Θ � M : μ, which by the induction hypothesis implies that

M
[−→
V ,W /−→x ,y

]
∈ TRed

(
∏n

i=1 qi )(
∑

j∈J\(J∩K ) pj q′j+
∑

l∈J∩K pl q′′
l

)
μ,ρ .

Typing also implies that Γ | Ψ � N : ν and provides by the induction hypothesis

N
[−→
V ,W /−→x ,y

]
∈ TRed

(
∏n

i=1 qi )(
∑

l∈J∩K p′
l
q′′

l
+
∑

k∈K \(J∩K ) p′
k

q′′′
k

)

μ⊕p ν,ρ .

Since

(M ⊕p N )
[−→
V ,W /−→x ,y

]
→v

{ (
M
[−→
V ,W /−→x ,y

] )p
,
(
N
[−→
V ,W /−→x ,y

] )1−p }
,

Lemma 6.24 allows us to conclude.
The cases where Θ = ∅ or Ψ = ∅ are treated similarly.

• Let: Suppose that Γ, Δ, Ξ |Θ, (
∑

i ∈I pi · Ψi ) � let x = M in N :
∑

i ∈I pi · μi . Let Γ =
x1 : σ1, . . . ,xn : σn , Δ = y1 : τ1, . . . ,ym : τm , and Ξ = z1 : θ1, . . . , zm : θl . Let (qi )i ∈
[0, 1]n , (q′j )j ∈ [0, 1]m and (q′′

k
)k ∈ [0, 1]l . Let (V1, . . . ,Vn ) ∈ ∏n

i=1 VRed
qi
σi ,ρ , (W1, . . . ,Wm ) ∈∏m

j=1 VRed
q′j
τj ,ρ , and (Z1, . . . ,Zl ) ∈ ∏l

k=1 VRed
q′′

k

θk ,ρ
. There are two subcases here.

—Suppose that M is a value. Then the last typing rule is

Γ, Δ |Θ � M : σ Γ, Ξ, x : σ | Ψ � N : μ 〈Γ〉 = Nat

Γ, Δ, Ξ |Θ, Ψ � let x = M in N : μ
.

We treat the case where Θ = Ψ = ∅, the two other ones being similar. We need to prove
that

(let x = M in N )
[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
∈ TRed

(
∏

i∈I qi )(
∏

j∈J q′j )(
∏

k∈K q′′
k

)
μ,ρ . (24)

We now distinguish two cases.
* Suppose that

∏
i ∈I qi = 0. Then Equation (24) holds immediately since by Lemma 6.6

all the terms of simple type 〈μ〉 are in TRed0
μ,ρ .
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* Else for every i ∈ I wehave VRed
qi
σi ,ρ = VRed1

σi ,ρ . Since Γ, Δ |Θ � M : σ , we obtain by

induction hypothesis thatM[
−→
V ,
−→
W /−→x ,−→y ] ∈ TRed

(
∏

i∈I 1)(
∏

j∈J q′j )
σ ,ρ . None of the −→z occur

inM , soM[
−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z ] ∈ TRed

∏
j∈J q′j

σ ,ρ . Since Γ, Ξ, x : σ | Ψ � N : μ, we obtain
by induction hypothesis that

N
[−→
V ,
−→
W ,
−→
Z ,M

[−→
V ,
−→
Z /−→x ,−→y ,−→z

]
/−→x ,−→z ,x

]
∈ TRed

(
∏

i∈I qi )(
∏

j∈J q′j )(
∏

k∈K q′′
k

)
μ,ρ .

Since none of the variables of −→y occur in this term, we obtain

N
[−→
V ,
−→
W ,
−→
Z ,M

[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
/−→x ,−→y ,−→z ,x

]
∈ TRed

(
∏

i∈I qi )(
∏

j∈J q′j )(
∏

k∈K q′′
k

)
μ,ρ .

Now

(let x = M in N )
[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
= let x = M

[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
in N

[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
→v

{ (
N
[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

] [
M
[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
/x
] )1 }

=
{ (

N
[−→
V ,
−→
W ,
−→
Z ,M

[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
/−→x ,−→y ,−→z ,x

] )1 }
,

and it follows from Lemma 6.24 that Equation (24) holds, allowing us to conclude.
—Suppose that M is not a value. We treat first the case where Θ = Ψ = ∅. The case where

Θ � ∅ is exactly similar, while the case where Ψ � ∅ reveals the reason that a sum∑
j ∈J pjq

′
j appears in the definitions of OTRed and OVRed. The last typing rule is

Γ, Δ | ∅ � M :
{
σ

ph

h

��� h ∈ H }
Γ, Ξ, x : σh | ∅ � N : μh 〈Γ〉 = Nat

Γ, Δ, Ξ | ∅ � let x = M in N :
∑

h∈H ph · μh
.

We need to prove that

(let x = M in N )
[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
= let x = M

[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
in N

[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
∈ TRed

(
∏

i∈I qi )(
∏

j∈J q′j )(
∏

k∈K q′′
k

)∑
h∈H ph ·μh,ρ

.

(25)

We now distinguish two cases:
* Suppose that (

∏
i ∈I qi ) (

∏
j ∈J q′j ) (

∏
k ∈K q′′

k
) = 0. Then Equation (25) holds imme-

diately as by Lemma 6.6 all the terms of simple type 〈∑h∈H ph · μh〉 are in
TRed0∑

h∈H ph ·μh,ρ
.

* Else, we use the induction hypothesis on Γ, Δ | ∅ � M : { σph

h
| h ∈ H }. Since 〈σi 〉 =

Nat, for every i ∈ I we have VRed
qi
σi ,ρ = VRed1

σi ,ρ . Together with the fact that −→z does
not appear in M , we obtain that

M
[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
∈ TRed

∏
j∈J q′j

{ σ ph
h

| h∈H },ρ
.

By definition, for every 0 ≤ r <
∏m

j=1 q′j , there exists nr and νr = { σ
pr ,д

д | д ∈ Gr }
� { σph

h
| h ∈ H } with Gr ⊆ H such that

M
[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
�nr

v Dr =
[
X

p′′
r ,l

l

��� l ∈ Lr

]
∈ DRedr

νr ,ρ
.
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This implies the existence of two families (pr
lд

)l ∈Lr ,дr ∈G and (qr
lд

)l ∈Lr ,дr ∈G of reals of

[0, 1] satisfying in particular

r ≤
∑

l ∈Lr

∑
д∈Gr

pr
lдq

r
lд (26)

∑
l ∈Lr

∑
д∈Gr

pr
lд ≤ 1 (27)

∀l ∈ L,
∑

д∈Gr

pr
lд = p

′′
r,l (28)

∀д ∈ G,
∑

l ∈Lr

pr
lд = pr,д (29)

and

∀l ∈ Lr , ∀д ∈ Gr , Xl ∈ VRed
qr

lд

σд,ρ . (30)

By Equations (26) and (27), we can apply Lemma 6.34 and we obtain 0 ≤ r <
∏m

j=1 q′j
and a family (r ′

lд
)l ∈Lr ,д∈Gr

satisfying

∀l ∈ Lr , ∀д ∈ Gr , 0 ≤ r ′lд <
��

n∏
i=1

qi
�� ��

l∏
k=1

q′′k
��qr

lд (31)

and
r ′′ ≤

∑
l ∈L

∑
д∈G

pr
lдr
′
lд . (32)

We now consider r to be fixed to this value given by the lemma, this providing Dr , νr ,
and so on.

Since Γ, Ξ, x : σh | ∅ � N : μh , we obtain by induction hypothesis using Equation
(30) that for every l ∈ L and д ∈ G we have

N
[−→
V ,
−→
W ,
−→
Z ,Xl/

−→x ,−→y ,−→z ,x
]
∈ TRed

(
∏n

i=1 qi )(
∏l

k=1
q′′

k
)qr

lд

μд,ρ . (33)

By Equation (31), there exists for every l ∈ L and д ∈ G an indexmlд and a type μ ′
lд
�

μд such that

N
[−→
V ,
−→
W ,
−→
Z ,Xl/

−→x ,−→y ,−→z ,x
]
�mlд

v Elд ∈ DRed
r ′

lд

μ′
lд
,ρ
. (34)

Now set
m = max

l ∈L,д∈G
mlд .

By Lemma 6.21, we obtain types μ ′
lд

� μ ′′
lд

� μд and distributions E ′
lд

such that all the

reduction lengths are the same:

N
[−→
V ,
−→
W ,
−→
Z ,Xl/

−→x ,−→y ,−→z ,x
]
�m

v E ′lд ∈ DRed
r ′

lд

μ′′
lд
,ρ
. (35)

Now it follows of Equation (28) that

Dr =
[
X

pr
l,д

l

��� l ∈ Lr , д ∈ Gr

]
,

which allows us to use Lemma 3.12, obtaining that

(let x = M in N )
[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
�nr+m+1

v

∑
l ∈L

∑
д∈G

pr
l,д · E

′
lд .
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By Equation (35) and Lemma 6.23, we obtain that∑
l ∈L

∑
д∈G

pr
l,д · E

′
lд ∈ DRed

∑
l∈L

∑
д∈G pr

l,д
r ′

l,д∑
l∈L

∑
д∈G pr

l,д
μ′′

l,д
,ρ
.

By Equation (32) and downward closure (Lemma 6.7) we obtain∑
l ∈L

∑
д∈G

pr
l,д · E

′
lд ∈ DRedr ′′∑

l∈L
∑

д∈G pr
l,д

μ′′
l,д

,ρ ,

and since by Equation (29) we have
∑

l ∈L
∑

д∈G pr
l,д

μ ′′
l,д

� ∑
h∈H phμh , we can

conclude that

(let x = M in N )
[−→
V ,
−→
W ,
−→
Z /−→x ,−→y ,−→z

]
∈ TRed

(
∏

i∈I qi )(
∏

j∈J q′j )(
∏

k∈K q′′
k

)∑
h∈H ph ·μh,ρ

.

• Case: Suppose that Γ, Δ |Θ � case V of { S→W | 0→ Z } : μ. Suppose that Θ = ∅. We
set Γ = x1 : σ1, . . . ,xn : σn and Δ = y1 : τ1, . . . ,ym : τm .

Let (qi )i ∈ [0, 1]n , (q′j )j ∈ [0, 1]m , (V1, . . . , Vn ) ∈ ∏n
i=1 VRed

qi
σi ,ρ and (V ′1 , . . . , V

′
m ) ∈∏m

j=1 VRed
q′j
τj ,ρ . We need to prove that

(case V of { S→W | 0→ Z })
[−→
V ,
−→
V ′/−→x ,−→y

]
∈ TRed

(
∏n

i=1 qi )(
∏m

j=1 q′j )
μ,ρ ,

i.e., that

case V
[−→
V ,
−→
V ′/−→x ,−→y

]
of

{
S→W

[−→
V ,
−→
V ′/−→x ,−→y

]
| 0→ Z

[−→
V ,
−→
V ′/−→x ,−→y

] }
is in TRed

(
∏n

i=1 qi )(
∏m

j=1 q′j )
μ,ρ . Since Γ | ∅ � V : Nat̂s , we have by induction hypothesis that

V [
−→
V /−→x ] ∈ TRed

∏n
i=1 qi

{ (Nat̂s )1 },ρ
. Since it is a value, we have by Lemma 6.19 the stronger state-

ment thatV [
−→
V /−→x ] ∈ VRed

∏n
i=1 qi

Nat̂s,ρ
, which implies thatV [

−→
V /−→x ] is of the shape Sk 0 for k ∈ N

satisfying
∏n

i=1 qi � 0⇒ k < �̂s�ρ . The typing also ensures that none of the variables of
−→y occurs in V , so that V [

−→
V /−→x ] = V [

−→
V ,
−→
V ′/−→x ,−→y ].

—If k = 0, then

case 0 of
{

S→W
[−→
V ,
−→
V ′/−→x ,−→y

]
| 0→ Z

[−→
V ,
−→
V ′/−→x ,−→y

] }
→v

{ (
Z
[−→
V ,
−→
V ′/−→x ,−→y

] )1 }
.

Since Δ | ∅ � Z : μ, by induction hypothesis, we have that

Z
[−→
V ′/−→y

]
∈ TRed

∏m
j=1 q′j

μ,ρ

and also, by the typing hypothesis, that none of the variables of −→x is free in Z [
−→
V ′/−→y ] so

that Z [
−→
V ′/−→y ] = Z [

−→
V ,
−→
V ′/−→x ,−→y ]. But

∏n
i=1 qi ≤ 1, so that the downward-closure property

of Lemma 6.7 induces that

Z
[−→
V ,
−→
V ′/−→x ,−→y

]
∈ TRed

(
∏n

i=1 qi )(
∏m

j=1 q′j )
μ,ρ .

Now the closure by antireduction of Lemma 6.24 ensures that

case V
[−→
V ,
−→
V ′/−→x ,−→y

]
of

{
S→W

[−→
V ,
−→
V ′/−→x ,−→y

]
| 0→ Z

[−→
V ,
−→
V ′/−→x ,−→y

] }
is in TRed

(
∏n

i=1 qi )(
∏m

j=1 q′j )
μ,ρ .
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—If k > 0, then

case Sk 0 of
{

S→W
[−→
V ,
−→
V ′/−→x ,−→y

]
| 0→ Z

[−→
V ,
−→
V ′/−→x ,−→y

] }
→v

{ ((
W

[−→
V ,
−→
V ′/−→x ,−→y

] )
(Sk−1 0)

)1 }
.

By typing hypothesis, we have Δ | ∅ �W : Nats → μ and the induction hypothesis pro-

videsW [
−→
V ′/−→y ] ∈ TRed

∏m
j=1 q′j
{ (Nats→μ )1 },ρ , which, since none of the −→x appears freely inW , and

by Lemma 6.19, implies thatW [
−→
V ,
−→
V ′/−→x ,−→y ] ∈ VRed

∏m
j=1 q′j

Nats→μ,ρ
.

* Suppose that
∏n

i=1 qi � 0. It follows that k < �̂s�ρ and therefore k − 1 < �s�ρ , which

implies that Sk−1 0 ∈ VRed1
Nats,ρ . SinceW [

−→
V ,
−→
V ′/−→x ,−→y ] ∈ VRed

∏m
j=1 q′j

μ,ρ , we obtain that

(W [
−→
V ,
−→
V ′/−→x ,−→y ]) (Sk−1 0) is in TRed

∏m
j=1 q′j

μ,ρ . By closure by antireduction (Lemma 6.24),
we have that

case V
[−→
V ,
−→
V ′/−→x ,−→y

]
of

{
S→W

[−→
V ,
−→
V ′/−→x ,−→y

]
| 0→ Z

[−→
V ,
−→
V ′/−→x ,−→y

] }
is in TRed

∏m
j=1 q′j

μ,ρ , and by downward closure (Lemma 6.7), we obtain that it is also in

TRed
(
∏n

i=1 qi )(
∏m

j=1 q′j )
μ,ρ , from which we conclude.

* Suppose that
∏n

i=1 qi = 0. Then all we need to prove is that

case V
[−→
V ,
−→
V ′/−→x ,−→y

]
of

{
S→W

[−→
V ,
−→
V ′/−→x ,−→y

]
| 0→ Z

[−→
V ,
−→
V ′/−→x ,−→y

] }
is in TRed0

μ,ρ . But this term has simple type 〈μ〉 and by Lemma 6.6 the result holds.
The case where Θ � ∅ is similar.

• letrec: Suppose that Γ, Δ |Θ � letrec f = V : Natr → ν[r/i]. We treat the case where Δ =
Θ = ∅. The general case is easily deduced using the downward closure of the reducibility sets
(Lemma 6.7). Let Γ = x1 : Natr1 , . . . , xn : Natrn . We need to prove that, for every family
(qi )i ∈ [0, 1]n and every (W1, . . . ,Wn ) ∈ ∏n

i=1 VRed
qi

Natri ,ρ
, we have

(letrec f = V )
[−→
W /−→x

]
=

(
letrec f = V

[−→
W /−→x

] )
∈ VRed

∏n
i=1 qi

Natr→ν [r/i],ρ
.

If there exists i ∈ I such that qi = 0, the result is immediate as the term is simply typed
and Lemma 6.6 applies. Else, for every i ∈ I, we have by definition that VRed

qi

Natri ,ρ
=

VRed1
Natri ,ρ . Since the sets VRed are downward closed (Lemma 6.7), it is in fact enough

to prove that for every (W1, . . . ,Wn ) ∈ ∏n
i=1 VRed1

Natri ,ρ , we have

letrec f = V
[−→
W /−→x

]
∈ VRed1

Natr→ν [r/i],ρ .

Moreover, by size commutation (Lemma 6.12),

VRed1
Natr→ν [r/i],ρ = VRed1

Nati→ν,ρ[i �→�r�ρ ]
.

Let us therefore prove the stronger fact that, for every integerm ∈ N ∪ {∞},

letrec f = V
[−→
W /−→x

]
∈ VRed1

Nati→ν,ρ[i �→m]
.

Now, the typing derivation gives us that Γ | f : μ � V : Nat̂i → ν [̂i/i] and that μ induces
an AST sized walk. Denote by (Prn,m )n∈N,m∈N its associated probabilities of convergence in
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finite time. By induction hypothesis, V ∈ OVRed
Γ | f : μ

Nat̂i→ν [̂i/i],ρ
for every ρ and we can apply

Lemma 6.31. It follows that, for every (n,m) ∈ N,

letrec f = V
[−→
W /−→x

]
∈ VRed

Prn,m

Nati→ν,ρ[i �→m]
.

Let ε ∈ (0, 1). By Lemma 6.29, there exists n ∈ N such that Prn,m ≥ 1 − ε . Using downward
closure (Lemma 6.7) and quantifying over all the ε , we obtain

letrec f = V
[−→
W /−→x

]
∈

⋂
0<ε<1

VRed1−ε

Nati→ν,ρ[i �→m]

so that, by continuity of VRed (Lemma 6.10), we obtain

letrec f = V
[−→
W /−→x

]
∈ VRed1

Nati→ν,ρ[i �→m]
(36)

for every m ∈ N, allowing us to conclude. It remains, however, to treat the case where
m = ∞. Since i pos ν and Equation (36) holds for every m ∈ N, Lemma 6.33 applies and
we obtain the result. �

This proposition, together with the definition of OTRed, implies the main result of the article,
namely, that typability implies almost-sure termination:

Theorem 6.36. Suppose that M ∈ Λs⊕ (μ ). Then M is AST.

Proof. Suppose that M ∈ Λs⊕ (μ ); then by Proposition 6.35, we have M ∈ OTRed∅ | ∅μ,ρ for every

ρ. By definition, OTRed∅ | ∅μ,ρ = TRed1
μ,ρ . Corollary 6.5 then implies that M is AST. �

7 CONCLUSIONS AND PERSPECTIVES

We have presented a type system for an affine, simply typed λ-calculus enriched with a probabilis-
tic choice operator, constructors for the natural numbers, and recursion. This affinity constraint
implies that a given higher-order variable may occur (freely) at most once in any probabilistic
branch of a program. The type system we designed decorates the affine simple types with size

information, allowing one to incorporate in the types relevant information about the recursive be-
havior of the functions contained in the program. A guard condition on the typing rule for letrec,
formulated with reference to an appropriate Markov chain, ensures that typable terms are AST.
The proof of soundness of this type system for AST relies on a quantitative extension of the re-
ducibility method, to accommodate sets of candidates to the infinitary and probabilistic nature of
the computations we consider.

A first natural question is the one of the decidability of type inference for our system. In the
deterministic case, this question was only addressed by Barthe and colleagues in an unpublished
tutorial [6], and their solution is technically involved, especially when it comes to dealing with
the fixpoint rule. We believe that their approach could be extended to our system of monadic
sized types and hope that it could provide a decidable type inference procedure for it. However,
this extension will certainly be challenging, as we need to appropriately infer distribution types
associated with AST sized walks in the letrec rule.

Another perspective would be to study the general, nonaffine case. This is challenging, for two
reasons. First, the system of size annotations needs to be more expressive in order to distinguish
between various occurrences of a same function symbol in a same probabilistic branch. A solution
would be to use the combined power of dependent types—which already allowed Xi to formulate
an interesting type system for termination in the deterministic case [41]—and of linearity: we
could use linear dependent types [17] to formulate an extension of the monadic sized type system
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keeping track of how many recursive calls are performed and of the size of each recursive argument.
The second challenge would then be to associate, in the typing rule for letrec, this information
contained in linear dependent types with an appropriate random process. This random process
should be kept decidable to guarantee that at least derivation checking can be automated, and
there will probably be a tradeoff between the duplication power we allow in programs and the
complexity of deciding AST for the guard in the letrec rule.

The extension of our type system to deal with general inductive data types is essentially straight-
forward. Other perspectives would be to enrich the type system so as to be able to treat coinduc-
tive data, polymorphic types, or ordinal sizes, three features present in most systems of sized types
dealing with the traditional deterministic case but which we chose not to address in this article
to focus on the already complex task of accommodating sized types in a probabilistic and higher-
order framework.
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