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1 Introduction

The critical pair/completion (CPC) technique was initiated in the mid sixties in three separated
areas: theorem proving [12], polynomial ideal theory [3] and term rewriting [9]. For theoretical
and practical reasons, improvements of CPC algorithms were developed in two main directions.
The first one concerns strategies for selecting critical pairs. In [10], strategies consisting in
adding the new critical pairs in a stack or in queue are investigated: the first one can fail even
if another strategy succeeds whereas the second one always succeeds in the same situation.
Other strategies consist in reducing critical pairs in parallel [1] and have shown to be efficient
since the previously intractable cyclic 9 problem is solved using such a strategy in [6]. The
second direction of improvement consists in finding criteria for detecting useless critical pairs.
Buchberger introduced such a criterion in the context of polynomial ideal theory in [4] which
was adapted to term rewriting systems in [13].

The presented work concerns the detection of useless critical pairs of rewriting systems whose
underlying set of terms is a vector space. We are studying such rewriting systems since the
theory of Gröbner bases concerns rewriting in a large class of algebraic structures (polynomial,
tensor or Lie algebras, operads, invariant rings...) and we want that our framework generalises
these various structures. For these structures, several criteria based on the so-called syzygies
were introduced [7, 8, 11] for avoiding useless critical pairs during completion. As shown
in [2], the computation of syzygies does not only enable us to reject critical pairs but to reject
useless reductions. By useless reductions, we mean that all the critical pairs created from these
reductions are useless. The downside of this approach is that useless reductions cannot be used
to reduce terms into normal forms.

In this work, we introduce a lattice criterion for reducing the number of examinations of
critical pairs. For that, we consider rewrite relations −→ on a vector space V which admit
decompositions

−→ =

n⋃
i = 1

−→i,

where each −→i is also a rewrite relation on V . We propose an incremental completion proce-
dure, that is we complete successively

−→≤i =
i⋃

j = 1

−→j .

If −→≤i is already completed, we are looking for useless reductions of the form v1 −→i+1

v2. In order to detect such reductions, we introduce in 2.2 the notion of reduction operator,
which provide functional descriptions of rewriting systems. We recall in 2.3 that reduction
operators admit a lattice structure, whose upper bound is written ∨. LettingNi be the reduction
operator normalising every element for the completion of −→≤i and Ti+1 the reduction operator
corresponding to the rewrite relation −→i+1, our criterion rejects the reductions v1 −→i+1 v2
such that v1 does belong to the image of Ni ∨ Ti+1. In Section 3, we illustrate our criterion
with a complete example.
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2 Reduction Operators

2.1. Notations. We fix a well-ordered set (G, ) and a commutative field K. Every vector v of
the vector spaceKG spanned byG admits a greatest element, written lg (v), in its decomposition
with respect to G. We extend the order < on G into an order on KG defined by v1 < v2 if
v1 = 0 and v2 6= 0 or if lg (v1) < lg (v2).

2.2. Definition. A linear endomorphism T of KG is called a reduction operator relative to
(G, <) if it is a projector and if for every g ∈ G, we have T (g) ≤ g. We write RO (G, <)
the set of reduction operators relative to (G,< ) and for every T ∈ RO (G, <), we write

NF (T ) =
{
g ∈ G | T (g) = g

}
.

2.3. Lattice Structure. Recall from [5, Proposition 2.1.14] that the map

ker : RO (G, <) −→
{
subspaces of KG

}
,

T 7−→ ker (T )

is a bijection. Given a subspace V of KG, we write ker−1 (V ) the unique reduction operator
with kernel V . Then, (RO (G, <) , �, ∧, ∨) is a lattice where

i. T1 � T2 if ker (T2) ⊆ ker (T1),

ii. T1 ∧ T2 = ker−1 (ker (T1) + ker (T2)),

iii. T1 ∨ T2 = ker−1 (ker (T1) ∩ ker (T2)).

2.4. Confluence. Let F ⊂ RO (G, <). We write

NF (F ) =
⋂
T∈F

NF (T ) and ∧ F = ker−1

(∑
T∈F

ker (T )

)
.

The set F is said to be confluent if we have the equality NF (∧F ) = NF (F ). Recall from [5,
Corollary 2.3.9] that F is confluent if and only if the reduction relation defined by

v −→
F

T (v),

for every T ∈ F and every v /∈ im (T ), is confluent.

2.5. Completion. Let F be a subset of RO (G, <). A completion of F is a set F ′ ⊂
RO (G, <) such that

i. F ′ is confluent,

ii. F ⊆ F ′ and ∧F ′ = ∧F .

We let
CF = (∧F ) ∨

(
∨F
)
,

where ∨F is equal to ker−1 (KNF (F )). Recall from [5, Theorem 3.2.6] that F ∪
{
CF
}
is a

completion of F .
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2.6. Example. We consider G = (g1 < g2 < g3 < g4 < g5 < g6 < g7). We let P =
(T1, T2), where

T1 =



1 0 0 0 0 0 1
0 1 0 0 0 1 0
0 0 1 0 0 0 0
0 0 0 1 1 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


and T2 =



1 0 0 0 0 1 0
0 1 0 0 0 0 1
0 0 1 0 1 0 1
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


,

where the matrices are considered with respect to the basis G. The pair P represents the
following reductions:

g5

T1

~~

T2

  
g4 g3

g6

T1

~~

T2

  
g2 g1

g7

T1

||

T2

""
g4 + g1 g3 + g2

We have

CP =



1 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


.

2.7. Remark. In the previous example, we remark that CP is equal to CP ′
, where P ′ is

the pair obtained by considering the restrictions of T1 and T2 to the vector space spanned by
G \ {g7}. Hence, this example shows that there exist elements of G that we can avoid during
a completion procedure. Our purpose in the sequel is to provide a criterion using the lattice
structure to detect these useless elements.

2.8. Restrictions and Extensions of Reduction Operators. Let P = (T1, T2) be a pair
of reduction operators relative to (G, <). We consider the pair P ′ = (T ′1, T ′2) of reduction
operators relative to

(
NF (T1 ∨ T2) , <

)
defined by T ′i (g) = Ti(g) for every g ∈ NF (T1 ∨ T2)

and i = 1 or 2.
Let G̃ be a subset of G and let T ∈ RO

(
G̃, <

)
. Let T ∈ RO (G, <) defined by

T (g) =

{
T (g), if g ∈ G̃

g, otherwise

for every g ∈ G.
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2.9. Proposition. Let F = (T1, · · · , Tn) be a finite set of reduction operators. For every
2 ≤ i ≤ n, we let Pi = (T1 ∧ · · · ∧ Ti−1, Ti). Then,

F ∪
{
CP ′

2 ∧ · · · ∧ CP ′
n

}
,

is a completion of F.

2.10. Remark.

i. The previous proposition means that the reductions g −→
Ti

g are useless for completion

whenever g is a normal form for (T1 ∧ · · · ∧ Ti−1) ∨ Ti.

ii. In the previous proposition, we could replace the construction CP ′
2 ∧ · · · ∧ CP ′

n by CF ′ ,
where F ′ is obtained by considering the restrictions of elements of F to the union of the
sets NF ((T1 ∧ · · · ∧ Ti−1) ∨ Ti). The construction CP ′

2∧· · ·∧CP ′
n means that we complete

successively completions of (T1, T2), (T1, T2, T3), ..., (T1, · · · , Tn) = F . We illustrate
this step by step construction in the next section.

3 Example

3.1. Initial Data. Consider G = (g1 < g2 < g3 < g4 < g5 < g6 < g7 < g8 < g9 < g10)
and F = (T1, T2, T3, T4, T5, T6) represented by the following reductions:

g5

T1

}}

T2

!!
g4 g3

g6

T1

}}

T2

!!
g2 g1

g9

T3

}}

T4

!!
g8

T1

!!

g7

T2

}}
g1

g10

T5

{{

T6

##
g4 + g1 g3 + g2

3.2. Organisation. We compute CF step by step. We initialize the completion with

C = IdKG.

At each step i, we select the elements g of G reducible both for T1 ∧ · · · ∧ Ti−1 and by Ti. If g
is reducible by (T1 ∧ · · · ∧ Ti−1) ∨ Ti, we do not consider g in the completion process.

We do not give the details of the computations. They were treated using the online imple-
mentation of reduction operators available on the website www.irif.fr/~chenavier.

24

www.irif.fr/~chenavier


Detecting Useless Critical Pairs Chenavier

3.3. Step 1. We consider P2 = (T1, T2). We have two elements of G reducible by T1 and
T2: g5 and g6. Moreover, T1 ∨ T2 is equal to the identity matrix of KG, so that we need to
consider both g5 and g6. We obtain that C = CP2 maps g4 to g3 and g2 to g1.

3.4. Step 2. We consider the pair P3 = (T1 ∧ T2, T3). There is no element reducible by
T1 ∧ T2 and by T3, so that there is no completion at this step.

3.5. Step 3. We consider P4 = (T1 ∧ T2 ∧ T3, T4). There is one element reducible both by
T1∧T2∧T3 and T4: g9. Moreover, (T1 ∧ T2 ∧ T3)∨T4 maps g9 to g7, i.e., Red ((T1 ∧ T2 ∧ T3) ∨ T4)
is reduced to {g9}. Hence, there is no completion at this step.

3.6. Step 4. We consider P5 = (T1 ∧ T2 ∧ T3 ∧ T4, T5). There is no element reducible by
T1 ∧ T2 ∧ T3 ∧ T4 and by T5, so that there is no completion at this step.

3.7. Step 5. We consider P6 = (T1 ∧ T2 ∧ T3 ∧ T4 ∧ T5, T6). There is one element reducible
both by T1 ∧ T2 ∧ T3 ∧ T4 ∧ T5 and T6: g10. Moreover, (T1 ∧ T2 ∧ T3 ∧ T4 ∧ T5) ∨ T6 maps g10
to g3 + g2, that is Red ((T1 ∧ T2 ∧ T3 ∧ T4 ∧ T5) ∨ T6) is reduced to {g10}. Hence, there is no
completion at this step and the completion terminates with

CF =



1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


.
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