A Semantic Criterion for Proving Infeasibility in Conditional Rewriting

Salvador Lucas Raúl Gutiérrez

DSIC, Universitat Politècnica de València, Spain

6th International Workshop on Confluence, IWC 2017
Conditional Term Rewriting Systems (CTRSs) consist of rules of the following general form:

\[
\ell \rightarrow r \leftarrow c
\]

where the *conditional part* \(c\) is used as a *test* for the application of (an instance of) \(\ell\) and \(r\) in any rewriting step \(\sigma(\ell) \rightarrow \sigma(r)\), i.e., \(\sigma(c)\) must be ‘satisfied’.

Infeasible rules

Some conditional parts *cannot* be used with any substitution!

\[
a \rightarrow b \leftarrow a \rightarrow c
\]

In this case, the *test* specified by the conditional part is a *reachability test* \(a \rightarrow^* c\) (as for *oriented* CTRSs) which never succeeds.
In the analysis of computational properties of CTRSs \mathcal{R}, the conditional part of the rules is often used to investigate them.

1. Confluence is analyzed by means of *conditional critical pairs* $\langle s, t \rangle \leftarrow c$, where c is obtained from two rules $\ell \rightarrow r \leftarrow d$ and $\ell' \rightarrow r' \leftarrow d'$ in \mathcal{R}.

2. Operational termination is analyzed by means of *conditional dependency pairs* $u \rightarrow v \leftarrow c$ where c is obtained from the conditional part d of a rule $\ell \rightarrow r \leftarrow d$ in \mathcal{R}.

Feasibility tests

In all these cases, the following question is relevant:

Is there any substitution σ such that $\sigma(c)$ holds using \mathcal{R}?

Or, assuming a logic-based operational semantics for CTRSs:

Is there any substitution σ such that $\mathcal{R} \vdash \sigma(c)$?
Motivation

A negative answer to this question, i.e., ensuring that $\mathcal{R} \vdash \sigma(c)$ does not hold for any substitution σ (i.e., proving c infeasible), can be useful:

- Rules $\ell \rightarrow r \iff c \in \mathcal{R}$ will never be used when rewriting with \mathcal{R}.
- Joinability of s and t in conditional critical pairs $\langle s, t \rangle \iff c$ does not matter in the analysis of confluence of \mathcal{R}.
- Conditional dependency pairs $u \rightarrow v \iff c$ can be safely discarded in the analysis of operational termination of \mathcal{R}.

Analyzing infeasibility

How to prove the conditional part of a conditional rule/critical pair/dependency pair infeasible?

This problem has been addressed before; several approaches have been proposed.

Our contribution exploits the logical approach sketched above.
In the following, we focus on oriented CTRSs \mathcal{R}, with rules

$$\ell \rightarrow r \iff s_1 \rightarrow t_1, \ldots, s_n \rightarrow t_n$$

whose operational semantics is given by the following inference system:

\[(\text{Rf})\quad x \rightarrow^* x\]
\[(\text{C})\quad x_i \rightarrow y_i, \quad f(x_1, \ldots, x_i, \ldots, x_k) \rightarrow f(x_1, \ldots, y_i, \ldots, x_k)\]
\[(\text{for all } f \in \mathcal{F} \text{ and } 1 \leq i \leq k = \text{arity}(f))\]

\[(\text{T})\quad x \rightarrow z, \quad z \rightarrow^* y\quad \rightarrow\]
\[
\frac{x \rightarrow z}{x \rightarrow^* y}
\]

\[(\text{Rp})\quad s_1 \rightarrow^* t_1, \ldots, s_n \rightarrow^* t_n\]
\[
\frac{\ell \rightarrow r}{\text{for all } \ell \rightarrow r \iff s_1 \rightarrow t_1 \cdots s_n \rightarrow t_n \in \mathcal{R}}
\]

Definition

Let \mathcal{R} be a CTRS. A sequence $s_1 \rightarrow^* t_1, \ldots, s_n \rightarrow^* t_n$, where s_i and t_i are terms for all $1 \leq i \leq n$ is called a **feasibility sequence**. It is called \mathcal{R}-**feasible** if there is a substitution σ such that for all $1 \leq i \leq n$, $\sigma(s_i) \rightarrow^*_\mathcal{R} \sigma(t_i)$. Otherwise, it is called \mathcal{R}-**infeasible**.
The first-order theory $\overline{\mathcal{R}}$ for a CTRS \mathcal{R} is obtained by specializing (C) and (Rp) as above. Inference rules $\frac{B_1 \ldots B_n}{A}$ become universally quantified implications $B_1 \land \cdots \land B_n \Rightarrow A$.

Example

For the CTRS \mathcal{R} (from [Giesl & Arts, AAECC’01])

\[
\begin{align*}
a & \rightarrow b \\
f(a) & \rightarrow b \\
g(x) & \rightarrow g(a) \iff f(x) \rightarrow x
\end{align*}
\]

its associated theory $\overline{\mathcal{R}}$ is

\[
\begin{align*}
(\forall x) \ x \rightarrow^* x \\
(\forall x, y, z) \ x \rightarrow y \land y \rightarrow^* z \Rightarrow x \rightarrow^* z \\
(\forall x, y) \ x \rightarrow y \Rightarrow f(x) \rightarrow f(y) \\
(\forall x, y) \ x \rightarrow y \Rightarrow g(x) \rightarrow g(y)
\end{align*}
\]
A structure (or interpretation) \mathcal{A} for a first-order language gives meaning to function and predicate symbols as mappings and relations on a given set.

The usual interpretation of first-order formulas with respect to the structure is then considered.

A model for a set S of first-order sentences (i.e., formulas without free variables) is a structure that makes them all true, written $\mathcal{A} \models S$.

Proposition

Let \mathcal{R} be a CTRS, $s_1 \rightarrow^* t_1$, \ldots, $s_n \rightarrow^* t_n$ be a feasibility sequence, and \mathcal{A} be a structure with nonempty domain. The sequence is \mathcal{R}-infeasible if

$$\mathcal{A} \models \mathcal{R} \cup \{\neg(\exists\vec{x}) \left(s_1 \rightarrow^* t_1 \land \cdots \land s_n \rightarrow^* t_n\right)\}$$

holds.
Proof by contradiction

1. R-feasibility implies that $\sigma(s_i) \rightarrow^*_R \sigma(t_i)$ (i.e., $\overline{R} \vdash \sigma(s_i) \rightarrow^* \sigma(t_i)$) for some substitution σ and all $1 \leq i \leq n$.
Proof by contradiction

1. \(\mathcal{R}\)-feasibility implies that \(\sigma(s_i) \Rightarrow^* \sigma(t_i)\) (i.e., \(\overline{\mathcal{R}} \vdash \sigma(s_i) \Rightarrow^* \sigma(t_i)\)) for some substitution \(\sigma\) and all \(1 \leq i \leq n\).

2. Since \(\mathcal{A} \models \overline{\mathcal{R}}\), by correctness, \(\mathcal{A} \models (\forall \vec{y}_i) \sigma(s_i) \Rightarrow^* \sigma(t_i)\) for all \(1 \leq i \leq n\), where \(\vec{y}_i\) are the variables in \(\text{Var}(\sigma(s_i)) \cup \text{Var}(\sigma(t_i))\).
Proof by contradiction

1. \mathcal{R}-feasibility implies that $\sigma(s_i) \rightarrow^*_{\mathcal{R}} \sigma(t_i)$ (i.e., $\mathcal{R} \vdash \sigma(s_i) \rightarrow^* \sigma(t_i)$) for some substitution σ and all $1 \leq i \leq n$.

2. Since $\mathcal{A} \models \mathcal{R}$, by correctness, $\mathcal{A} \models (\forall \vec{y}_i) \; \sigma(s_i) \rightarrow^* \sigma(t_i)$ for all $1 \leq i \leq n$, where \vec{y}_i are the variables in $\text{Var}(\sigma(s_i)) \cup \text{Var}(\sigma(t_i))$.

3. Thus, $\mathcal{A} \models (\forall \vec{y}) \; (\sigma(s_1) \rightarrow^* \sigma(t_1) \land \cdots \land \sigma(s_n) \rightarrow^* \sigma(t_n))$.
Proof by contradiction

1. \mathcal{R}-feasibility implies that $\sigma(s_i) \rightarrow_{\mathcal{R}}^{*} \sigma(t_i)$ (i.e., $\mathcal{R} \vdash \sigma(s_i) \rightarrow^{*} \sigma(t_i)$) for some substitution σ and all $1 \leq i \leq n$.

2. Since $\mathcal{A} \models \mathcal{R}$, by correctness, $\mathcal{A} \models (\forall \vec{y}_i) \sigma(s_i) \rightarrow^{*} \sigma(t_i)$ for all $1 \leq i \leq n$, where \vec{y}_i are the variables in $\mathcal{V}ar(\sigma(s_i)) \cup \mathcal{V}ar(\sigma(t_i))$.

3. Thus, $\mathcal{A} \models (\forall \vec{y}) (\sigma(s_1) \rightarrow^{*} \sigma(t_1) \land \cdots \land \sigma(s_n) \rightarrow^{*} \sigma(t_n))$.

4. For all $\nu : \vec{y} \rightarrow \mathcal{A}$, $[\sigma(s_1) \rightarrow^{*} \sigma(t_1) \land \cdots \land \sigma(s_n) \rightarrow^{*} \sigma(t_n)]_{\nu}^{A}$, is true.
Proof by contradiction

1. R-feasibility implies that $\sigma(s_i) \rightarrow^{*}_R \sigma(t_i)$ (i.e., $\overline{R} \vdash \sigma(s_i) \rightarrow^{*} \sigma(t_i)$) for some substitution σ and all $1 \leq i \leq n$.

2. Since $A \models \overline{R}$, by correctness, $A \models (\forall \vec{y}_i) \sigma(s_i) \rightarrow^{*} \sigma(t_i)$ for all $1 \leq i \leq n$, where \vec{y}_i are the variables in $\text{Var}(\sigma(s_i)) \cup \text{Var}(\sigma(t_i))$.

3. Thus, $A \models (\forall \vec{y}) (\sigma(s_1) \rightarrow^{*} \sigma(t_1) \land \cdots \land \sigma(s_n) \rightarrow^{*} \sigma(t_n))$.

4. For all $\nu : \vec{y} \rightarrow A$, $[\sigma(s_1) \rightarrow^{*} \sigma(t_1) \land \cdots \land \sigma(s_n) \rightarrow^{*} \sigma(t_n)]^A_{\nu}$, is true.

5. Since A has a nonempty domain, there is a valuation $\nu' : \vec{x} \rightarrow A$ given by $\nu'(x) = [\sigma(x)]^A_{\nu}$ for all variable x in $\vec{x} = \bigcup_{i=1}^{n} \text{Var}(s_i) \cup \text{Var}(t_i)$, such that $[s_1 \rightarrow^{*} t_1 \land \cdots \land s_n \rightarrow^{*} t_n]^A_{\nu'}$ is true.
Proof by contradiction

1. \(\mathcal{R} \)-feasibility implies that \(\sigma(s_i) \rightarrow^*_\mathcal{R} \sigma(t_i) \) (i.e., \(\overline{\mathcal{R}} \vdash \sigma(s_i) \rightarrow^* \sigma(t_i) \)) for some substitution \(\sigma \) and all \(1 \leq i \leq n \).

2. Since \(\mathcal{A} \models \overline{\mathcal{R}} \), by correctness, \(\mathcal{A} \models (\forall \vec{y}_i) \sigma(s_i) \rightarrow^* \sigma(t_i) \) for all \(1 \leq i \leq n \), where \(\vec{y}_i \) are the variables in \(\text{Var}(\sigma(s_i)) \cup \text{Var}(\sigma(t_i)) \).

3. Thus, \(\mathcal{A} \models (\forall \vec{y}) (\sigma(s_1) \rightarrow^* \sigma(t_1) \land \cdots \land \sigma(s_n) \rightarrow^* \sigma(t_n)) \).

4. For all \(\nu : \vec{y} \rightarrow \mathcal{A} \), \([\sigma(s_1) \rightarrow^* \sigma(t_1) \land \cdots \land \sigma(s_n) \rightarrow^* \sigma(t_n)]^A_{\nu} \), is true.

5. Since \(\mathcal{A} \) has a nonempty domain, there is a valuation \(\nu' : \vec{x} \rightarrow \mathcal{A} \) given by \(\nu'(x) = [\sigma(x)]^A_{\nu} \) for all variable \(x \) in \(\vec{x} = \bigcup_{i=1}^n \text{Var}(s_i) \cup \text{Var}(t_i) \), such that \([s_1 \rightarrow^* t_1 \land \cdots \land s_n \rightarrow^* t_n]^A_{\nu'} \) is true.

6. This contradicts \(\mathcal{A} \models \neg(\exists \vec{x}) (s_1 \rightarrow^* t_1 \land \cdots \land s_n \rightarrow^* t_n) \).
The following structure \mathcal{A} over $\mathbb{N} - \{0\}$:

- $a^\mathcal{A} = 1$
- $b^\mathcal{A} = 2$
- $f^\mathcal{A}(x) = x + 1$
- $g^\mathcal{A}(x) = 1$
- $x \rightarrow^\mathcal{A} y \iff y \geq x$
- $x (\rightarrow^*)^\mathcal{A} y \iff y \geq x$

is a model of $\overline{\mathcal{R}} \cup \{\neg(\exists x) f(x) \rightarrow^* x\}$ for our running CTRS \mathcal{R}.

Automation

This model has been automatically generated by using the tool AGES:

http://zenon.dsic.upv.es/ages/

Thus, rule

$$g(x) \rightarrow g(a) \iff f(x) \rightarrow x$$

is proved \mathcal{R}-infeasible.
The following CTRS \mathcal{R} (Example 23 in [Sternagel & Sternagel, FSCD’16])

$$
g(x) \rightarrow f(x, x) \quad (1)\\
g(x) \rightarrow g(x) \iff g(x) \rightarrow f(a, b) \quad (2)
$$

has a conditional critical pair $f(x, x) \downarrow g(x) \iff g(x) \rightarrow f(a, b)$. The following structure \mathcal{A} over the finite domain $\{0, 1\}$:

$$
a^\mathcal{A} = 1 \quad b^\mathcal{A} = 0 \quad f^\mathcal{A}(x, y) = \begin{cases}
 x - y + 1 & \text{if } x \geq y \\
 y - x + 1 & \text{otherwise}
\end{cases}\\
g^\mathcal{A}(x) = 1 \quad x \rightarrow^\mathcal{A} y \iff x = y \quad x (\rightarrow^*)^\mathcal{A} y \iff x \geq y
$$

is a model $\overline{\mathcal{R}} \cup \{\neg (\exists x) \ g(x) \rightarrow^* f(a, b)\}$. The critical pair is infeasible.

In the FSCD’16 paper, this is proved by using unification tests together with a transformation. It is discussed that the alternative tree automata techniques investigated in the paper do not work for this example.
Proposition (Joinability and feasibility)

Let \(R \) be a CTRS, \(s, t \) be terms, and \(x \) be a fresh variable not occurring in \(s \) or \(t \). If \(s \) and \(t \) are joinable, then \(s \rightarrow^* x \), \(t \rightarrow^* x \) is \(R \)-feasible. If \(s \) and \(t \) are ground and \(s \rightarrow^* x \), \(t \rightarrow^* x \) is \(R \)-feasible, then \(s \) and \(t \) are joinable.

Consider the following CTRS \(R \) (Example 7.3.3 in Ohlebusch’s book):

\[
\begin{align*}
a & \rightarrow b \\
f(x) & \rightarrow c \iff x \rightarrow a
\end{align*}
\]

(3)
(4)

Although there is no critical pair, the system is not (locally) confluent because \(f(a) \rightarrow_R f(b) \) and \(f(a) \rightarrow_R c \) but \(c \) and \(f(b) \) are not joinable. The following structure \(A \) over \(\mathbb{N} \cup \{-1\} \):

\[
\begin{align*}
a^A &= 0 \\
b^A &= -1 \\
c^A &= 1 \\
f^A(x) &= x + 1
\end{align*}
\]

\[
x \rightarrow^A y \iff x = y \\
x \rightarrow^* y \iff x = y
\]

is a model of \(\mathcal{U}(R, f(b), c) \cup \{\neg(\exists x) (f(b) \rightarrow^* x \land c \rightarrow^* x)\} \), where \(\mathcal{U}(R, f(b), c) = \{(4)\} \) is the set of usable rules (from \(R \)) for \(f(b) \) and \(c \). Therefore, \(f(b) \) and \(c \) are proved non-joinable.
We have presented a semantic approach to prove infeasibility in conditional rewriting.

We could handle many examples coming from papers developing different specific techniques to deal with these problems.

We do not have a dedicated, fully automated ‘infeasibility’ checker yet.

Instead we just encode the problem we want to deal with (e.g., infeasibility of a critical pair, or rule; or non-joinability) as an specific infeasibility sequence and then use AGES to find a model.

Future work

Improving automation, and the connection of AGES as a backend for other (confluence) tools are interesting subjects for future work.
This paper defines feasibility problems as (instantiated) reachability problems, which corresponds to the use *oriented CTRSs*.

As shown in [Lucas, LOPSTR 2017], the current treatment can be generalized to deal with more general notions of CTRSs, with

- many-sorted signatures,
- alternative satisfiability notions for the conditions (e.g., joinability), or
- more general components there (e.g., memberships).

Future work

The use of our semantic techniques in proofs of confluence of Maude programs is also an interesting subject for future work.
Thanks!