Coherence of monoids by insertions

Nohra Hage

Université Saint-Joseph de Beyrouth Ecole Supérieure d'Ingénieurs de Beyrouth

Joint works with Philippe Malbos

7th International Workshop on Confluence, IWC 2018

July 7th 2018, Oxford, United Kingdom

- 1. Motivations
- 2. String Data Structures
- 3. Coherent presentations and String data structures
- 4. Conclusion

Motivations

- Data structures describe a way to organize and to store a collection of structured data.
 - appear in combinatorial algebra, combinatorics and fundamental computer science,
 - describe combinatorial structures : arrays, tableaux, staircases, binary search trees...
 - array structures can be used to study plactic, Chinese, hypoplactic and sylvester monoids...
- Study string rewriting systems (SRS) :
 - normal forms can be described using a data structure,
 - rewriting rules are induced by insertion algorithms.
- Introduce the notion of string data structure (SDS) :
 - the data are constructed using an insertion algorithm,
 - they are described by words through a reading map.

Motivations

Plactic monoids:

► (Young, 1900) : Young tableaux

- (Schensted, 1961): left and right insertions on Young tableaux
- $(Knuth, 1970): u, v \in \{1, \dots, n\}^*, \quad u \sim v \Leftrightarrow P(u) = P(v).$
 - $\,\blacktriangleright\,\,\sim$ coincides with the congruence generated by Knuth relations :

$$zxy = xzy$$
 for $x \le y < z$ and $yzx = yxz$ for $x < y \le z$.

- ► (Lascoux, Schützenberger, 1981) : plactic monoid = {1,..., n}*/~.
- Applications on combinatorics, representation theory, rewriting theory...

Motivations

Plactic monoids:

- ► (Kubat, Okninski, 2014): n > 4 ~ no finite completion of the Knuth presentation w.r.t the lexicographic order.
- (Cain, Gray, Malheiro, 2015), (Bokut, Chen, Chen, Li, 2015): finite completions obtained by adding new generators:
 - ▶ column or row generators ~ convergent presentation of plactic monoids.
- (Hage, Malbos, 2017): coherent presentations of the plactic monoid giving all the relations among the relations of its presentations.
 - Confluence property is essential to obtain such coherence results.
 - ▶ Commutation of right and left insertions → confluence of the presentation.
- Study these confluence results in a general algebraic framework using the notion of string data structure.
- Explicit coherent presentation of the monoid presented by an SDS :
 - a presentation of the monoid (generators + rewriting rules describing the insertion algorithms)
 - extended by homotopy generators of all the relations among the insertion algorithms.

- 1. Motivations
- 2. String Data Structures

- **String data structure** (SDS): $S = (D_A, \ell, I, R)$ on an alphabet A:
 - ▶ a set D_A,
 - ► a reading $\ell: A^* \longrightarrow A^*$ $x_1 \dots x_k \mapsto x_{\sigma_{(1)}} \dots x_{\sigma_{(k)}}$ σ permutation on $\{1, \dots, k\}$
 - right-to-left (resp. left-to-right) : ℓ_r (resp. ℓ_l).

$$\ell_r(1342543) = 3452431 \qquad \ell_l(1342543) = 1342543$$

- ▶ a one-element insertion map $I: D_A \times A \longrightarrow D_A$,
 - by iteration, insertion map $I^*: D_A \times A^* \longrightarrow D_A:$ $I^*(d, x_1 \dots x_n) = I^*(I(d, y_1), y_2 \dots y_n), \qquad y_1 \dots y_n = \ell(x_1 \dots x_n)$
- ▶ a reading map $R: D_A \longrightarrow A^*$:
 - $\qquad \qquad I^*(\emptyset,\ell(-))R = \mathsf{Id}_{\mathsf{D}_{A}},$
 - ► R(∅) is the empty word,
 - $ightharpoonup A \subset R(D_A) \subset A^*.$
- ▶ Constructor $C_{\mathbb{S}}$ of $\mathbb{S}: I^*(\emptyset, \ell(-)): A^* \longrightarrow \mathsf{D}_A$.
- ▶ A *right* (resp. *left*) SDS : insertion map w. r. t ℓ_1 (resp. ℓ_r).

Example : Young SDSs $\mathcal{Y}_n^{row} = (\mathsf{Yt}_n, \ell_\mathsf{I}, S_r, R_{col})$ and $\mathcal{Y}_n^{col} = (\mathsf{Yt}_n, \ell_\mathsf{I}, S_l, R_{col})$

 $\triangleright \mathcal{Y}_{n}^{row}$ set of (Young) tableaux :

$$t = \begin{bmatrix} 1 & 1 & 1 & 2 & 4 & 4 & 4 \\ 2 & 2 & 3 & 3 & 5 & 7 \\ 4 & 5 & 5 & 6 & & & & \\ \end{bmatrix}$$

 $R_{col}(t) = 6421852153163254744$

▶ Schensted's right insertion S_r : $S_r(\begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 \\ 6 \end{bmatrix}, 2)$

► Schensted's left insertion S_l : $S_l(\frac{1 \cdot 3 \cdot 5}{2 \cdot 4}, 2)$

- ▶ $I, J : D_A \times A \longrightarrow D_A$ commute if J(I(d, x), y) = I(J(d, y), x).
- A left (resp. right) SDS (D_A, ℓ_r, J, R) (resp. (D_A, ℓ_l, J, R)) commutes to a right (resp. left) SDS (D_A, ℓ_l, I, R) (resp. (D_A, ℓ_r, I, R)) if I and J commute.

$$y \rightarrow (d \leftarrow x) = (y \rightarrow d) \leftarrow x$$

ightharpoonup
vert
vert

$$\begin{array}{ccc} \star_{\mathbb{S}} : \mathsf{D}_A \times \mathsf{D}_A & \longrightarrow \mathsf{D}_A \\ (d,d') & \mapsto d \star_{\mathbb{S}} d' = I^*(d,\ell(R(d'))) \end{array}$$

is associative.

Theorem. Let $\mathbb S$ be a right (resp. left) SDS. If there is a left (resp. right) SDS $\mathbb T$ that commutes to $\mathbb S$, then $\mathbb S$ and $\mathbb T$ are associative.

▶ Structure monoid M(S) associated to $S = (D_A, \ell, I, R)$ is presented by

$$\mathcal{R}(\mathbb{S}) = \langle \, \mathsf{D}_A \mid \gamma_{d,d'} : d | d' \longrightarrow d \star_{\mathbb{S}} d', \ \forall d, d' \in \mathsf{D}_A \, \rangle.$$

- ▶ R(S) is terminating,
- If S is associative, then R(S) is locally confluent.

▶ Reading of $\mathcal{R}(\mathbb{S})$:

$$\mathcal{R}(A,\mathbb{S}) = \langle A \mid \gamma_{d,d'} : R(d)R(d') \longrightarrow R(d \star_{\mathbb{S}} d'), \ \forall d,d' \in \mathsf{D}_A \rangle.$$

- ▶ If S is associative, then $\mathcal{R}(A, S)$ is locally confluent.
- ▶ $S = (D_A, \ell, I, R)$ is **compatible** with an equivalence relation \sim on A^* if :
 - $w \sim w'$ implies $I^*(d, w) = I^*(d, w'), \forall d \in D_A, \forall w, w' \in A^*,$
 - $ightharpoonup RC_{\mathbb{S}}(w) \sim w. \quad \forall w \in A^*.$

Theorem. Let $\mathbb S$ be a right SDS compatible with $\sim_{\mathbb S}$ induced by $\mathcal R(A,\mathbb S)$. The map $\mathcal C_{\mathbb S}$ induces $A^*/\sim_{\mathbb S}\simeq (\mathsf D_A,\star_{\mathbb S})$ with the inverse induced by $\mathcal R$. One says that $\mathcal R(\mathbb S)$ and $\mathcal R(A,\mathbb S)$ are **Tietze-equivalent**.

- Let ~ be an equivalence relation on the free monoid K* over K. S ⊂ K* satisfies the cross-section property (c.s.p) for K*/ ~ if each equivalence class w.r.t ~ contains exactly one element of S.
- ▶ Let S be a right associative SDS compatible with \sim_S induced by $\mathcal{R}(A, S)$.
 - ▶ If $\mathcal{R}(A, \mathbb{S})$ is terminating, then the set of normal forms w.r.t $\mathcal{R}(\mathbb{S})$ satisfies the c.s.p for $\mathbf{M}(\mathbb{S})$ \Leftrightarrow the set of normal forms w.r.t $\mathcal{R}(A, \mathbb{S})$ satisfies the c.s.p for $\mathbf{M}(\mathbb{S})$.

Corollary. Let $\mathbb S$ be a right associative SDS such that $\mathcal R(A,\mathbb S)$ is terminating. Then $\mathcal R(\mathbb S)$ and $\mathcal R(A,\mathbb S)$ are Tietze-equivalent and the set of normal forms w.r.t $\mathcal R(A,\mathbb S)$ satisfies the c.s.p for $\mathbf M(\mathbb S)$.

Example : Young SDSs $\mathcal{Y}_n^{row} = (Yt_n, \ell_l, S_r, R_{col})$ and $\mathcal{Y}_n^{col} = (Yt_n, \ell_r, S_l, R_{col})$

► The plactic monoid of rank *n* is presented by the Knuth presentation whose set of generators is {1,..., *n*} submitted to the relations :

$$zxy \longrightarrow xzy$$
 for $x \le y < z$ and $yzx \longrightarrow yxz$ for $x < y \le z$.

- ▶ (Schensted,1961). S_r and S_l commute : $S_r(S_l(t,x),y) = S_l(S_r(t,y),x)$.
 - ▶ then the SDSs \mathcal{Y}_n^{row} and \mathcal{Y}_n^{col} are associative,
 - ▶ then the SRSs $\mathcal{R}(\mathcal{Y}_n^{row})$ and $\mathcal{R}(\mathcal{Y}_n^{col})$ are convergent.
- ▶ The Knuth presentation is Tietze-equivalent to $\mathcal{R}(\{1,\ldots,n\},\mathcal{Y}_n^{row})$.
- (Knuth, 1970). $\mathcal{Y}_n^{\text{row}}$ is compatible with the equivalence relation induced by the Knuth presentation.
 - then $\mathcal{R}(\mathcal{Y}_n^{row})$ is a convergent presentation of the plactic monoid,
 - ▶ then the set Yt_n satisfies the c.s.p for the plactic monoid.

- 1. Motivations
- 2. String Data Structures
- 3. Coherent Presentations and String Data Structures

Change of generators of an SDS $\mathbb{S} = (D_A, \ell, I, R)$

- ▶ A binary relation | on D_A is compatible with R if R(d|d') = R(d)R(d'), where d|d' denotes $(d, d') \in I$.
 - Generating set Q ⊂ D_A w.r.t such a binary relation :
 - $A \subseteq R(Q),$ $d = c_1 | \dots | c_k \in D_A, \text{ with } c_1, \dots, c_k \in Q.$
 - ▶ SDS $\mathbb{S}_Q = (\mathbb{D}_A, \ell_Q, I_Q, R_Q)$ on a generating set Q:
 - $\ell_Q(c_1 \dots c_k) = c_{\sigma_{(1)}} \dots c_{\sigma_{(k)}} \in Q^*$, where σ is a permutation on $\{1, \dots, k\}$,

 - $\begin{array}{l} \blacktriangleright \ I_Q: \mathsf{D}_A \times Q \longrightarrow \mathsf{D}_A, \quad I_Q(d,c) = I^*(d,R(c)), \\ \blacktriangleright \ R_O: \mathsf{D}_A \longrightarrow Q^*, \quad R_Q(d) = c_1 | \dots | c_k \text{ is the decomposition of } d \text{ w.r.t } |. \end{array}$
- ▶ A reduced presentation : Q generating set w.r.t | compatible with R.

$$\mathcal{R}(Q,\mathbb{S}) = \langle \ Q \ | \ \gamma_{c,c'} : c | c' \longrightarrow R_Q(c \star_{\mathbb{S}} c'), \ \ c,c' \in Q, \ \ c | c' \notin \mathsf{D}_A \rangle.$$

Lemma. Let S be an associative SDS and Q be a generating set w.r.t | compatible with R. If $\mathcal{R}(Q, \mathbb{S})$ is normalizing, then $\mathcal{R}(\mathbb{S})$ and $\mathcal{R}(Q, \mathbb{S})$ are Tietze-equivalent.

Example : Young SDS $\mathcal{Y}_n^{col} = (Yt_n, \ell_r, S_l, R_{col})$

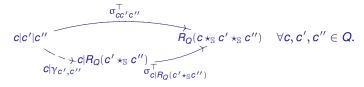
- $ightharpoonup Col_n$: set of tableaux with only one column.
- : concatenation of columns in Yt_n.
 - $d = c_1 | \dots | c_k \in Yt_n$, where c_1, \dots, c_k are the columns of d from left to right,
 - $\qquad \qquad R_{col}(d) = R_{col}(c_1) \dots R_{col}(c_k),$
 - ▶ | is compatible with R_{col},
 - ▶ Col_n is a generating set w.r.t |.
- ► R_{Coln}: Yt_n → Col^{*}_n writes a tableau as the concatenation of its columns from left to right.
- \triangleright \mathcal{Y}_n^{row} is associative :
 - \triangleright $\mathcal{R}(Col_n, \mathcal{Y}_n^{col})$ is normalizing,
 - ▶ then $\mathcal{R}(\mathcal{Y}_n^{col})$ and $\mathcal{R}(\mathsf{Col}_n, \mathcal{Y}_n^{col})$ are Tietze-equivalent.
- \triangleright $\mathcal{R}(Col_n, \mathcal{Y}_n^{col})$ is a finite convergent presentation of the plactic monoid.
 - ► (Bokut, Chen, Chen, Li, 2015), (Cain, Gray, Malheiro, 2015).

Coherence by insertions.

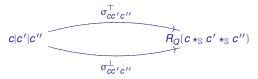
- Normalisation strategy (n.s) for an SRS : mapping σ of every generator u to a rewriting step from u to a chosen normal form \widehat{u} .
 - ▶ leftmost one σ^{\top} , rightmost one σ^{\perp} .
- ▶ A normalization strategy σ of $\mathcal{R}(Q, \mathbb{S})$ computes $C_{\mathbb{S}}$ if it reduces any $c_1 | \dots | c_n \in Q^*$ to $R_Q(c_1 \star_{\mathbb{S}} \dots \star_{\mathbb{S}} c_n)$.

Theorem.Let $\mathbb S$ be an associative SDS such that $\mathcal R(\mathcal Q,\mathbb S)$ terminating. If there exists a n.s that computes $C_{\mathbb S}$, then the set of normal forms of $\mathcal R(\mathcal Q,\mathbb S)$ satisfies the c.s.p for $\mathbf M(\mathbb S)$.

If σ^{\top} computes $C_{\mathbb{S}}$, then $\mathcal{R}(Q,\mathbb{S})$ is extended into a coherent presentation :



Coherence by insertions. σ^{\top} (resp. σ^{\perp}) w.r.t $\mathcal{R}(Q, \mathbb{S})$ for a right SDS \mathbb{S} . Suppose \mathbb{T} commutes to \mathbb{S} . If σ^{\top} computes $C_{\mathbb{S}}$, then $\mathcal{R}(Q, \mathbb{S})$ can be extended into a coherent presentation by adjunction of



 σ^{\top} (resp. σ^{\perp}) \rightsquigarrow right (resp. left) insertion of $\mathbb S$ (resp. $\mathbb T$).

Example : Young SDS $\mathcal{Y}_n^{col} = (\mathsf{Yt}_n, \ell_r, S_l, R_{col}) : \sigma^\top$ w. r. t $\mathcal{R}(\mathsf{Col}_n, \mathcal{Y}_n^{col})$ computes $\mathcal{C}_{\mathcal{Y}_n^{col}}$. Then $\mathcal{R}(\mathsf{Col}_n, \mathcal{Y}_n^{col})$ is extended into a coherent presentation :

$$c|c'|c'' \xrightarrow{\gamma_{c,c'}c'' \rightarrow c_1|c_2|c''} \xrightarrow{c_1\gamma_{c_2,c''}} c_1|c_3|c_4 \xrightarrow{\gamma_{c_1,c_3}c_4} c_3'|c_5|c_4$$

$$c|c'|c'' \xrightarrow{c\gamma_{c',c''}} c|c_1'|c_2' \xrightarrow{\gamma_{c,c_1'}c_2'} c_3'|c_4'|c_2' \xrightarrow{c_3'\gamma_{c_4',c_2'}} c_3'|c_5|c_4$$

$$\begin{split} &R_{\text{Col}_n}(c \star_{\mathcal{Y}_n^{\text{col}}} c') = c_1 | c_2, \, R_{\text{Col}_n}(c_2 \star_{\mathcal{Y}_n^{\text{col}}} c'') = c_3 | c_4, \, R_{\text{Col}_n}(c_1 \star_{\mathcal{Y}_n^{\text{col}}} c_3) = c_3' | c_5, \\ &R_{\text{Col}_n}(c'' \star_{\mathcal{Y}_n^{\text{row}}} c') = c_1' | c_2', \, R_{\text{Col}_n}(c_1' \star_{\mathcal{Y}_n^{\text{row}}} c) = c_3' | c_4', \, R_{\text{Col}_n}(c_2' \star_{\mathcal{Y}_n^{\text{row}}} c_4') = c_5 | c_4. \end{split}$$

- 1. Motivations
- 2. String Data Structures
- 3. Coherent Presentations and String Data Structures
- 4. Conclusion

Conclusion

- We study the confluence of SRS whose rules are defined by insertion algorithm using the notion of SDS.
 - If a right SDS and a left SDS presenting a monoid commute
 - these SDSs are associatives,
 - the SRS presenting the structure monoid is confluent,
 - we obtain a minimal locally confluent presentation of the monoid,
 - we obtain a cross-section property for the monoid.
- Applications on the Chinese monoid generated by the set $\{1, ..., n\}$ and subject to the relations zyx = zxy = yzx, for $x \le y \le z$.
 - construct an SDS associated to the insertion algorithm in Chinese staircases.
 - deduce the confluence of the reduced presentation of this monoid,
 - extend this presentation into a finite coherent presentation of this monoid.
- ► The sylvester monoid is generated by $\{1, ..., n\}$ and subject to the relations zxvy = xzvy, for x < y < z and $y \in \{1, ..., n\}^*$.
 - it can be described using the notion of binary search trees.
 - we expect that our methods should conduce to a coherent presentation of this monoid induced by the insertion algorithm in a binary search tree.

Thank you for your attention!