Coherence of monoids by insertions

Nohra Hage

Université Saint-Joseph de Beyrouth
Ecole Supérieure d’Ingénieurs de Beyrouth

Joint works with Philippe Malbos

7th International Workshop on Confluence, IWC 2018
July 7th 2018, Oxford, United Kingdom
Plan:

1. Motivations
2. String Data Structures
3. Coherent presentations and String data structures
4. Conclusion
Motivations

- **Data structures** describe a way to organize and to store a collection of structured data.
 - appear in *combinatorial algebra*, *combinatorics* and *fundamental computer science*,
 - describe combinatorial structures: *arrays*, *tableaux*, *staircases*, *binary search trees*...
 - array structures can be used to study *plactic*, *Chinese*, *hypoplactic* and *sylvester monoids*...

- Study **string rewriting systems** (SRS):
 - normal forms can be described using a data structure,
 - rewriting rules are induced by insertion algorithms.

- Introduce the notion of **string data structure** (SDS):
 - the data are constructed using an insertion algorithm,
 - they are described by words through a reading map.
Motivations

Plactic monoids:

- (Young, 1900): Young tableaux

- (Schensted, 1961): left and right insertions on Young tableaux

- (Knuth, 1970): $u, v \in \{1, \ldots, n\}^*$, $u \sim v \iff P(u) = P(v)$.

 - \sim coincides with the congruence generated by Knuth relations:

 $zxy = xzy$ for $x \leq y < z$ and $yzx = yxz$ for $x < y \leq z$.

- (Lascoux, Schützenberger, 1981): plactic monoid $= \{1, \ldots, n\}^*/\sim$.

- Applications on combinatorics, representation theory, rewriting theory...
Motivations

Plactic monoids:

- (Kubat, Okninski, 2014): $n > 4 \Rightarrow$ no finite completion of the Knuth presentation w.r.t the lexicographic order.

- (Cain, Gray, Malheiro, 2015), (Bokut, Chen, Chen, Li, 2015): finite completions obtained by adding new generators:
 - column or row generators \Rightarrow convergent presentation of plactic monoids.

- (Hage, Malbos, 2017): coherent presentations of the plactic monoid giving all the relations among the relations of its presentations.
 - Confluence property is essential to obtain such coherence results.
 - Commutation of right and left insertions \Rightarrow confluence of the presentation.

- Study these confluence results in a general algebraic framework using the notion of string data structure.

- Explicit coherent presentation of the monoid presented by an SDS:
 - a presentation of the monoid (generators + rewriting rules describing the insertion algorithms)
 - extended by homotopy generators of all the relations among the insertion algorithms.
Plan:

1. Motivations

2. String Data Structures
String Data Structures

- **String data structure** \((\mathcal{S}, \ell, I, R) \) on an alphabet \(A \):
 - a set \(D_A \),
 - a reading \(\ell : A^* \to A^* \)
 \(x_1 \ldots x_k \mapsto x_{\sigma(1)} \ldots x_{\sigma(k)} \) \(\sigma \) permutation on \(\{1, \ldots, k\} \)
 - right-to-left (resp. left-to-right) \(: \ell_r \) (resp. \(\ell_l \)).
 \(\ell_r(1342543) = 3452431 \)
 \(\ell_l(1342543) = 1342543 \)
 - a one-element insertion map \(I : D_A \times A \to D_A \),
 by iteration, insertion map \(I^* : D_A \times A^* \to D_A \) :
 \(I^*(d, x_1 \ldots x_n) = I^*(I(d, y_1), y_2 \ldots y_n) \)
 \(y_1 \ldots y_n = \ell(x_1 \ldots x_n) \)
 - a reading map \(R : D_A \to A^* \):
 \(I^*(\emptyset, \ell(-))R = \text{Id}_{D_A} \),
 \(R(\emptyset) \) is the empty word,
 \(A \subseteq R(D_A) \subseteq A^* \).

- Constructor \(C_{\mathcal{S}} \) of \(\mathcal{S} : I^*(\emptyset, \ell(-)) : A^* \to D_A \).

- A right (resp. left) SDS : insertion map w. r. t \(\ell_l \) (resp. \(\ell_r \)).
String Data Structures

Example: Young SDSs $\mathcal{Y}^\text{row}_n = (Y_t, l_l, S_r, R_{col})$ and $\mathcal{Y}^\text{col}_n = (Y_t, l_r, S_l, R_{col})$

- \mathcal{Y}^row_n set of (Young) tableaux:

$$t = \begin{array}{cccccc}
1 & 1 & 1 & 2 & 4 & 4 & 4 \\
2 & 2 & 3 & 3 & 5 & 7 \\
4 & 5 & 5 & 6 \\
6 & 8
\end{array}$$

$R_{col}(t) = 6421852153163254744$

- Schensted’s right insertion $S_r : S_r \left(\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array} \right), 2$

- Schensted’s left insertion $S_l : S_l \left(\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
6
\end{array} \right), 2$
String Data Structures

- \(I, J : D_A \times A \rightarrow D_A \text{ commute} \) if \(J(I(d, x), y) = I(J(d, y), x) \).

- A left (resp. right) SDS \((D_A, \ell, J, R)\) (resp. \((D_A, \ell, I, R)\)) \text{ commutes to} a right (resp. left) SDS \((D_A, \ell, I, R)\) (resp. \((D_A, \ell, I, R)\)) if \(I \) and \(J \) commute.

\[
y \rightarrow (d \leftarrow x) = (y \rightarrow d) \leftarrow x
\]

- \(S = (D_A, \ell, I, R) \) is \text{ associative} if

\[
\ast_S : D_A \times D_A \rightarrow D_A \\
(d, d') \mapsto d \ast_S d' = I^*(d, \ell(R(d')))
\]

is associative.

Theorem. Let \(S \) be a right (resp. left) SDS. If there is a left (resp. right) SDS \(T \) that commutes to \(S \), then \(S \) and \(T \) are associative.

- **Structure monoid** \(M(S) \) associated to \(S = (D_A, \ell, I, R) \) is presented by

\[
\mathcal{R}(S) = \langle D_A \mid \gamma_{d, d'} : d|d' \rightarrow d \ast_S d', \ \forall d, d' \in D_A \rangle.
\]

- \(\mathcal{R}(S) \) is terminating,

- If \(S \) is associative, then \(\mathcal{R}(S) \) is locally confluent.
String Data Structures

- **Reading** of $\mathcal{R}(S)$:
 \[
 \mathcal{R}(A, S) = \langle A \mid \gamma_{d, d'} : R(d)R(d') \rightarrow R(d \ast_S d'), \ \forall d, d' \in D_A \rangle.
 \]
 - If S is associative, then $\mathcal{R}(A, S)$ is locally confluent.

- $S = (D_A, \ell, I, R)$ is *compatible* with an equivalence relation \sim on A^* if:
 - $w \sim w'$ implies $I^*(d, w) = I^*(d, w')$, $\forall d \in D_A$, $\forall w, w' \in A^*$,
 - $RC_S(w) \sim w$, $\forall w \in A^*$.

Theorem. Let S be a right SDS compatible with \sim_S induced by $\mathcal{R}(A, S)$. The map C_S induces $A^*/\sim_S \simeq (D_A, \ast_S)$ with the inverse induced by R. One says that $\mathcal{R}(S)$ and $\mathcal{R}(A, S)$ are *Tietze-equivalent*.

 - Let \sim be an equivalence relation on the free monoid K^* over K. $S \subset K^*$ satisfies the **cross-section property (c.s.p)** for K^*/\sim if each equivalence class w.r.t \sim contains exactly one element of S.

 - Let S be a right associative SDS compatible with \sim_S induced by $\mathcal{R}(A, S)$.
 - If $\mathcal{R}(A, S)$ is terminating, then the set of normal forms w.r.t $\mathcal{R}(S)$ satisfies the c.s.p for $M(S) \iff$ the set of normal forms w.r.t $\mathcal{R}(A, S)$ satisfies the c.s.p for $M(S)$.

Corollary. Let S be a right associative SDS such that $\mathcal{R}(A, S)$ is terminating. Then $\mathcal{R}(S)$ and $\mathcal{R}(A, S)$ are Tietze-equivalent and the set of normal forms w.r.t $\mathcal{R}(A, S)$ satisfies the c.s.p for $M(S)$.
String Data Structures

Example: Young SDSs $\mathcal{Y}^\text{row}_n = (Yt_n, \ell_1, S_r, R_{\text{col}})$ and $\mathcal{Y}^\text{col}_n = (Yt_n, \ell_r, S_l, R_{\text{col}})$

- The **plactic monoid** of rank n is presented by the **Knuth presentation** whose set of generators is $\{1, \ldots, n\}$ submitted to the relations:

$$zxy \rightarrow xzy \quad \text{for} \quad x \leq y < z \quad \text{and} \quad yzx \rightarrow yxz \quad \text{for} \quad x < y \leq z.$$

- (Schensted, 1961). S_r and S_l commute: $S_r(S_l(t, x), y) = S_l(S_r(t, y), x)$.
 - then the SDSs \mathcal{Y}^row_n and \mathcal{Y}^col_n are associative,
 - then the SRSs $R(\mathcal{Y}^\text{row}_n)$ and $R(\mathcal{Y}^\text{col}_n)$ are convergent.

- The Knuth presentation is Tietze-equivalent to $R(\{1, \ldots, n\}, \mathcal{Y}^\text{row}_n)$.

- (Knuth, 1970). \mathcal{Y}^row_n is compatible with the equivalence relation induced by the Knuth presentation.
 - then $R(\mathcal{Y}^\text{row}_n)$ is a convergent presentation of the plactic monoid,
 - then the set Yt_n satisfies the c.s.p for the plactic monoid.
Plan:

1. Motivations

2. String Data Structures

3. Coherent Presentations and String Data Structures
Coherent Presentations and String Data Structures

Change of generators of an SDS $\mathbb{S} = (D_A, \ell, I, R)$

- A binary relation $|$ on D_A is **compatible** with R if $R(d|d') = R(d)R(d')$, where $d|d'$ denotes $(d, d') \in |$.

- **Generating set** $Q \subset D_A$ w.r.t such a binary relation:
 - $A \subseteq R(Q)$,
 - $d = c_1|\ldots|c_k \in D_A$, with $c_1, \ldots, c_k \in Q$.

- **SDS** $\mathbb{S}_Q = (D_A, \ell_Q, I_Q, R_Q)$ on a generating set Q:
 - $\ell_Q(c_1 \ldots c_k) = c_{\sigma(1)} \ldots c_{\sigma(k)} \in Q^*$, where σ is a permutation on $\{1, \ldots, k\}$,
 - $I_Q : D_A \times Q \longrightarrow D_A$, $I_Q(d, c) = I^*(d, R(c))$,
 - $R_Q : D_A \longrightarrow Q^*$, $R_Q(d) = c_1|\ldots|c_k$ is the decomposition of d w.r.t $|$.

- **A reduced presentation**: Q generating set w.r.t $|$ compatible with R.

 $$\mathcal{R}(Q, \mathbb{S}) = \langle Q \mid \gamma_{c,c'} : c|c' \longrightarrow R_Q(c \ast_{\mathbb{S}} c'), \ c, c' \in Q, \ c|c' \notin D_A \rangle.$$

Lemma. Let \mathbb{S} be an associative SDS and Q be a generating set w.r.t $|$ compatible with R. If $\mathcal{R}(Q, \mathbb{S})$ is normalizing, then $\mathcal{R}(\mathbb{S})$ and $\mathcal{R}(Q, \mathbb{S})$ are Tietze-equivalent.
Example: Young SDS $\mathcal{Y}_n^{col} = (\mathcal{Y}_n, l_r, S_l, R_{col})$

- Col_n: set of tableaux with only one column.
- $|$: concatenation of columns in \mathcal{Y}_n.
 - $d = c_1 | \ldots | c_k \in \mathcal{Y}_n$, where c_1, \ldots, c_k are the columns of d from left to right,
 - $R_{col}(d) = R_{col}(c_1) \ldots R_{col}(c_k)$,
 - $|$ is compatible with R_{col},
 - Col_n is a generating set w.r.t $|$.

- $R_{\text{Col}_n}: \mathcal{Y}_n \rightarrow \text{Col}_n^*$ writes a tableau as the concatenation of its columns from left to right.

- \mathcal{Y}_n^{row} is associative:
 - $\mathcal{R}(\text{Col}_n, \mathcal{Y}_n^{col})$ is normalizing,
 - then $\mathcal{R}(\mathcal{Y}_n^{col})$ and $\mathcal{R}(\text{Col}_n, \mathcal{Y}_n^{col})$ are Tietze-equivalent.

- $\mathcal{R}(\text{Col}_n, \mathcal{Y}_n^{col})$ is a finite convergent presentation of the plactic monoid.
 - (Bokut, Chen, Chen, Li, 2015), (Cain, Gray, Malheiro, 2015).
Coherent Presentations and String Data Structures

Coherence by insertions.

- **Normalisation strategy (n.s)** for an SRS: mapping σ of every generator u to a rewriting step from u to a chosen normal form \hat{u}.
 - leftmost one σ^\top, rightmost one σ^\bot.
- A normalization strategy σ of $\mathcal{R}(Q, S)$ computes C_S if it reduces any $c_1|\ldots|c_n \in Q^*$ to $R_Q(c_1 \ast_S \ldots \ast_S c_n)$.

Theorem. Let S be an associative SDS such that $\mathcal{R}(Q, S)$ terminating. If there exists a n.s that computes C_S, then the set of normal forms of $\mathcal{R}(Q, S)$ satisfies the c.s.p for $M(S)$.

If σ^\top computes C_S, then $\mathcal{R}(Q, S)$ is extended into a coherent presentation:

\[
\sigma^\top \quad \sigma^\top_{cc',c''} \quad R_Q(c \ast_S c' \ast_S c'') \quad \forall c, c', c'' \in Q.
\]
Coherent Presentations and String Data Structures

Coherence by insertions. σ^\top (resp. σ^\perp) w.r.t $R(Q, S)$ for a right SDS S. Suppose T commutes to S. If σ^\top computes C_S, then $R(Q, S)$ can be extended into a coherent presentation by adjunction of

$$\sigma^\top_{cc'}c'' \quad \sigma^\top_{cc'}c''$$

σ^\top (resp. σ^\perp) \leadsto right (resp. left) insertion of S (resp. T).

Example: Young SDS $\gamma_n^{col} = (Y_t, \ell_r, S_l, R_{col})$: σ^\top w. r. t $R(Col_n, \gamma_n^{col})$ computes $C_{\gamma_n^{col}}$. Then $R(Col_n, \gamma_n^{col})$ is extended into a coherent presentation:

$$R_{Col_n}(c \ast_{\gamma_n^{col}} c') = c_1 | c_2, \quad R_{Col_n}(c_2 \ast_{\gamma_n^{col}} c'') = c_3 | c_4, \quad R_{Col_n}(c_1 \ast_{\gamma_n^{col}} c_3) = c_3' | c_5, \quad R_{Col_n}(c_1' \ast_{\gamma_n^{row}} c_2') = c_1' | c_2', \quad R_{Col_n}(c_1' \ast_{\gamma_n^{row}} c_4') = c_3' | c_4', \quad R_{Col_n}(c_2' \ast_{\gamma_n^{row}} c_4) = c_5 | c_4.$$

Plan:

1. Motivations
2. String Data Structures
3. Coherent Presentations and String Data Structures
4. Conclusion
Conclusion

- We study the confluence of SRS whose rules are defined by insertion algorithm using the notion of SDS.
 - If a right SDS and a left SDS presenting a monoid commute
 - these SDSs are associatives,
 - the SRS presenting the structure monoid is confluent,
 - we obtain a minimal locally confluent presentation of the monoid,
 - we obtain a cross-section property for the monoid.

- Applications on the **Chinese monoid** generated by the set \{1, \ldots, n\} and subject to the relations \(zyx = zxy = yzx \), for \(x \leq y \leq z \).
 - construct an SDS associated to the insertion algorithm in **Chinese staircases**,
 - deduce the confluence of the reduced presentation of this monoid,
 - extend this presentation into a finite coherent presentation of this monoid.

- The **sylvester monoid** is generated by \{1, \ldots, n\} and subject to the relations \(zxvy = xzvy \), for \(x \leq y < z \) and \(v \in \{1, \ldots, n\}^* \).
 - it can be described using the notion of **binary search trees**,
 - we expect that our methods should conduce to a coherent presentation of this monoid induced by the insertion algorithm in a binary search tree.
Thank you for your attention!