4.80/2.12 YES 4.80/2.12 4.80/2.12 Proof: 4.80/2.12 This system is confluent. 4.80/2.12 By \cite{ALS94}, Theorem 4.1. 4.80/2.12 This system is of type 3 or smaller. 4.80/2.12 This system is strongly deterministic. 4.80/2.12 This system is quasi-decreasing. 4.80/2.12 By \cite{O02}, p. 214, Proposition 7.2.50. 4.80/2.12 This system is of type 3 or smaller. 5.11/2.15 This system is deterministic. 5.11/2.15 System R transformed to U(R). 5.11/2.15 This system is terminating. 5.11/2.15 Call external tool: 5.11/2.15 ./ttt2.sh 5.11/2.15 Input: 5.11/2.15 (VAR x y) 5.11/2.15 (RULES 5.11/2.15 ?1(c(a), x, y) -> g(s(x)) 5.11/2.15 f(x, y) -> ?1(c(g(x)), x, y) 5.11/2.15 ?2(c(a), x, y) -> h(s(x)) 5.11/2.15 f(x, y) -> ?2(c(h(x)), x, y) 5.11/2.15 g(s(x)) -> x 5.11/2.15 h(s(x)) -> x 5.11/2.15 ) 5.11/2.15 5.11/2.15 Matrix Interpretation Processor: dim=1 5.11/2.15 5.11/2.15 interpretation: 5.11/2.15 [h](x0) = 2x0 + 1, 5.11/2.15 5.11/2.15 [?2](x0, x1, x2) = x0 + 2x1 + 2x2 + 3, 5.11/2.15 5.11/2.15 [f](x0, x1) = 6x0 + 2x1 + 7, 5.11/2.15 5.11/2.15 [g](x0) = 2x0 + 2, 5.11/2.15 5.11/2.15 [s](x0) = x0, 5.11/2.15 5.11/2.15 [?1](x0, x1, x2) = x0 + 2x1 + 2x2, 5.11/2.15 5.11/2.15 [c](x0) = 2x0, 5.11/2.15 5.11/2.15 [a] = 1 5.11/2.15 orientation: 5.11/2.15 ?1(c(a()),x,y) = 2x + 2y + 2 >= 2x + 2 = g(s(x)) 5.11/2.15 5.11/2.15 f(x,y) = 6x + 2y + 7 >= 6x + 2y + 4 = ?1(c(g(x)),x,y) 5.11/2.15 5.11/2.15 ?2(c(a()),x,y) = 2x + 2y + 5 >= 2x + 1 = h(s(x)) 5.11/2.15 5.11/2.15 f(x,y) = 6x + 2y + 7 >= 6x + 2y + 5 = ?2(c(h(x)),x,y) 5.11/2.15 5.11/2.15 g(s(x)) = 2x + 2 >= x = x 5.11/2.15 5.11/2.15 h(s(x)) = 2x + 1 >= x = x 5.11/2.15 problem: 5.11/2.15 ?1(c(a()),x,y) -> g(s(x)) 5.11/2.15 Matrix Interpretation Processor: dim=3 5.11/2.15 5.11/2.15 interpretation: 5.11/2.15 [1 0 0] 5.11/2.15 [g](x0) = [0 0 0]x0 5.11/2.15 [0 0 0] , 5.11/2.15 5.11/2.15 [1 0 0] 5.11/2.15 [s](x0) = [0 0 0]x0 5.11/2.15 [0 0 0] , 5.11/2.15 5.11/2.15 [1 1 0] [1 0 0] [1 0 0] [0] 5.11/2.15 [?1](x0, x1, x2) = [0 0 0]x0 + [0 0 0]x1 + [0 0 0]x2 + [1] 5.11/2.15 [0 0 0] [0 0 0] [0 0 0] [0], 5.11/2.15 5.11/2.15 [1 0 0] [0] 5.11/2.15 [c](x0) = [0 0 0]x0 + [1] 5.11/2.15 [0 0 0] [0], 5.11/2.15 5.11/2.15 [0] 5.11/2.15 [a] = [0] 5.11/2.15 [0] 5.11/2.15 orientation: 5.11/2.15 [1 0 0] [1 0 0] [1] [1 0 0] 5.11/2.15 ?1(c(a()),x,y) = [0 0 0]x + [0 0 0]y + [1] >= [0 0 0]x = g(s(x)) 5.11/2.15 [0 0 0] [0 0 0] [0] [0 0 0] 5.11/2.15 problem: 5.11/2.15 5.11/2.15 Qed 5.11/2.15 All 2 critical pairs are joinable. 5.11/2.15 Overlap: (rule1: f(z, x') -> h(s(z)) <= c(h(z)) = c(a), rule2: f(y', z') -> g(s(y')) <= c(g(y')) = c(a), pos: ε, mgu: {(z,y'), (x',z')}) 5.11/2.15 CP: g(s(y')) = h(s(y')) <= c(h(y')) = c(a), c(g(y')) = c(a) 5.11/2.15 This critical pair is context-joinable. 5.11/2.15 Overlap: (rule1: f(z, x') -> g(s(z)) <= c(g(z)) = c(a), rule2: f(y', z') -> h(s(y')) <= c(h(y')) = c(a), pos: ε, mgu: {(z,y'), (x',z')}) 5.11/2.15 CP: h(s(y')) = g(s(y')) <= c(g(y')) = c(a), c(h(y')) = c(a) 5.11/2.15 This critical pair is context-joinable. 5.11/2.15 5.23/2.21 EOF