3.57/1.51	MAYBE
3.57/1.51	
3.57/1.51	Proof:
3.57/1.51	ConCon could not decide confluence of the system.
3.57/1.51	\cite{ALS94}, Theorem 4.1 does not apply.
3.57/1.51	This system is of type 3 or smaller.
3.57/1.51	This system is strongly deterministic.
3.57/1.51	This system is quasi-decreasing.
3.57/1.51	By \cite{A14}, Theorem 11.5.9.
3.57/1.51	This system is of type 3 or smaller.
3.57/1.51	This system is deterministic.
3.57/1.51	System R transformed to V(R) + Emb.
3.57/1.51	This system is terminating.
3.57/1.51	Call external tool:
3.57/1.51	./ttt2.sh
3.57/1.51	Input:
3.57/1.51	  f(x) -> x
3.57/1.51	  g(d, x, x) -> A
3.57/1.51	  h(x, x) -> g(x, x, f(k))
3.57/1.51	  c -> e'
3.57/1.51	  a -> c
3.57/1.51	  a -> d
3.57/1.51	  b -> c
3.57/1.51	  b -> d
3.57/1.51	  c -> e
3.57/1.51	  c -> l
3.57/1.51	  k -> l
3.57/1.51	  k -> m
3.57/1.51	  d -> m
3.57/1.51	  h(x, y) -> x
3.57/1.51	  h(x, y) -> y
3.57/1.51	  g(x, y, z) -> x
3.57/1.51	  g(x, y, z) -> y
3.57/1.51	  g(x, y, z) -> z
3.57/1.51	  f(x) -> x
3.57/1.51	
3.57/1.51	 Polynomial Interpretation Processor:
3.57/1.51	  dimension: 1
3.57/1.51	  interpretation:
3.57/1.51	   [m] = 0,
3.57/1.51	   
3.57/1.51	   [l] = 0,
3.57/1.51	   
3.57/1.51	   [e] = 0,
3.57/1.51	   
3.57/1.51	   [b] = 4,
3.57/1.51	   
3.57/1.51	   [a] = 4,
3.57/1.51	   
3.57/1.51	   [e'] = 0,
3.57/1.51	   
3.57/1.51	   [c] = 1,
3.57/1.51	   
3.57/1.51	   [k] = 1,
3.57/1.51	   
3.57/1.51	   [h](x0, x1) = x0 + 6x1 + x1x1 + 7,
3.57/1.51	   
3.57/1.51	   [A] = 0,
3.57/1.51	   
3.57/1.51	   [g](x0, x1, x2) = x0 + 6x1 + x2 + 1,
3.57/1.51	   
3.57/1.51	   [d] = 1,
3.57/1.51	   
3.57/1.51	   [f](x0) = 4x0 + 1
3.57/1.51	  orientation:
3.57/1.51	   f(x) = 4x + 1 >= x = x
3.57/1.51	   
3.57/1.51	   g(d(),x,x) = 7x + 2 >= 0 = A()
3.57/1.51	   
3.57/1.51	   h(x,x) = 7x + x*x + 7 >= 7x + 6 = g(x,x,f(k()))
3.57/1.51	   
3.57/1.51	   c() = 1 >= 0 = e'()
3.57/1.51	   
3.57/1.51	   a() = 4 >= 1 = c()
3.57/1.51	   
3.57/1.51	   a() = 4 >= 1 = d()
3.57/1.51	   
3.57/1.51	   b() = 4 >= 1 = c()
3.57/1.51	   
3.57/1.51	   b() = 4 >= 1 = d()
3.57/1.51	   
3.57/1.51	   c() = 1 >= 0 = e()
3.57/1.51	   
3.57/1.51	   c() = 1 >= 0 = l()
3.57/1.51	   
3.57/1.51	   k() = 1 >= 0 = l()
3.57/1.51	   
3.57/1.51	   k() = 1 >= 0 = m()
3.57/1.51	   
3.57/1.51	   d() = 1 >= 0 = m()
3.57/1.51	   
3.57/1.51	   h(x,y) = x + 6y + y*y + 7 >= x = x
3.57/1.52	   
3.57/1.52	   h(x,y) = x + 6y + y*y + 7 >= y = y
3.57/1.52	   
3.57/1.52	   g(x,y,z) = x + 6y + z + 1 >= x = x
3.57/1.52	   
3.57/1.52	   g(x,y,z) = x + 6y + z + 1 >= y = y
3.57/1.52	   
3.57/1.52	   g(x,y,z) = x + 6y + z + 1 >= z = z
3.57/1.52	  problem:
3.57/1.52	   
3.57/1.52	  Qed
3.57/1.52	This critical pair is not trivial.
3.57/1.52	
3.93/1.55	EOF