2.66/1.32 YES 2.66/1.32 2.66/1.32 Proof: 2.66/1.32 This system is confluent. 2.66/1.32 By \cite{ALS94}, Theorem 4.1. 2.66/1.32 This system is of type 3 or smaller. 2.66/1.32 This system is strongly deterministic. 2.66/1.32 This system is quasi-decreasing. 2.66/1.32 By \cite{A14}, Theorem 11.5.9. 2.66/1.32 This system is of type 3 or smaller. 2.66/1.32 This system is deterministic. 2.66/1.32 System R transformed to V(R) + Emb. 2.66/1.32 This system is terminating. 2.66/1.32 Call external tool: 2.66/1.32 ./ttt2.sh 2.66/1.32 Input: 2.66/1.32 sub(z, 0) -> z 2.66/1.32 sub(s(z), s(y)) -> sub(z, y) 2.66/1.32 s(x) -> x 2.66/1.32 sub(x, y) -> x 2.66/1.32 sub(x, y) -> y 2.66/1.32 2.66/1.32 Matrix Interpretation Processor: dim=3 2.66/1.32 2.66/1.32 interpretation: 2.66/1.32 2.66/1.32 [s](x0) = x0 2.66/1.32 , 2.66/1.32 2.66/1.32 [0] 2.66/1.32 [sub](x0, x1) = x0 + x1 + [1] 2.66/1.32 [1], 2.66/1.32 2.66/1.32 [1] 2.66/1.32 [0] = [0] 2.66/1.32 [0] 2.66/1.32 orientation: 2.66/1.32 [1] 2.66/1.32 sub(z,0()) = z + [1] >= z = z 2.66/1.32 [1] 2.66/1.32 2.66/1.32 [0] [0] 2.66/1.32 sub(s(z),s(y)) = y + z + [1] >= y + z + [1] = sub(z,y) 2.66/1.32 [1] [1] 2.66/1.32 2.66/1.32 2.66/1.32 s(x) = x >= x = x 2.66/1.32 2.66/1.32 2.66/1.32 [0] 2.66/1.32 sub(x,y) = x + y + [1] >= x = x 2.66/1.32 [1] 2.66/1.32 2.66/1.32 [0] 2.66/1.32 sub(x,y) = x + y + [1] >= y = y 2.66/1.32 [1] 2.66/1.32 problem: 2.66/1.32 sub(s(z),s(y)) -> sub(z,y) 2.66/1.32 s(x) -> x 2.66/1.33 sub(x,y) -> x 2.66/1.33 sub(x,y) -> y 2.66/1.33 Matrix Interpretation Processor: dim=3 2.66/1.33 2.66/1.33 interpretation: 2.66/1.33 2.66/1.33 [s](x0) = x0 2.66/1.33 , 2.66/1.33 2.66/1.33 [1 1 0] [1] 2.66/1.33 [sub](x0, x1) = x0 + [0 1 1]x1 + [0] 2.66/1.33 [0 0 1] [1] 2.66/1.33 orientation: 2.66/1.33 [1 1 0] [1] [1 1 0] [1] 2.66/1.33 sub(s(z),s(y)) = [0 1 1]y + z + [0] >= [0 1 1]y + z + [0] = sub(z,y) 2.66/1.33 [0 0 1] [1] [0 0 1] [1] 2.66/1.33 2.66/1.33 2.66/1.33 s(x) = x >= x = x 2.66/1.33 2.66/1.33 2.66/1.33 [1 1 0] [1] 2.66/1.33 sub(x,y) = x + [0 1 1]y + [0] >= x = x 2.66/1.33 [0 0 1] [1] 2.66/1.33 2.66/1.33 [1 1 0] [1] 2.66/1.33 sub(x,y) = x + [0 1 1]y + [0] >= y = y 2.66/1.33 [0 0 1] [1] 2.66/1.33 problem: 2.66/1.33 sub(s(z),s(y)) -> sub(z,y) 2.66/1.33 s(x) -> x 2.66/1.33 Matrix Interpretation Processor: dim=1 2.66/1.33 2.66/1.33 interpretation: 2.66/1.33 [s](x0) = 4x0 + 2, 2.66/1.33 2.66/1.33 [sub](x0, x1) = 4x0 + 4x1 2.66/1.33 orientation: 2.66/1.33 sub(s(z),s(y)) = 16y + 16z + 16 >= 4y + 4z = sub(z,y) 2.66/1.33 2.66/1.33 s(x) = 4x + 2 >= x = x 2.66/1.33 problem: 2.66/1.33 2.66/1.33 Qed 2.66/1.33 All 0 critical pairs are joinable. 2.66/1.33 3.23/1.35 EOF