2.87/1.31 YES 2.87/1.31 2.87/1.31 Proof: 2.87/1.31 This system is confluent. 2.87/1.31 By \cite{ALS94}, Theorem 4.1. 2.87/1.31 This system is of type 3 or smaller. 2.87/1.31 This system is strongly deterministic. 2.87/1.31 This system is quasi-decreasing. 2.87/1.31 By \cite{O02}, p. 214, Proposition 7.2.50. 2.87/1.31 This system is of type 3 or smaller. 2.87/1.31 This system is deterministic. 2.87/1.31 System R transformed to optimized U(R). 2.87/1.31 This system is terminating. 2.87/1.31 Call external tool: 2.87/1.31 ./ttt2.sh 2.87/1.31 Input: 2.87/1.31 even(0) -> true 2.87/1.31 even(s(x)) -> ?1(odd(x), x) 2.87/1.31 ?1(true, x) -> true 2.87/1.31 odd(s(x)) -> ?2(even(x), x) 2.87/1.31 ?2(true, x) -> true 2.87/1.31 2.87/1.31 Matrix Interpretation Processor: dim=1 2.87/1.31 2.87/1.31 interpretation: 2.87/1.31 [?2](x0, x1) = 2x0 + 2x1 + 1, 2.87/1.31 2.87/1.31 [?1](x0, x1) = 6x0 + 2x1, 2.87/1.31 2.87/1.31 [odd](x0) = 3x0 + 3, 2.87/1.32 2.87/1.32 [s](x0) = 5x0 + 4, 2.87/1.32 2.87/1.32 [true] = 0, 2.87/1.32 2.87/1.32 [even](x0) = 4x0 + 2, 2.87/1.32 2.87/1.32 [0] = 2 2.87/1.32 orientation: 2.87/1.32 even(0()) = 10 >= 0 = true() 2.87/1.32 2.87/1.32 even(s(x)) = 20x + 18 >= 20x + 18 = ?1(odd(x),x) 2.87/1.32 2.87/1.32 ?1(true(),x) = 2x >= 0 = true() 2.87/1.32 2.87/1.32 odd(s(x)) = 15x + 15 >= 10x + 5 = ?2(even(x),x) 2.87/1.32 2.87/1.32 ?2(true(),x) = 2x + 1 >= 0 = true() 2.87/1.32 problem: 2.87/1.32 even(s(x)) -> ?1(odd(x),x) 2.87/1.32 ?1(true(),x) -> true() 2.87/1.32 Matrix Interpretation Processor: dim=1 2.87/1.32 2.87/1.32 interpretation: 2.87/1.32 [?1](x0, x1) = x0 + 4x1 + 4, 2.87/1.32 2.87/1.32 [odd](x0) = x0, 2.87/1.32 2.87/1.32 [s](x0) = x0 + 4, 2.87/1.32 2.87/1.32 [true] = 0, 2.87/1.32 2.87/1.32 [even](x0) = 5x0 + 4 2.87/1.32 orientation: 2.87/1.32 even(s(x)) = 5x + 24 >= 5x + 4 = ?1(odd(x),x) 2.87/1.32 2.87/1.32 ?1(true(),x) = 4x + 4 >= 0 = true() 2.87/1.32 problem: 2.87/1.32 2.87/1.32 Qed 2.87/1.32 All 0 critical pairs are joinable. 2.87/1.32 3.18/1.35 EOF