6.04/2.18 YES 6.04/2.18 6.04/2.18 Proof: 6.04/2.18 This system is confluent. 6.04/2.18 By \cite{ALS94}, Theorem 4.1. 6.04/2.18 This system is of type 3 or smaller. 6.04/2.18 This system is strongly deterministic. 6.04/2.18 This system is quasi-decreasing. 6.04/2.18 By \cite{O02}, p. 214, Proposition 7.2.50. 6.04/2.18 This system is of type 3 or smaller. 6.04/2.18 This system is deterministic. 6.04/2.18 System R transformed to optimized U(R). 6.04/2.18 This system is terminating. 6.04/2.18 Call external tool: 6.04/2.18 ./ttt2.sh 6.04/2.18 Input: 6.04/2.18 f(x', x'') -> ?1(x', x', x'') 6.04/2.18 ?1(x, x', x'') -> ?2(x'', x', x'', x) 6.04/2.18 ?2(x, x', x'', x) -> g(x) 6.04/2.18 f(y', h(y'')) -> ?3(y', y', y'') 6.04/2.18 ?3(y, y', y'') -> ?4(y'', y', y'', y) 6.04/2.18 ?4(y, y', y'', y) -> g(y) 6.04/2.18 6.04/2.18 Matrix Interpretation Processor: dim=1 6.04/2.18 6.04/2.18 interpretation: 6.04/2.18 [?4](x0, x1, x2, x3) = x0 + x1 + 4x2 + 2x3 + 4, 6.04/2.18 6.04/2.18 [?3](x0, x1, x2) = 2x0 + x1 + 6x2 + 5, 6.04/2.18 6.04/2.18 [h](x0) = 3x0 + 4, 6.04/2.18 6.04/2.18 [g](x0) = x0, 6.04/2.18 6.04/2.18 [?2](x0, x1, x2, x3) = 2x0 + x1 + 2x2 + 2x3, 6.04/2.18 6.04/2.18 [?1](x0, x1, x2) = 2x0 + x1 + 4x2, 6.04/2.18 6.04/2.18 [f](x0, x1) = 3x0 + 5x1 + 3 6.04/2.18 orientation: 6.04/2.18 f(x',x'') = 3x' + 5x'' + 3 >= 3x' + 4x'' = ?1(x',x',x'') 6.04/2.18 6.04/2.18 ?1(x,x',x'') = 2x + x' + 4x'' >= 2x + x' + 4x'' = ?2(x'',x',x'',x) 6.04/2.18 6.04/2.18 ?2(x,x',x'',x) = 4x + x' + 2x'' >= x = g(x) 6.04/2.18 6.04/2.18 f(y',h(y'')) = 3y' + 15y'' + 23 >= 3y' + 6y'' + 5 = ?3(y',y',y'') 6.04/2.18 6.04/2.18 ?3(y,y',y'') = 2y + y' + 6y'' + 5 >= 2y + y' + 5y'' + 4 = ?4(y'',y',y'',y) 6.04/2.18 6.04/2.18 ?4(y,y',y'',y) = 3y + y' + 4y'' + 4 >= y = g(y) 6.04/2.18 problem: 6.04/2.18 ?1(x,x',x'') -> ?2(x'',x',x'',x) 6.04/2.18 ?2(x,x',x'',x) -> g(x) 6.04/2.18 Matrix Interpretation Processor: dim=1 6.04/2.18 6.04/2.18 interpretation: 6.04/2.18 [g](x0) = 3x0, 6.04/2.18 6.04/2.18 [?2](x0, x1, x2, x3) = x0 + 4x1 + 4x2 + 2x3, 6.04/2.18 6.04/2.18 [?1](x0, x1, x2) = 2x0 + 4x1 + 5x2 + 4 6.04/2.18 orientation: 6.04/2.18 ?1(x,x',x'') = 2x + 4x' + 5x'' + 4 >= 2x + 4x' + 5x'' = ?2(x'',x',x'',x) 6.04/2.18 6.04/2.18 ?2(x,x',x'',x) = 3x + 4x' + 4x'' >= 3x = g(x) 6.04/2.18 problem: 6.04/2.18 ?2(x,x',x'',x) -> g(x) 6.04/2.18 Matrix Interpretation Processor: dim=3 6.04/2.18 6.04/2.18 interpretation: 6.04/2.18 [1 0 0] 6.04/2.18 [g](x0) = [0 0 0]x0 6.04/2.18 [0 0 1] , 6.04/2.18 6.04/2.18 [1 0 0] [1 0 0] [1 0 0] [1 0 0] [1] 6.04/2.18 [?2](x0, x1, x2, x3) = [0 0 0]x0 + [0 0 0]x1 + [0 0 0]x2 + [0 0 0]x3 + [0] 6.27/2.20 [0 0 0] [0 0 0] [0 0 0] [0 0 1] [0] 6.27/2.20 orientation: 6.27/2.20 [2 0 0] [1 0 0] [1 0 0] [1] [1 0 0] 6.27/2.20 ?2(x,x',x'',x) = [0 0 0]x + [0 0 0]x' + [0 0 0]x'' + [0] >= [0 0 0]x = g(x) 6.27/2.20 [0 0 1] [0 0 0] [0 0 0] [0] [0 0 1] 6.27/2.20 problem: 6.27/2.20 6.27/2.20 Qed 6.27/2.20 All 2 critical pairs are joinable. 6.27/2.22 Overlap: (rule1: f(z, h(x')) -> g(x) <= z = x, x' = x, rule2: f(y', z') -> g(y) <= y' = y, z' = y, pos: ε, mgu: {(y',z), (z',h(x'))}) 6.27/2.22 CP: g(y) = g(x) <= z = x, x' = x, z = y, h(x') = y 6.27/2.22 This critical pair is infeasible. 6.27/2.22 This critical pair is conditional. 6.27/2.22 This critical pair has some non-trivial conditions. 6.27/2.22 Call external tool: 6.27/2.22 ./waldmeister 6.27/2.22 Input: 6.27/2.22 f(x', x'') -> g(x) <= x' = x, x'' = x 6.27/2.22 f(y', h(y'')) -> g(y) <= y' = y, y'' = y 6.27/2.22 6.27/2.22 By Waldmeister. 6.27/2.22 Overlap: (rule1: f(z, y') -> g(y) <= z = y, y' = y, rule2: f(x', h(z')) -> g(x) <= x' = x, z' = x, pos: ε, mgu: {(x',z), (y',h(z'))}) 6.27/2.22 CP: g(x) = g(y) <= z = y, h(z') = y, z = x, z' = x 6.27/2.22 This critical pair is infeasible. 6.27/2.22 This critical pair is conditional. 6.27/2.22 This critical pair has some non-trivial conditions. 6.27/2.22 Call external tool: 6.27/2.22 ./waldmeister 6.27/2.22 Input: 6.27/2.22 f(x', x'') -> g(x) <= x' = x, x'' = x 6.27/2.22 f(y', h(y'')) -> g(y) <= y' = y, y'' = y 6.27/2.22 6.27/2.22 By Waldmeister. 6.27/2.22 6.41/2.27 EOF