YES

Succeeded in reading "/export/starexec/sandbox/benchmark/theBenchmark.ari".
    (CONDITIONTYPE ORIENTED)
    (VAR x y x2 x1)
    (RULES
      pin(a) -> pout(b)
      pin(b) -> pout(c)
      tc(x) -> x
      tc(x) -> y | pin(x) == pout(z), tc(z) == y
    )

No "->="-rules.

Decomposed conditions and removed infeasible rules if possible.
    (CONDITIONTYPE ORIENTED)
    (VAR x y x2 x1)
    (RULES
      pin(a) -> pout(b)
      pin(b) -> pout(c)
      tc(x) -> x
      tc(x) -> y | pin(x) == pout(z), tc(z) == y
    )

(VAR x2 x1)
(CONDITION 
pin(x1) == pout(z), tc(z) == x2
)

Optimized the infeasibility problem if possible.

(VAR x2 x1)
(CONDITION 
pin(x1) == pout(z), tc(z) == x2
)

This is ultra-RL and deterministic.

This is not operationally terminating and confluent.

This is a constructor-based system.

(RTG_of_NARROWINGTREE
(START
  Gamma[pin(x1) == pout(z) : { e, 1 } & tc(z) == x2 : { e, 1, 1.1 }]
)
(NONTERMINALS
  Gamma[pin(x1) == pout(z) : { e, 1 } & tc(z) == x2 : { e, 1, 1.1 }]
  Gamma[pin(x37) == pout(z) : { e, 1 }]
  Gamma[tc(z2) == x43 : { e, 1 }]
)
(RULES
  Gamma[pin(x1) == pout(z) : { e, 1 } & tc(z) == x2 : { e, 1, 1.1 }] -> EmptySet
  Gamma[tc(z2) == x43 : { e, 1 }] -> { x43 -> tc(z2) }
  Gamma[tc(z2) == x43 : { e, 1 }] -> { x49 -> x51, x43 -> x51, z2 -> x51 }
  Gamma[tc(z2) == x43 : { e, 1 }] -> ((Rec(Gamma[pin(x37) == pout(z) : { e, 1 }], { x50 -> x37 }) & ({ z3 -> z, y5 -> x59, x43 -> x59 } & Rec(Gamma[tc(z2) == x43 : { e, 1 }], { y5 -> x43, z3 -> z2 }))) . { z2 -> x50 })
)
)

YES