YES Succeeded in reading "/export/starexec/sandbox/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x y x2 x1) (RULES pin(a) -> pout(b) pin(b) -> pout(c) tc(x) -> x tc(x) -> y | pin(x) == pout(z), tc(z) == y ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x y x2 x1) (RULES pin(a) -> pout(b) pin(b) -> pout(c) tc(x) -> x tc(x) -> y | pin(x) == pout(z), tc(z) == y ) (VAR x2 x1) (CONDITION pin(x1) == pout(z), tc(z) == x2 ) Optimized the infeasibility problem if possible. (VAR x2 x1) (CONDITION pin(x1) == pout(z), tc(z) == x2 ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[pin(x1) == pout(z) : { e, 1 } & tc(z) == x2 : { e, 1, 1.1 }] ) (NONTERMINALS Gamma[pin(x1) == pout(z) : { e, 1 } & tc(z) == x2 : { e, 1, 1.1 }] Gamma[pin(x37) == pout(z) : { e, 1 }] Gamma[tc(z2) == x43 : { e, 1 }] ) (RULES Gamma[pin(x1) == pout(z) : { e, 1 } & tc(z) == x2 : { e, 1, 1.1 }] -> EmptySet Gamma[tc(z2) == x43 : { e, 1 }] -> { x43 -> tc(z2) } Gamma[tc(z2) == x43 : { e, 1 }] -> { x49 -> x51, x43 -> x51, z2 -> x51 } Gamma[tc(z2) == x43 : { e, 1 }] -> ((Rec(Gamma[pin(x37) == pout(z) : { e, 1 }], { x50 -> x37 }) & ({ z3 -> z, y5 -> x59, x43 -> x59 } & Rec(Gamma[tc(z2) == x43 : { e, 1 }], { y5 -> x43, z3 -> z2 }))) . { z2 -> x50 }) ) ) YES