MAYBE Succeeded in reading "/export/starexec/sandbox/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x y z x1) (RULES gcd(z,y) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(y,z) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(x,0) -> x gcd(0,x) -> x iadd(y) -> tp2(0,y) iadd(s(z)) -> tp2(s(x),y) | iadd(z) == tp2(x,y) iadd(add(x,y)) -> tp2(x,y) ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x y z x1) (RULES gcd(z,y) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(y,z) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(x,0) -> x gcd(0,x) -> x iadd(y) -> tp2(0,y) iadd(s(z)) -> tp2(s(x),y) | iadd(z) == tp2(x,y) iadd(add(x,y)) -> tp2(x,y) ) (VAR x x1) (CONDITION iadd(x1) == tp2(x,0) ) Optimized the infeasibility problem if possible. (VAR x x1) (CONDITION iadd(x1) == tp2(x,0) ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[iadd(x1) == tp2(x,0) : { e, 1 }] ) (NONTERMINALS Gamma[iadd(x1) == tp2(x,0) : { e, 1 }] Gamma[iadd(x235) == tp2 : { e, 1 }] ) (RULES Gamma[iadd(x1) == tp2(x,0) : { e, 1 }] -> (Rec(Gamma[iadd(x235) == tp2 : { e, 1 }], { tp1 -> tp2, x1 -> x235 }) & { tp1 -> tp2(x,0) }) Gamma[iadd(x235) == tp2 : { e, 1 }] -> { tp2 -> iadd(x235) } Gamma[iadd(x235) == tp2 : { e, 1 }] -> { tp2 -> tp2(0,y13), x235 -> y13 } Gamma[iadd(x235) == tp2 : { e, 1 }] -> (((Rec(Gamma[iadd(x235) == tp2 : { e, 1 }], { tp3 -> tp2, z9 -> x235 }) & { tp3 -> tp2(x241,y14) }) & { tp2 -> tp2(s(x241),y14) }) . { x235 -> s(z9) }) Gamma[iadd(x235) == tp2 : { e, 1 }] -> { tp2 -> tp2(x242,y15), x235 -> add(x242,y15) } ) ) Failed to prove infeasibility of the linearized conditions by means of narrowing trees. This is not ultra-RL and deterministic. MAYBE