MAYBE Succeeded in reading "/export/starexec/sandbox2/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x y z x1) (RULES gcd(z,y) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(y,z) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(x,0) -> x gcd(0,x) -> x iadd(y) -> tp2(0,y) iadd(s(z)) -> u1(iadd(z)) u1(tp2(x,y)) -> tp2(s(x),y) iadd(add(x,y)) -> tp2(x,y) ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x y z x1) (RULES gcd(z,y) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(y,z) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(x,0) -> x gcd(0,x) -> x iadd(y) -> tp2(0,y) iadd(s(z)) -> u1(iadd(z)) u1(tp2(x,y)) -> tp2(s(x),y) iadd(add(x,y)) -> tp2(x,y) ) (VAR x1 x) (CONDITION iadd(0) == tp2(x,x1) ) Optimized the infeasibility problem if possible. (VAR x1 x) (CONDITION iadd(0) == tp2(x,x1) ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[iadd(0) == tp2(x,x1) : { e, 1, 1.1 }] ) (NONTERMINALS Gamma[iadd(0) == tp2(x,x1) : { e, 1, 1.1 }] ) (RULES Gamma[iadd(0) == tp2(x,x1) : { e, 1, 1.1 }] -> { x1 -> y3, x -> 0 } ) ) Failed to prove infeasibility of the linearized conditions by means of narrowing trees. This is not ultra-RL and deterministic. MAYBE