MAYBE Succeeded in reading "/export/starexec/sandbox/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x y z x1) (RULES gcd(z,y) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(y,z) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(x,0) -> x gcd(0,x) -> x iadd(y) -> tp2(0,y) iadd(s(z)) -> u1(iadd(z)) u1(tp2(x,y)) -> tp2(s(x),y) iadd(add(x,y)) -> tp2(x,y) ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x y z x1) (RULES gcd(z,y) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(y,z) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(x,0) -> x gcd(0,x) -> x iadd(y) -> tp2(0,y) iadd(s(z)) -> u1(iadd(z)) u1(tp2(x,y)) -> tp2(s(x),y) iadd(add(x,y)) -> tp2(x,y) ) (VAR x x1) (CONDITION iadd(x1) == tp2(x,0) ) Optimized the infeasibility problem if possible. (VAR x x1) (CONDITION iadd(x1) == tp2(x,0) ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[iadd(x1) == tp2(x,0) : { e, 1 }] ) (NONTERMINALS Gamma[iadd(x1) == tp2(x,0) : { e, 1 }] Gamma[iadd(x231) == tp2 : { e, 1 }] Gamma[u1(iadd2) == tp3 : { e, 1 }] ) (RULES Gamma[iadd(x1) == tp2(x,0) : { e, 1 }] -> (Rec(Gamma[iadd(x231) == tp2 : { e, 1 }], { tp1 -> tp2, x1 -> x231 }) & { tp1 -> tp2(x,0) }) Gamma[iadd(x231) == tp2 : { e, 1 }] -> { tp2 -> iadd(x231) } Gamma[iadd(x231) == tp2 : { e, 1 }] -> { tp2 -> tp2(0,y13), x231 -> y13 } Gamma[iadd(x231) == tp2 : { e, 1 }] -> ((Rec(Gamma[iadd(x231) == tp2 : { e, 1 }], { iadd1 -> tp2, z9 -> x231 }) & Rec(Gamma[u1(iadd2) == tp3 : { e, 1 }], { tp2 -> tp3, iadd1 -> iadd2 })) . { x231 -> s(z9) }) Gamma[iadd(x231) == tp2 : { e, 1 }] -> { tp2 -> tp2(x238,y15), x231 -> add(x238,y15) } Gamma[u1(iadd2) == tp3 : { e, 1 }] -> { tp3 -> u1(iadd2) } Gamma[u1(iadd2) == tp3 : { e, 1 }] -> { tp3 -> tp2(s(x264),y34), iadd2 -> tp2(x264,y34) } ) ) Failed to prove infeasibility of the linearized conditions by means of narrowing trees. This is not ultra-RL and deterministic. MAYBE