MAYBE Succeeded in reading "/export/starexec/sandbox2/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x y z x3 x2 x1) (RULES gcd(z,y) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(y,z) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(x,0) -> x gcd(0,x) -> x iadd(y) -> tp2(0,y) iadd(s(z)) -> u1(iadd(z)) u1(tp2(x,y)) -> tp2(s(x),y) iadd(add(x,y)) -> tp2(x,y) ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x y z x3 x2 x1) (RULES gcd(z,y) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(y,z) -> gcd(x,y) | iadd(z) == tp2(x,y) gcd(x,0) -> x gcd(0,x) -> x iadd(y) -> tp2(0,y) iadd(s(z)) -> u1(iadd(z)) u1(tp2(x,y)) -> tp2(s(x),y) iadd(add(x,y)) -> tp2(x,y) ) (VAR x3 x2 x x1) (CONDITION iadd(x1) == tp2(x,x2), iadd(x2) == tp2(x3,x1) ) Optimized the infeasibility problem if possible. (VAR x3 x2 x x1) (CONDITION iadd(x1) == tp2(x,x2), iadd(x2) == tp2(x3,x1) ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[iadd(x1) == tp2(x,x2) : { e, 1 } & iadd(x2) == tp2(x3,x1) : { e, 1 }] ) (NONTERMINALS Gamma[iadd(x1) == tp2(x,x2) : { e, 1 } & iadd(x2) == tp2(x3,x1) : { e, 1 }] Gamma[iadd(x231) == tp2 : { e, 1 }] Gamma[u1(iadd2) == tp4 : { e, 1 }] ) (RULES Gamma[iadd(x1) == tp2(x,x2) : { e, 1 } & iadd(x2) == tp2(x3,x1) : { e, 1 }] -> ((Rec(Gamma[iadd(x231) == tp2 : { e, 1 }], { tp1 -> tp2, x1 -> x231 }) & { tp1 -> tp2(x,x2) }) & (Rec(Gamma[iadd(x231) == tp2 : { e, 1 }], { tp3 -> tp2, x2 -> x231 }) & { tp3 -> tp2(x3,x1) })) Gamma[iadd(x231) == tp2 : { e, 1 }] -> { tp2 -> iadd(x231) } Gamma[iadd(x231) == tp2 : { e, 1 }] -> { tp2 -> tp2(0,y23), x231 -> y23 } Gamma[iadd(x231) == tp2 : { e, 1 }] -> ((Rec(Gamma[iadd(x231) == tp2 : { e, 1 }], { iadd1 -> tp2, z15 -> x231 }) & Rec(Gamma[u1(iadd2) == tp4 : { e, 1 }], { tp2 -> tp4, iadd1 -> iadd2 })) . { x231 -> s(z15) }) Gamma[iadd(x231) == tp2 : { e, 1 }] -> { tp2 -> tp2(x251,y25), x231 -> add(x251,y25) } Gamma[u1(iadd2) == tp4 : { e, 1 }] -> { tp4 -> u1(iadd2) } Gamma[u1(iadd2) == tp4 : { e, 1 }] -> { tp4 -> tp2(s(x277),y44), iadd2 -> tp2(x277,y44) } ) ) Failed to prove infeasibility of the linearized conditions by means of narrowing trees. This is not ultra-RL and deterministic. MAYBE