MAYBE Succeeded in reading "/export/starexec/sandbox/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x y x2 x1) (RULES pin(x) -> pout(g(x)) pin(x) -> pout(f(y)) | pin(x) == pout(g(y)) ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x y x2 x1) (RULES pin(x) -> pout(g(x)) pin(x) -> pout(f(y)) | pin(x) == pout(g(y)) ) (VAR x2 x1) (CONDITION pin(x1) == pout(g(x2)) ) Optimized the infeasibility problem if possible. (VAR x2 x1) (CONDITION pin(x1) == pout(g(x2)) ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[pin(x1) == pout(g(x2)) : { e, 1 }] ) (NONTERMINALS Gamma[pin(x1) == pout(g(x2)) : { e, 1 }] Gamma[pin(x17) == pout2 : { e, 1 }] ) (RULES Gamma[pin(x1) == pout(g(x2)) : { e, 1 }] -> (Rec(Gamma[pin(x17) == pout2 : { e, 1 }], { pout1 -> pout2, x1 -> x17 }) & { pout1 -> pout(g(x2)) }) Gamma[pin(x17) == pout2 : { e, 1 }] -> { pout2 -> pin(x17) } Gamma[pin(x17) == pout2 : { e, 1 }] -> { pout2 -> pout(g(x19)), x17 -> x19 } Gamma[pin(x17) == pout2 : { e, 1 }] -> (((Rec(Gamma[pin(x17) == pout2 : { e, 1 }], { pout3 -> pout2, x20 -> x17 }) & { pout3 -> pout(g(y3)) }) & { pout2 -> pout(f(y3)) }) . { x17 -> x20 }) ) ) Failed to prove infeasibility of the linearized conditions by means of narrowing trees. This is not ultra-RL and deterministic. The inverted system is ultra-RL and deterministic. (RTG_of_NARROWINGTREE (START Gamma[pout(g(x2)) == pin(x1) : { e, 1, 1.1 }] ) (NONTERMINALS Gamma[pout(g(x2)) == pin(x1) : { e, 1, 1.1 }] ) (RULES Gamma[pout(g(x2)) == pin(x1) : { e, 1, 1.1 }] -> { x1 -> x29 } ) ) MAYBE