YES Succeeded in reading "/export/starexec/sandbox2/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x x\'\' x\' y y\'\' y\' x3 x2 x1) (RULES f(x\',x\'\') -> g(x) | x\' == x, x\'\' == x f(y\',h(y\'\')) -> g(y) | y\' == y, y\'\' == y ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x x\'\' x\' y y\'\' y\' x3 x2 x1) (RULES f(x\',x\'\') -> g(x) | x\' == x, x\'\' == x f(y\',h(y\'\')) -> g(y) | y\' == y, y\'\' == y ) (VAR x3 x2 x x1) (CONDITION x1 == x, h(x2) == x, x1 == x3, x2 == x3 ) Optimized the infeasibility problem if possible. (VAR x3 x2 x x1) (CONDITION x1 == x, h(x2) == x, x1 == x3, x2 == x3 ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[x1 == x : { e } & h(x2) == x : { e, 1 } & x1 == x3 : { e } & x2 == x3 : { e }] ) (NONTERMINALS Gamma[x1 == x : { e } & h(x2) == x : { e, 1 } & x1 == x3 : { e } & x2 == x3 : { e }] ) (RULES Gamma[x1 == x : { e } & h(x2) == x : { e, 1 } & x1 == x3 : { e } & x2 == x3 : { e }] -> EmptySet ) ) YES