MAYBE Succeeded in reading "/export/starexec/sandbox/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR xs ys\' v ws y\' w xs\' x\' zs z ys y x7 x3 x2 x1 x6 x4) (RULES ssp\'(xs,0) -> nil ssp\'(cons(y\',ws),v) -> cons(y\',ys\') | sub(v,y\') == w, ssp\'(ws,w) == ys\' ssp\'(cons(x\',xs\'),v) -> cons(y\',ys\') | get(xs\') == tp2(y\',zs), sub(v,y\') == w, ssp\'(cons(x\',zs),w) == ys\' sub(z,0) -> z sub(s(v),s(w)) -> z | sub(v,w) == z get(cons(y,ys)) -> tp2(y,ys) get(cons(x\',xs\')) -> tp2(y,cons(x\',zs)) | get(xs\') == tp2(y,zs) ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR xs ys\' v ws y\' w xs\' x\' zs z ys y x7 x3 x2 x1 x6 x4) (RULES ssp\'(xs,0) -> nil ssp\'(cons(y\',ws),v) -> cons(y\',ys\') | sub(v,y\') == w, ssp\'(ws,w) == ys\' ssp\'(cons(x\',xs\'),v) -> cons(y\',ys\') | get(xs\') == tp2(y\',zs), sub(v,y\') == w, ssp\'(cons(x\',zs),w) == ys\' sub(z,0) -> z sub(s(v),s(w)) -> z | sub(v,w) == z get(cons(y,ys)) -> tp2(y,ys) get(cons(x\',xs\')) -> tp2(y,cons(x\',zs)) | get(xs\') == tp2(y,zs) ) (VAR x7 x3 x2 x1 x6 x4) (CONDITION get(x4) == tp2(x6,x1), sub(0,x6) == x2, ssp\'(cons(x3,x1),x2) == x7 ) Optimized the infeasibility problem if possible. (VAR x7 x3 x2 x1 x6 x4) (CONDITION get(x4) == tp2(x6,x1), sub(0,x6) == x2, ssp\'(cons(x3,x1),x2) == x7 ) This is not ultra-RL and deterministic. MAYBE