MAYBE

Succeeded in reading "/export/starexec/sandbox/benchmark/theBenchmark.ari".
    (CONDITIONTYPE ORIENTED)
    (VAR x)
    (RULES
      s(p(x)) -> x
      p(s(x)) -> x
      pos(0) -> false
      pos(s(0)) -> true
      pos(s(x)) -> true | pos(x) == true
      pos(p(x)) -> false | pos(x) == false
    )

No "->="-rules.

Decomposed conditions and removed infeasible rules if possible.
    (CONDITIONTYPE ORIENTED)
    (VAR x)
    (RULES
      s(p(x)) -> x
      p(s(x)) -> x
      pos(0) -> false
      pos(s(0)) -> true
      pos(s(x)) -> true | pos(x) == true
      pos(p(x)) -> false | pos(x) == false
    )

(VAR x)
(CONDITION 
pos(p(x)) == true
)

Optimized the infeasibility problem if possible.

(VAR x)
(CONDITION 
pos(p(x)) == true
)

This is ultra-RL and deterministic.

This is not operationally terminating and confluent.

This is a constructor-based system.

(RTG_of_NARROWINGTREE
(START
  Gamma[pos(p(x)) == true : { e, 1, 1.1 }]
)
(NONTERMINALS
  Gamma[pos(p(x)) == true : { e, 1, 1.1 }]
  Gamma[p(x117) == p5 : { e, 1 }]
  Gamma[pos(p6) == true : { e, 1 }]
  Gamma[pos(x143) == false : { e, 1 }]
)
(RULES
  Gamma[pos(p(x)) == true : { e, 1, 1.1 }] -> (Rec(Gamma[p(x117) == p5 : { e, 1 }], { p4 -> p5, x -> x117 }) & Rec(Gamma[pos(p6) == true : { e, 1 }], { p4 -> p6 }))
  Gamma[p(x117) == p5 : { e, 1 }] -> { p5 -> p(x117) }
  Gamma[p(x117) == p5 : { e, 1 }] -> { x123 -> x126, p5 -> x126, x117 -> s(x126) }
  Gamma[pos(p6) == true : { e, 1 }] -> { p6 -> s(0) }
  Gamma[pos(p6) == true : { e, 1 }] -> (Rec(Gamma[pos(p6) == true : { e, 1 }], { x130 -> p6 }) . { p6 -> s(x130) })
  Gamma[pos(x143) == false : { e, 1 }] -> { x143 -> 0 }
  Gamma[pos(x143) == false : { e, 1 }] -> (Rec(Gamma[pos(x143) == false : { e, 1 }], { x149 -> x143 }) . { x143 -> p(x149) })
)
)

Failed to prove infeasibility of the linearized conditions by means of narrowing trees.

This is not ultra-RL and deterministic.


MAYBE