MAYBE Succeeded in reading "/export/starexec/sandbox/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x) (RULES s(p(x)) -> x p(s(x)) -> x pos(0) -> false pos(s(0)) -> true pos(s(x)) -> true | pos(x) == true pos(p(x)) -> false | pos(x) == false ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x) (RULES s(p(x)) -> x p(s(x)) -> x pos(0) -> false pos(s(0)) -> true pos(s(x)) -> true | pos(x) == true pos(p(x)) -> false | pos(x) == false ) (VAR x) (CONDITION pos(p(x)) == true ) Optimized the infeasibility problem if possible. (VAR x) (CONDITION pos(p(x)) == true ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[pos(p(x)) == true : { e, 1, 1.1 }] ) (NONTERMINALS Gamma[pos(p(x)) == true : { e, 1, 1.1 }] Gamma[p(x117) == p5 : { e, 1 }] Gamma[pos(p6) == true : { e, 1 }] Gamma[pos(x143) == false : { e, 1 }] ) (RULES Gamma[pos(p(x)) == true : { e, 1, 1.1 }] -> (Rec(Gamma[p(x117) == p5 : { e, 1 }], { p4 -> p5, x -> x117 }) & Rec(Gamma[pos(p6) == true : { e, 1 }], { p4 -> p6 })) Gamma[p(x117) == p5 : { e, 1 }] -> { p5 -> p(x117) } Gamma[p(x117) == p5 : { e, 1 }] -> { x123 -> x126, p5 -> x126, x117 -> s(x126) } Gamma[pos(p6) == true : { e, 1 }] -> { p6 -> s(0) } Gamma[pos(p6) == true : { e, 1 }] -> (Rec(Gamma[pos(p6) == true : { e, 1 }], { x130 -> p6 }) . { p6 -> s(x130) }) Gamma[pos(x143) == false : { e, 1 }] -> { x143 -> 0 } Gamma[pos(x143) == false : { e, 1 }] -> (Rec(Gamma[pos(x143) == false : { e, 1 }], { x149 -> x143 }) . { x143 -> p(x149) }) ) ) Failed to prove infeasibility of the linearized conditions by means of narrowing trees. This is not ultra-RL and deterministic. MAYBE