MAYBE Succeeded in reading "/export/starexec/sandbox2/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x) (RULES s(p(x)) -> x p(s(x)) -> x pos(0) -> false pos(s(0)) -> true pos(s(x)) -> true | pos(x) == true pos(p(x)) -> false | pos(x) == false ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x) (RULES s(p(x)) -> x p(s(x)) -> x pos(0) -> false pos(s(0)) -> true pos(s(x)) -> true | pos(x) == true pos(p(x)) -> false | pos(x) == false ) (VAR x) (CONDITION pos(s(x)) == false ) Optimized the infeasibility problem if possible. (VAR x) (CONDITION pos(s(x)) == false ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[pos(s(x)) == false : { e, 1, 1.1 }] ) (NONTERMINALS Gamma[pos(s(x)) == false : { e, 1, 1.1 }] Gamma[s(x117) == s2 : { e, 1 }] Gamma[pos(s3) == false : { e, 1 }] Gamma[pos(x138) == true : { e, 1 }] ) (RULES Gamma[pos(s(x)) == false : { e, 1, 1.1 }] -> (Rec(Gamma[s(x117) == s2 : { e, 1 }], { s1 -> s2, x -> x117 }) & Rec(Gamma[pos(s3) == false : { e, 1 }], { s1 -> s3 })) Gamma[s(x117) == s2 : { e, 1 }] -> { s2 -> s(x117) } Gamma[s(x117) == s2 : { e, 1 }] -> { x122 -> x126, s2 -> x126, x117 -> p(x126) } Gamma[pos(s3) == false : { e, 1 }] -> { s3 -> 0 } Gamma[pos(s3) == false : { e, 1 }] -> (Rec(Gamma[pos(s3) == false : { e, 1 }], { x131 -> s3 }) . { s3 -> p(x131) }) Gamma[pos(x138) == true : { e, 1 }] -> { x138 -> s(0) } Gamma[pos(x138) == true : { e, 1 }] -> (Rec(Gamma[pos(x138) == true : { e, 1 }], { x148 -> x138 }) . { x138 -> s(x148) }) ) ) Failed to prove infeasibility of the linearized conditions by means of narrowing trees. This is not ultra-RL and deterministic. MAYBE