MAYBE Succeeded in reading "/export/starexec/sandbox2/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR z2 z1 rest y x) (RULES cons(x,cons(y,rest)) -> cons(z1,cons(z2,rest)) | orient(x,y) == pair(z1,z2) cons(x,cons(x,rest)) -> cons(x,rest) orient(s(x),s(y)) -> pair(s(z1),s(z2)) | orient(x,y) == pair(z1,z2) orient(s(x),0) -> pair(0,s(x)) ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR z2 z1 rest y x) (RULES cons(x,cons(y,rest)) -> cons(z1,cons(z2,rest)) | orient(x,y) == pair(z1,z2) cons(x,cons(x,rest)) -> cons(x,rest) orient(s(x),s(y)) -> pair(s(z1),s(z2)) | orient(x,y) == pair(z1,z2) orient(s(x),0) -> pair(0,s(x)) ) (VAR z2 z1 y x) (CONDITION orient(x,y) == pair(z1,z2) ) Optimized the infeasibility problem if possible. (VAR z2 z1 y x) (CONDITION orient(x,y) == pair(z1,z2) ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[orient(x,y) == pair(z1,z2) : { e, 1 }] ) (NONTERMINALS Gamma[orient(x,y) == pair(z1,z2) : { e, 1 }] Gamma[orient(x216,y5) == pair2 : { e, 1 }] ) (RULES Gamma[orient(x,y) == pair(z1,z2) : { e, 1 }] -> (Rec(Gamma[orient(x216,y5) == pair2 : { e, 1 }], { pair1 -> pair2, y -> y5, x -> x216 }) & { pair1 -> pair(z1,z2) }) Gamma[orient(x216,y5) == pair2 : { e, 1 }] -> { pair2 -> orient(x216,y5) } Gamma[orient(x216,y5) == pair2 : { e, 1 }] -> (((Rec(Gamma[orient(x216,y5) == pair2 : { e, 1 }], { pair3 -> pair2, y7 -> y5, x220 -> x216 }) & { pair3 -> pair(z13,z14) }) & { pair2 -> pair(s(z13),s(z14)) }) . { y5 -> s(y7), x216 -> s(x220) }) Gamma[orient(x216,y5) == pair2 : { e, 1 }] -> { pair2 -> pair(0,s(x221)), y5 -> 0, x216 -> s(x221) } ) ) Failed to prove infeasibility of the linearized conditions by means of narrowing trees. This is not ultra-RL and deterministic. MAYBE