MAYBE Succeeded in reading "/export/starexec/sandbox/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x y z x3 x1 x2) (RULES pin(a) -> pout(b) pin(b) -> pout(c) tc(x) -> x tc(x) -> y | pin(x) == pout(z), tc(z) == y ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x y z x3 x1 x2) (RULES pin(a) -> pout(b) pin(b) -> pout(c) tc(x) -> x tc(x) -> y | pin(x) == pout(z), tc(z) == y ) (VAR x3 x1 x2) (CONDITION pin(x2) == pout(x1), tc(x1) == x3 ) Optimized the infeasibility problem if possible. (VAR x3 x1 x2) (CONDITION pin(x2) == pout(x1), tc(x1) == x3 ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[pin(x2) == pout(x1) : { e, 1 } & tc(x1) == x3 : { e, 1 }] ) (NONTERMINALS Gamma[pin(x2) == pout(x1) : { e, 1 } & tc(x1) == x3 : { e, 1 }] Gamma[pin(x52) == pout2 : { e, 1 }] Gamma[tc(x56) == x57 : { e, 1 }] ) (RULES Gamma[pin(x2) == pout(x1) : { e, 1 } & tc(x1) == x3 : { e, 1 }] -> ((Rec(Gamma[pin(x52) == pout2 : { e, 1 }], { pout1 -> pout2, x2 -> x52 }) & { pout1 -> pout(x1) }) & Rec(Gamma[tc(x56) == x57 : { e, 1 }], { x3 -> x57, x1 -> x56 })) Gamma[pin(x52) == pout2 : { e, 1 }] -> { pout2 -> pin(x52) } Gamma[pin(x52) == pout2 : { e, 1 }] -> { pout2 -> pout(b), x52 -> a } Gamma[pin(x52) == pout2 : { e, 1 }] -> { pout2 -> pout(c), x52 -> b } Gamma[tc(x56) == x57 : { e, 1 }] -> { x57 -> tc(x56) } Gamma[tc(x56) == x57 : { e, 1 }] -> { x63 -> x65, x57 -> x65, x56 -> x65 } Gamma[tc(x56) == x57 : { e, 1 }] -> (((Rec(Gamma[pin(x52) == pout2 : { e, 1 }], { pout3 -> pout2, x64 -> x52 }) & { pout3 -> pout(z5) }) & (Rec(Gamma[tc(x56) == x57 : { e, 1 }], { y5 -> x57, z5 -> x56 }) & { x57 -> x73, y5 -> x73 })) . { x56 -> x64 }) ) ) Failed to prove infeasibility of the linearized conditions by means of narrowing trees. This is not ultra-RL and deterministic. MAYBE