MAYBE Succeeded in reading "/export/starexec/sandbox2/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x y r n xs r\' x1 x2) (RULES eq(0,0) -> true eq(s(x),0) -> false eq(0,s(y)) -> false eq(s(x),s(y)) -> eq(x,y) lte(0,y) -> true lte(s(x),0) -> false lte(s(x),s(y)) -> lte(x,y) m(0,s(y)) -> 0 m(x,0) -> x m(s(x),s(y)) -> m(x,y) mod(0,y) -> 0 mod(s(x),0) -> 0 mod(s(x),s(y)) -> mod(m(x,y),s(y)) | lte(y,x) == true mod(s(x),s(y)) -> s(x) | lte(y,x) == false filter(n,r,nil) -> nil filter(n,r,cons(x,xs)) -> cons(x,filter(n,r,xs)) | mod(x,n) == r\', eq(r,r\') == true filter(n,r,cons(x,xs)) -> filter(n,r,xs) | mod(x,n) == r\', eq(r,r\') == false ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x y r n xs r\' x1 x2) (RULES eq(0,0) -> true eq(s(x),0) -> false eq(0,s(y)) -> false eq(s(x),s(y)) -> eq(x,y) lte(0,y) -> true lte(s(x),0) -> false lte(s(x),s(y)) -> lte(x,y) m(0,s(y)) -> 0 m(x,0) -> x m(s(x),s(y)) -> m(x,y) mod(0,y) -> 0 mod(s(x),0) -> 0 mod(s(x),s(y)) -> mod(m(x,y),s(y)) | lte(y,x) == true mod(s(x),s(y)) -> s(x) | lte(y,x) == false filter(n,r,nil) -> nil filter(n,r,cons(x,xs)) -> cons(x,filter(n,r,xs)) | mod(x,n) == r\', eq(r,r\') == true filter(n,r,cons(x,xs)) -> filter(n,r,xs) | mod(x,n) == r\', eq(r,r\') == false ) (VAR x1 x2) (CONDITION lte(x2,x1) == true, lte(x2,x1) == false ) Optimized the infeasibility problem if possible. (VAR x1 x2) (CONDITION lte(x2,x1) == true, lte(x2,x1) == false ) This is not ultra-RL and deterministic. MAYBE