MAYBE Succeeded in reading "/export/starexec/sandbox2/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x y q n n\' z x4 x2 x1) (RULES add(0,x) -> x add(s(x),y) -> s(add(x,y)) mult(0,y) -> 0 mult(s(x),y) -> add(mult(x,y),y) lte(0,y) -> true lte(s(x),0) -> false lte(s(x),s(y)) -> lte(x,y) minus(0,s(y)) -> 0 minus(x,0) -> x minus(s(x),s(y)) -> minus(x,y) mod(0,y) -> 0 mod(x,0) -> x mod(x,s(y)) -> mod(minus(x,s(y)),s(y)) | lte(s(y),x) == true mod(x,s(y)) -> x | lte(s(y),x) == false div(0,s(x)) -> 0 div(s(x),s(y)) -> 0 | lte(s(x),y) == true div(s(x),s(y)) -> s(q) | lte(s(x),y) == false, div(minus(x,y),s(y)) == q power(x,0) -> s(0) power(x,n) -> mult(mult(y,y),s(0)) | n == s(n\'), mod(n,s(s(0))) == 0, power(x,div(n,s(s(0)))) == y power(x,n) -> mult(mult(y,y),x) | n == s(n\'), mod(n,s(s(0))) == s(z), power(x,div(n,s(s(0)))) == y ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x y q n n\' z x4 x2 x1) (RULES add(0,x) -> x add(s(x),y) -> s(add(x,y)) mult(0,y) -> 0 mult(s(x),y) -> add(mult(x,y),y) lte(0,y) -> true lte(s(x),0) -> false lte(s(x),s(y)) -> lte(x,y) minus(0,s(y)) -> 0 minus(x,0) -> x minus(s(x),s(y)) -> minus(x,y) mod(0,y) -> 0 mod(x,0) -> x mod(x,s(y)) -> mod(minus(x,s(y)),s(y)) | lte(s(y),x) == true mod(x,s(y)) -> x | lte(s(y),x) == false div(0,s(x)) -> 0 div(s(x),s(y)) -> 0 | lte(s(x),y) == true div(s(x),s(y)) -> s(q) | lte(s(x),y) == false, div(minus(x,y),s(y)) == q power(x,0) -> s(0) power(x,n) -> mult(mult(y,y),s(0)) | n == s(n\'), mod(n,s(s(0))) == 0, power(x,div(n,s(s(0)))) == y power(x,n) -> mult(mult(y,y),x) | n == s(n\'), mod(n,s(s(0))) == s(z), power(x,div(n,s(s(0)))) == y ) (VAR x4 x2 x1) (CONDITION 0 == s(x1), mod(0,s(s(0))) == 0, power(x2,div(0,s(s(0)))) == x4 ) Optimized the infeasibility problem if possible. (VAR x4 x2 x1) (CONDITION 0 == s(x1), mod(0,s(s(0))) == 0, power(x2,div(0,s(s(0)))) == x4 ) This is not ultra-RL and deterministic. MAYBE