MAYBE Succeeded in reading "/export/starexec/sandbox/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x) (RULES c -> k(f(a)) c -> k(g(b)) h(x) -> k(x) h(f(a)) -> c a -> b f(x) -> g(x) | h(f(x)) == k(g(b)) ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (CONDITIONTYPE ORIENTED) (VAR x) (RULES c -> k(f(a)) c -> k(g(b)) h(x) -> k(x) h(f(a)) -> c a -> b f(x) -> g(x) | h(f(x)) == k(g(b)) ) (CONDITION h(f(a)) == k(g(b)) ) Optimized the infeasibility problem if possible. (CONDITION h(f(a)) == k(g(b)) ) This is not ultra-RL and deterministic. The inverted system is ultra-RL and deterministic. (RTG_of_NARROWINGTREE (START Gamma[k(g(b)) == h(f(a)) : { e, 1, 1.1, 1.1.1 }] ) (NONTERMINALS Gamma[k(g(b)) == h(f(a)) : { e, 1, 1.1, 1.1.1 }] Gamma[b == b2 : { e, 1 }] Gamma[g(b3) == g2 : { e, 1 }] Gamma[k(g3) == h(f(a)) : { e, 1 }] Gamma[k(g5) == h2 : { e, 1 }] Gamma[c == h(f(a)) : { e, 1 }] Gamma[c == h3 : { e, 1 }] ) (RULES Gamma[k(g(b)) == h(f(a)) : { e, 1, 1.1, 1.1.1 }] -> (Rec(Gamma[b == b2 : { e, 1 }], { b1 -> b2 }) & (Rec(Gamma[g(b3) == g2 : { e, 1 }], { g1 -> g2, b1 -> b3 }) & Rec(Gamma[k(g3) == h(f(a)) : { e, 1 }], { g1 -> g3 }))) Gamma[b == b2 : { e, 1 }] -> { b2 -> b } Gamma[b == b2 : { e, 1 }] -> { b2 -> a } Gamma[g(b3) == g2 : { e, 1 }] -> { g2 -> g(b3) } Gamma[g(b3) == g2 : { e, 1 }] -> (((Rec(Gamma[b == b2 : { e, 1 }], { b4 -> b2 }) & (Rec(Gamma[g(b3) == g2 : { e, 1 }], { g4 -> g2, b4 -> b3 }) & (Rec(Gamma[k(g5) == h2 : { e, 1 }], { h1 -> h2, g4 -> g5 }) & { h1 -> h(f(x18)) }))) & { g2 -> f(x18) }) . { b3 -> x18 }) Gamma[k(g3) == h(f(a)) : { e, 1 }] -> (Rec(Gamma[c == h(f(a)) : { e, 1 }], { }) . { g3 -> f(a) }) Gamma[k(g3) == h(f(a)) : { e, 1 }] -> (Rec(Gamma[c == h(f(a)) : { e, 1 }], { }) . { g3 -> g(b) }) Gamma[k(g3) == h(f(a)) : { e, 1 }] -> { x30 -> f(a), g3 -> f(a) } Gamma[k(g5) == h2 : { e, 1 }] -> { h2 -> k(g5) } Gamma[k(g5) == h2 : { e, 1 }] -> (Rec(Gamma[c == h3 : { e, 1 }], { h2 -> h3 }) . { g5 -> f(a) }) Gamma[k(g5) == h2 : { e, 1 }] -> (Rec(Gamma[c == h3 : { e, 1 }], { h2 -> h3 }) . { g5 -> g(b) }) Gamma[k(g5) == h2 : { e, 1 }] -> { h2 -> h(x38), g5 -> x38 } Gamma[c == h(f(a)) : { e, 1 }] -> { } Gamma[c == h3 : { e, 1 }] -> { h3 -> c } Gamma[c == h3 : { e, 1 }] -> { h3 -> h(f(a)) } ) ) MAYBE