MAYBE Succeeded in reading "/export/starexec/sandbox2/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR y x) (RULES c -> f(c,d) c -> h(c,d) f(x,y) -> h(g(y),x) h(x,y) -> f(g(y),x) ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (VAR y x) (RULES c -> f(c,d) c -> h(c,d) f(x,y) -> h(g(y),x) h(x,y) -> f(g(y),x) ) (VAR x) (CONDITION h(f(c,d),d) == x, f(c,d) == x ) Optimized the infeasibility problem if possible. (VAR x) (CONDITION h(f(c,d),d) == x, f(c,d) == x ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[h(f(c,d),d) == x : { e, 1, 1.1, 1.1.1, 1.1.2, 1.2 } & f(c,d) == x : { e, 1, 1.1, 1.2 }] ) (NONTERMINALS Gamma[h(f(c,d),d) == x : { e, 1, 1.1, 1.1.1, 1.1.2, 1.2 } & f(c,d) == x : { e, 1, 1.1, 1.2 }] Gamma[c == c2 : { e, 1 }] Gamma[f(c3,d3) == f2 : { e, 1 }] Gamma[h(f3,d4) == x39 : { e, 1 }] ) (RULES Gamma[h(f(c,d),d) == x : { e, 1, 1.1, 1.1.1, 1.1.2, 1.2 } & f(c,d) == x : { e, 1, 1.1, 1.2 }] -> ((Rec(Gamma[c == c2 : { e, 1 }], { c1 -> c2 }) & ({ d2 -> d } & (Rec(Gamma[f(c3,d3) == f2 : { e, 1 }], { f1 -> f2, d2 -> d3, c1 -> c3 }) & ({ d1 -> d } & Rec(Gamma[h(f3,d4) == x39 : { e, 1 }], { x -> x39, d1 -> d4, f1 -> f3 }))))) & (Rec(Gamma[c == c2 : { e, 1 }], { c4 -> c2 }) & ({ d5 -> d } & Rec(Gamma[f(c3,d3) == f2 : { e, 1 }], { x -> f2, d5 -> d3, c4 -> c3 })))) Gamma[c == c2 : { e, 1 }] -> { c2 -> c } Gamma[c == c2 : { e, 1 }] -> (Rec(Gamma[c == c2 : { e, 1 }], { c5 -> c2 }) & ({ d6 -> d } & Rec(Gamma[f(c3,d3) == f2 : { e, 1 }], { c2 -> f2, d6 -> d3, c5 -> c3 }))) Gamma[c == c2 : { e, 1 }] -> (Rec(Gamma[c == c2 : { e, 1 }], { c6 -> c2 }) & ({ d7 -> d } & Rec(Gamma[h(f3,d4) == x39 : { e, 1 }], { c2 -> x39, d7 -> d4, c6 -> f3 }))) Gamma[f(c3,d3) == f2 : { e, 1 }] -> { f2 -> f(c3,d3) } Gamma[f(c3,d3) == f2 : { e, 1 }] -> (({ g1 -> g(y29) } & Rec(Gamma[h(f3,d4) == x39 : { e, 1 }], { f2 -> x39, x64 -> d4, g1 -> f3 })) . { d3 -> y29, c3 -> x64 }) Gamma[h(f3,d4) == x39 : { e, 1 }] -> { x39 -> h(f3,d4) } Gamma[h(f3,d4) == x39 : { e, 1 }] -> (({ g2 -> g(y36) } & Rec(Gamma[f(c3,d3) == f2 : { e, 1 }], { x39 -> f2, x73 -> d3, g2 -> c3 })) . { d4 -> y36, f3 -> x73 }) ) ) Failed to prove infeasibility of the linearized conditions by means of narrowing trees. This is not ultra-RL and deterministic. The inverted system is ultra-RL and deterministic. MAYBE