MAYBE Succeeded in reading "/export/starexec/sandbox/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x) (RULES a -> h(c) a -> h(f(c)) h(x) -> h(h(x)) f(x) -> f(g(x)) ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (VAR x) (RULES a -> h(c) a -> h(f(c)) h(x) -> h(h(x)) f(x) -> f(g(x)) ) (VAR x) (CONDITION h(c) == x, h(f(c)) == x ) Optimized the infeasibility problem if possible. (VAR x) (CONDITION h(c) == x, h(f(c)) == x ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[h(c) == x : { e, 1, 1.1 } & h(f(c)) == x : { e, 1, 1.1, 1.1.1 }] ) (NONTERMINALS Gamma[h(c) == x : { e, 1, 1.1 } & h(f(c)) == x : { e, 1, 1.1, 1.1.1 }] Gamma[h(c2) == x38 : { e, 1 }] Gamma[f(c4) == f2 : { e, 1 }] ) (RULES Gamma[h(c) == x : { e, 1, 1.1 } & h(f(c)) == x : { e, 1, 1.1, 1.1.1 }] -> (({ c1 -> c } & Rec(Gamma[h(c2) == x38 : { e, 1 }], { x -> x38, c1 -> c2 })) & ({ c3 -> c } & (Rec(Gamma[f(c4) == f2 : { e, 1 }], { f1 -> f2, c3 -> c4 }) & Rec(Gamma[h(c2) == x38 : { e, 1 }], { x -> x38, f1 -> c2 })))) Gamma[h(c2) == x38 : { e, 1 }] -> { x38 -> h(c2) } Gamma[h(c2) == x38 : { e, 1 }] -> ((Rec(Gamma[h(c2) == x38 : { e, 1 }], { h1 -> x38, x46 -> c2 }) & Rec(Gamma[h(c2) == x38 : { e, 1 }], { x38 -> x38, h1 -> c2 })) . { c2 -> x46 }) Gamma[f(c4) == f2 : { e, 1 }] -> { f2 -> f(c4) } Gamma[f(c4) == f2 : { e, 1 }] -> (({ g1 -> g(x56) } & Rec(Gamma[f(c4) == f2 : { e, 1 }], { f2 -> f2, g1 -> c4 })) . { c4 -> x56 }) ) ) Failed to prove infeasibility of the linearized conditions by means of narrowing trees. This is not ultra-RL and deterministic. The inverted system is ultra-RL and deterministic. MAYBE