MAYBE Succeeded in reading "/export/starexec/sandbox2/benchmark/theBenchmark.ari". (CONDITIONTYPE ORIENTED) (VAR x) (RULES a -> f(c) a -> h(c) f(x) -> h(g(x)) h(x) -> f(g(x)) ) No "->="-rules. Decomposed conditions and removed infeasible rules if possible. (VAR x) (RULES a -> f(c) a -> h(c) f(x) -> h(g(x)) h(x) -> f(g(x)) ) (VAR x) (CONDITION f(c) == x, h(c) == x ) Optimized the infeasibility problem if possible. (VAR x) (CONDITION f(c) == x, h(c) == x ) This is ultra-RL and deterministic. This is not operationally terminating and confluent. This is a constructor-based system. (RTG_of_NARROWINGTREE (START Gamma[f(c) == x : { e, 1, 1.1 } & h(c) == x : { e, 1, 1.1 }] ) (NONTERMINALS Gamma[f(c) == x : { e, 1, 1.1 } & h(c) == x : { e, 1, 1.1 }] Gamma[f(c2) == x18 : { e, 1 }] Gamma[h(c4) == x24 : { e, 1 }] ) (RULES Gamma[f(c) == x : { e, 1, 1.1 } & h(c) == x : { e, 1, 1.1 }] -> (({ c1 -> c } & Rec(Gamma[f(c2) == x18 : { e, 1 }], { x -> x18, c1 -> c2 })) & ({ c3 -> c } & Rec(Gamma[h(c4) == x24 : { e, 1 }], { x -> x24, c3 -> c4 }))) Gamma[f(c2) == x18 : { e, 1 }] -> { x18 -> f(c2) } Gamma[f(c2) == x18 : { e, 1 }] -> (({ g1 -> g(x25) } & Rec(Gamma[h(c4) == x24 : { e, 1 }], { x18 -> x24, g1 -> c4 })) . { c2 -> x25 }) Gamma[h(c4) == x24 : { e, 1 }] -> { x24 -> h(c4) } Gamma[h(c4) == x24 : { e, 1 }] -> (({ g2 -> g(x34) } & Rec(Gamma[f(c2) == x18 : { e, 1 }], { x24 -> x18, g2 -> c2 })) . { c4 -> x34 }) ) ) Failed to prove infeasibility of the linearized conditions by means of narrowing trees. This is not ultra-RL and deterministic. The inverted system is ultra-RL and deterministic. MAYBE