MAYBE

Succeeded in reading "/export/starexec/sandbox2/benchmark/theBenchmark.ari".
    (CONDITIONTYPE ORIENTED)
    (VAR x)
    (RULES
      a -> f(c)
      a -> h(c)
      f(x) -> h(g(x))
      h(x) -> f(g(x))
    )

No "->="-rules.

Decomposed conditions and removed infeasible rules if possible.
    (VAR x)
    (RULES
      a -> f(c)
      a -> h(c)
      f(x) -> h(g(x))
      h(x) -> f(g(x))
    )

(VAR x)
(CONDITION 
f(c) == x, h(c) == x
)

Optimized the infeasibility problem if possible.

(VAR x)
(CONDITION 
f(c) == x, h(c) == x
)

This is ultra-RL and deterministic.

This is not operationally terminating and confluent.

This is a constructor-based system.

(RTG_of_NARROWINGTREE
(START
  Gamma[f(c) == x : { e, 1, 1.1 } & h(c) == x : { e, 1, 1.1 }]
)
(NONTERMINALS
  Gamma[f(c) == x : { e, 1, 1.1 } & h(c) == x : { e, 1, 1.1 }]
  Gamma[f(c2) == x18 : { e, 1 }]
  Gamma[h(c4) == x24 : { e, 1 }]
)
(RULES
  Gamma[f(c) == x : { e, 1, 1.1 } & h(c) == x : { e, 1, 1.1 }] -> (({ c1 -> c } & Rec(Gamma[f(c2) == x18 : { e, 1 }], { x -> x18, c1 -> c2 })) & ({ c3 -> c } & Rec(Gamma[h(c4) == x24 : { e, 1 }], { x -> x24, c3 -> c4 })))
  Gamma[f(c2) == x18 : { e, 1 }] -> { x18 -> f(c2) }
  Gamma[f(c2) == x18 : { e, 1 }] -> (({ g1 -> g(x25) } & Rec(Gamma[h(c4) == x24 : { e, 1 }], { x18 -> x24, g1 -> c4 })) . { c2 -> x25 })
  Gamma[h(c4) == x24 : { e, 1 }] -> { x24 -> h(c4) }
  Gamma[h(c4) == x24 : { e, 1 }] -> (({ g2 -> g(x34) } & Rec(Gamma[f(c2) == x18 : { e, 1 }], { x24 -> x18, g2 -> c2 })) . { c4 -> x34 })
)
)

Failed to prove infeasibility of the linearized conditions by means of narrowing trees.

This is not ultra-RL and deterministic.

The inverted system is ultra-RL and deterministic.


MAYBE