YES

Succeeded in reading "/export/starexec/sandbox/benchmark/theBenchmark.ari".
    (CONDITIONTYPE ORIENTED)
    (VAR x)
    (RULES
      zero(0) -> true
      zero(s(x)) -> false
      even(x) -> true | zero(x) == true
      even(s(x)) -> true | odd(x) == true
      even(s(x)) -> false | even(x) == true
      odd(x) -> false | zero(x) == true
      odd(s(x)) -> true | even(x) == true
      odd(s(x)) -> false | odd(x) == true
    )

No "->="-rules.

Decomposed conditions and removed infeasible rules if possible.
    (CONDITIONTYPE ORIENTED)
    (VAR x)
    (RULES
      zero(0) -> true
      zero(s(x)) -> false
      even(x) -> true | zero(x) == true
      even(s(x)) -> true | odd(x) == true
      even(s(x)) -> false | even(x) == true
      odd(x) -> false | zero(x) == true
      odd(s(x)) -> true | even(x) == true
      odd(s(x)) -> false | odd(x) == true
    )

(VAR x)
(CONDITION 
zero(s(x)) == true, even(x) == true
)

Optimized the infeasibility problem if possible.

(VAR x)
(CONDITION 
zero(s(x)) == true, even(x) == true
)

This is ultra-RL and deterministic.

This is operationally terminating and confluent.

(RTG_of_NARROWINGTREE
(START
  Gamma[zero(s(x)) == true : { e, 1, 1.1 } & even(x) == true : { e, 1 }]
)
(NONTERMINALS
  Gamma[zero(s(x)) == true : { e, 1, 1.1 } & even(x) == true : { e, 1 }]
  Gamma[even(x1459) == true : { e, 1 }]
  Gamma[zero(x1474) == true : { e, 1 }]
  Gamma[odd(x1483) == true : { e, 1 }]
)
(RULES
  Gamma[zero(s(x)) == true : { e, 1, 1.1 } & even(x) == true : { e, 1 }] -> EmptySet
  Gamma[even(x1459) == true : { e, 1 }] -> (Rec(Gamma[zero(x1474) == true : { e, 1 }], { x1461 -> x1474 }) . { x1459 -> x1461 })
  Gamma[even(x1459) == true : { e, 1 }] -> (Rec(Gamma[odd(x1483) == true : { e, 1 }], { x1462 -> x1483 }) . { x1459 -> s(x1462) })
  Gamma[zero(x1474) == true : { e, 1 }] -> { x1474 -> 0 }
  Gamma[odd(x1483) == true : { e, 1 }] -> (Rec(Gamma[even(x1459) == true : { e, 1 }], { x1509 -> x1459 }) . { x1483 -> s(x1509) })
)
)

YES