YES

Succeeded in reading "/export/starexec/sandbox2/benchmark/theBenchmark.ari".
    (CONDITIONTYPE ORIENTED)
    (VAR x)
    (RULES
      zero(0) -> true
      zero(s(x)) -> false
      even(x) -> true | zero(x) == true
      even(s(x)) -> true | odd(x) == true
      even(s(x)) -> false | even(x) == true
      odd(x) -> false | zero(x) == true
      odd(s(x)) -> true | even(x) == true
      odd(s(x)) -> false | odd(x) == true
    )

No "->="-rules.

Decomposed conditions and removed infeasible rules if possible.
    (CONDITIONTYPE ORIENTED)
    (VAR x)
    (RULES
      zero(0) -> true
      zero(s(x)) -> false
      even(x) -> true | zero(x) == true
      even(s(x)) -> true | odd(x) == true
      even(s(x)) -> false | even(x) == true
      odd(x) -> false | zero(x) == true
      odd(s(x)) -> true | even(x) == true
      odd(s(x)) -> false | odd(x) == true
    )

(VAR x)
(CONDITION 
even(x) == true, odd(x) == true
)

Optimized the infeasibility problem if possible.

(VAR x)
(CONDITION 
even(x) == true, odd(x) == true
)

This is ultra-RL and deterministic.

This is operationally terminating and confluent.

(RTG_of_NARROWINGTREE
(START
  Gamma[even(x) == true : { e, 1 } & odd(x) == true : { e, 1 }]
)
(NONTERMINALS
  Gamma[even(x) == true : { e, 1 } & odd(x) == true : { e, 1 }]
  Gamma[even(x1450) == true : { e, 1 }]
  Gamma[odd(x1458) == true : { e, 1 }]
  Gamma[zero(x1473) == true : { e, 1 }]
)
(RULES
  Gamma[even(x) == true : { e, 1 } & odd(x) == true : { e, 1 }] -> EmptySet
  Gamma[even(x1450) == true : { e, 1 }] -> (Rec(Gamma[zero(x1473) == true : { e, 1 }], { x1460 -> x1473 }) . { x1450 -> x1460 })
  Gamma[even(x1450) == true : { e, 1 }] -> (Rec(Gamma[odd(x1458) == true : { e, 1 }], { x1461 -> x1458 }) . { x1450 -> s(x1461) })
  Gamma[odd(x1458) == true : { e, 1 }] -> (Rec(Gamma[even(x1450) == true : { e, 1 }], { x1497 -> x1450 }) . { x1458 -> s(x1497) })
  Gamma[zero(x1473) == true : { e, 1 }] -> { x1473 -> 0 }
)
)

YES